高考解析几何中的基本公式(优选.)
高中数学概念、公式整理

高中数学概念、公式整理一、 函数1、 若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n 。
二次函数c bx ax y ++=2的图象的对称轴方程是abx 2-=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422,。
用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即(一般式)c bx ax x f ++=2)(,(零点式))()()(21x x x x a x f -⋅-=和n m x a x f +-=2)()( (顶点式)。
2、 幂函数nmx y = ,当n 为正奇数,m 为正偶数,m<n 时,其大致图象是3、 函数652+-=x x y 的大致图象是由图象知,函数的值域是)0[∞+,,单调递增区间是)3[]5.22[∞+,和,,单调递减区间是]35.2[]2(,和,-∞。
二、 三角函数1、 以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则sin α=ry,cos α=r x ,tg α=xy,ctg α=y x ,sec α=x r ,csc α=y r 。
2、同角三角函数的关系中,平方关系是:1cos sin22=+αα,αα22sec 1=+tg ,αα22csc 1=+ctg ;倒数关系是:1=⋅ααctg tg ,1csc sin =⋅αα,1sec cos =⋅αα;相除关系是:αααcos sin =tg ,αααsin cos =ctg 。
3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。
如:=-)23sin(απαcos -,)215(απ-ctg =αtg ,=-)3(απtg αtg -。
4、 函数B x A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。
解析几何复习:高三解析几何中斜率之和为零的问题探究

解析几何复习:高三解析几何中斜率之和为零的问题探究解析几何中斜率之和为零的问题探究教学目标:掌握解析几何中斜率之和为零这类问题的基本解法,并不断推广、深入,掌握一般性的结论;通过一类问题的探究提高学生的分析能力,引导学生养成探究、拓展、深入思考的惯。
教学重点:方法的确定与推广。
教学难点:运算的简化。
教学方法:探究研讨式。
教学过程:问题一:已知椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$及定点A(1,2/3),E,F是椭圆上两个不同的动点,且直线AE的斜率与AF的斜率互为相反数,问直线EF的斜率是否为定值,若是求出该定值,若不是请说明理由。
思路分析:方法一:利用两直线斜率之和为零,设一条斜率为K,另一条为-K,解出E、F两点的坐标,再计算斜率。
方法二:假设直线EF斜率为定值,设为K,设出EF直线,与椭圆方程联立,然后再通过斜率之和为零构造关于K 的方程。
方法三:先从特殊位置(考虑E、F两点重合)猜出EF 斜率是定值,并确定该值,然后验证。
解答一:设AE斜率为k,则AF的斜率为-k。
frac{3x^2}{4y^2}+k^2=1$与$\frac{3x^2}{4y^2}+(-k)^2=1$联立得:$4k^2x^2+12kxy-3y^2=243$4k^2x^2+12kxy-3y^2-243=0$Delta=144y^2-4(4k^2)(-3y^2+243)=16(4k^2+3)y^2-192k^2$Delta=0$时,$y=\pm\frac{3}{2}$,代入得$x=\pm 1$,即E、F两点坐标为$(1,\frac{3}{2})$和$(1,-\frac{3}{2})$。
frac{y-\frac{3}{2}}{x-1}=\frac{\frac{3}{2}+\frac{3}{2}}{1-1}=0$,$\frac{y+\frac{3}{2}}{x-1}=\frac{-\frac{3}{2}+\frac{3}{2}}{1-1}=0$,故直线EF斜率为0.解答二:设AE斜率为k,则AF的斜率为-k。
高中数学求轨迹方程的六种常用技法

练习:1.平面内动点到点的距离与到直线的距离之比为2,则点的轨迹方程是。
2.设动直线垂直于轴,且与椭圆交于、两点,是上满足的点,求点的轨迹方程。
3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是
A.直线B.椭圆C.抛物线D.双曲线
, 又因为所以
化简得点的轨迹方程
6.先用点差法求出,但此时直线与双曲线并无交点,所以这样的直线不存在。中点弦问题,注意双曲线与椭圆的不同之处,椭圆不须对判别式进行检验,而双曲线必须进行检验。
7.解:设,则
由
即 所以点的轨迹是以为圆心,以3为半径的圆。
∵点是点关于直线的对称点。
∴动点的轨迹是一个以为圆心,半径为3的圆,其中是点关于直线的对称点,即直线过的中点,且与垂直,于是有
得, 即交点的轨迹方程为
解2: (利用角作参数)设,则
所以 ,两式相乘消去
即可得所求的点的轨迹方程为 。
练习:10.两条直线和的交点的轨迹方程是_________。
总结归纳
1.要注意有的轨迹问题包含一定隐含条件,也就是曲线上点的坐标的取值范围.由曲线和方程的概念可知,在求曲线方程时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线的一部分,应对方程注明的取值范围,或同时注明的取值范围。
2.定义法
通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
例2.xx的两顶点,和两边上的中线长之和是,则的重心轨迹方程是_______________。
坐标法

“坐标法——直线与圆、圆锥曲线(下)”一、高考趋势解析几何以其独特的研究内容及研究方法在中学数学中占有独特的地位,而“直线和圆”在解析几何中又有举足轻重的分量,具体表现在:“曲线的方程”、“方程的曲线”是解析几何的基本概念,而“两点间的距离公式”、“点到直线的距离公式”、“定比分点公式”、“斜率公式”、“交角公式”又是解析几何中用得最多的公式。
“直线”和“圆”是解析几何的重要内容。
“线性规划”是解析几何联系实际的重要渠道。
数形结合的思想是解析几何乃至整个中学数学的重要思想。
此外,“坐标法”、“对称法”、“参数法”也是解析几何的重要方法。
本章知识与中学数学的其他聿节如函数方程、不等式、平面几何、三角等,有着很广泛、很紧密的联系。
复习要抓住六个字:深刻、灵活、熟练。
首先,要正确地理解基本概念,尤其是对“方程的曲线”、“曲线的方程”、“直线的倾斜角”、“直线的斜率”、“两直线的关系”、“直线的截距”等概念要力求“深刻”而全面地理解。
基本公式很多,直线的方程、圆的方程又有多种形式。
解题中这些知识不但使用的概率很大,而且要求使用得很灵活。
要做到这一点,就必须弄清楚它们的适用范围。
“数形结合法”、“坐标法”、“对称法”、“轨迹求法”这些方法要熟练掌握。
此外,解题中还应把知识结合起来,尤其要充分利用图形的几何性质和方程的消元技巧,以减少计算量。
解析几何是高中数学的重要内容,而圆锥曲线又是解析几何的核心内容,基本内容有:椭圆、双曲线、抛物线这三种圆锥曲线的定义、标准方程币几何性质;直线与圆锥曲线的位置关系。
有以下主要特点:是历年高考的重点。
纵观近年高考试题,圆锥曲线内容在试卷中所占6<比例一直稳定在15%左右,可见,在高中占有举足轻重的地位。
是中学数学各骨干知识的交汇点。
圆锥曲线与中学数学的许多内容如函数方程、不等式、三角函数均有紧密联系。
是各种数学思想方法的综合点。
解析几何的基本方法是“坐标法”,即用代数的方法研究几何图形的基本性质。
解析几何公式大全

解析几何中的基本公式1、两点间距离:若 A (x 1,y 1), B (X 2,y 2),则 AB=J(X 2 — X i )2+(y 2 — yj 22、平行线间距离:若 l 1 : AX By C^ 0, 12 : AX By C 0注意点:X ,y 对应项系数应相等。
则P到—S BJ4、直线与圆锥曲线相交的弦长公式: 丿y一 kX + bJ z (x ,y) =0消y : ax 2∙ bx ∙ c = 0 ,务必注意 厶∙0. 若l 与曲线交于A (x 1, y 1), B (X 2 ,y 2) 贝 V : AB = (1一k 2)(x2=xj 25、若A (X 1,y 1), B (X 2,y 2) , P (X , y )。
P 在直线AB 上,且P 分有向线段AB 所成的比为入,X I HL X 2 1 ■ W 丁2 1 ■X 2 -Xy 2 一 y6、若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为 二很三(0,二)则:CI - C 2..A 2 B 23、点到直线的距离:P(X , y ), l: AXByC=O,特别地:变形后:X-X ly 一 y 1'=1时,P 为AB 中点且X 1 X 22 y 「y 22或适用范围:k ι, k 2都存在且k ιk 2= — 1 ,若I i 与12的夹角为R 则tan ,=k1^k 2, —(0,上]1 + k 1k 22IIJmnJnJ注意:(1) ∣1到∣2的角,指从∣1按逆时针方向旋转到∣2所成的角,范围(0,二)∣1到∣2的夹角:指 丨1、∣2相交所成的锐角或直角.(2)∣1 _12时,夹角、到角 =—。
tan _1 + k k― 28、直线的倾斜角:'与斜率k的关系a)每一条直线都有倾斜角-,但不一定有斜率。
(2)斜率存在时为 y - y = k (x — X ) y - y 1 _ X - X 1 y ? 一 y 1 χ2 F其中I 交X 轴于(a,0),交y 轴于(0,b)当直线I 在坐标轴上,距相等时应分: (1) 截距=0 设y=kxb)若直线存在斜率k ,而倾斜角为:■,则k=tan :•。
(优选)线性代数与空间解析几何哈工大

(3)对1 2 1时,解 (1 E A)X 0.
即
1 2 2 1 2 2
2
4
4
0
0
0
2 4 4 0 0 0
x1 2x2 2x3
所以得同解方程组为
x2
x2
x3 x3
2
2
得基础解系为
解:将交叉项 xi x的j 系数 2即平均分配给 xi x及j xj xi ( xi xj xj xi ) 的二次型的系数矩阵 A为
1
. 1
1
2
A 1 1 2
1
2
0
2
例2 将二次型 f x1x2 x3x4 写成矩阵形式. 解:f 是一个四元二次型,先写出二次型的矩阵
0
1
A
可逆线性变换中可逆矩阵 C 不只是可逆,还是正交矩阵. 这个正交阵的存在是由实对称矩阵的性质决定的,值得注 意的是这种方法仅限于实二次型.
定理8.1 对 n元实二次型 f X T AX , 正交线性变换: (不惟一)X PY ,使二次型 f 化为标准形. f 1y12 2 y22 n yn2, 1, 2, , n是 A 的 n 个特征值.
设
x2
c21 y1
c22 y2
c2n yn
xn cn1 y1 cn2 y2 cnn yn
x1
y1
c11 c12
c1n
令X
x2
,
Y
y2
,
C
c21
c22
c2
n
xn
yn
cn1 cn2
cnn
(1)
(1)可变为X CY .ห้องสมุดไป่ตู้但不惟一.
直线方程及其应用

直线方程及其应用直线是最简单的几何图形,是解析几何最基础的部分,本章的基本概念;基本公式;直线方程的各种形式以及两直线平行、垂直、重合的判定都是解析几何重要的基础内容.应达到熟练掌握、灵活运用的程度,线性规划是直线方程一个方面的应用,属教材新增内容,高考中单纯的直线方程问题不难,但将直线方程与其他知识综合的问题是学生比较棘手的.●难点磁场(★★★★★)已知|a|<1,|b|<1,|c|<1,求证:abc+2>a+b+c.●案例探究[例1]某校一年级为配合素质教育,利用一间教室作为学生绘画成果展览室,为节约经费,他们利用课桌作为展台,将装画的镜框放置桌上,斜靠展出,已知镜框对桌面的倾斜角为α(90°≤α<180°)镜框中,画的上、下边缘与镜框下边缘分别相距a m,b m,(a>b).问学生距离镜框下缘多远看画的效果最佳?命题意图:本题是一个非常实际的数学问题,它不仅考查了直线的有关概念以及对三角知识的综合运用,而且更重要的是考查了把实际问题转化为数学问题的能力,属★★★★★级题目.知识依托:三角函数的定义,两点连线的斜率公式,不等式法求最值.错解分析:解决本题有几处至关重要,一是建立恰当的坐标系,使问题转化成解析几何问题求解;二sin ACB的最大值.都将使问题值.解:O为下边缘佳,应使∠ACB(b cosα,b sink AC=tan xCAkBC=于是tan ACB=ACBCACBCkkkk⋅+-1ααααcos)(sin)(cos)(sin)(2⋅+-+⋅-=++-⋅-=baxxabbaxxbaabxba由于∠ACB为锐角,且x>0,则tan ACB≤ααcos)(2sin)(baabba+-⋅-,当且仅当xab=x,即x=ab时,等号成立,此时∠ACB取最大值,对应的点为C(ab,0),因此,学生距离镜框下缘ab cm处时,视角最大,即看画效果最佳.[例2]预算用2000元购买单件为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多,但椅子不少于桌子数,且不多于桌子数的1.5倍,问桌、椅各买多少才行?命题意图:利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用,本题主要考查找出约束条件与目标函数、准确地描画可行域,再利用图形直观求得满足题设的最优解,属★★★★★级题目.知识依托:约束条件,目标函数,可行域,最优解.错解分析:解题中应当注意到问题中的桌、椅张数应是自然数这个隐含条件,若从图形直观上得出的最优解不满足题设时,应作出相应地调整,直至满足题设.技巧与方法:先设出桌、椅的变数后,目标函数即为这两个变数之和,再由此在可行域内求出最优解. 解:设桌椅分别买x ,y 张,把所给的条件表示成不等式组,即约束条件为⎪⎪⎩⎪⎪⎨⎧≥≥≤≥≤+0,05.120002050y x x y x y y x 由⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧==+72007200,20002050y x x y y x 解得 ∴A 点的坐标为(7200,7200) 由⎪⎩⎪⎨⎧==⎩⎨⎧==+27525,5.120002050y x x y y x 解得 ∴B 点的坐标为(25,275) 所以满足约束条件的可行域是以A (200,200),B (25,75),O (0,0)为顶点的三角形区域(如右图),但注意到x ∈N ,y ∈N *,故取y =37.故有买桌子25张,椅子[例3出,今有抛物线y 2=2px (p >0).物线上的点P 直线l :2x -4y -17=0上的点(1)设P 、Q 两点坐标分别为(x1,y 1)、(x 2,y 2),证明:y 1²y 2=-p 2;(2)求抛物线的方程;(3)试判断在抛物线上是否存在一点,使该点与点M 关于PN 所在的直线对称?若存在,请求出此点的坐标;若不存在,请说明理由.命题意图:对称问题是直线方程的又一个重要应用.本题是一道与物理中的光学知识相结合的综合性题目,考查了学生理解问题、分析问题、解决问题的能力,属★★★★★★级题目.知识依托:韦达定理,点关于直线对称,直线关于直线对称,直线的点斜式方程,两点式方程. 错解分析:在证明第(1)问题,注意讨论直线PQ 的斜率不存在时.技巧与方法:点关于直线对称是解决第(2)、第(3)问的关键.(1)证明:由抛物线的光学性质及题意知光线PQ 必过抛物线的焦点F (2p ,0),设直线PQ 的方程为y =k (x -2p ) ① 由①式得x =k 1y +2p ,将其代入抛物线方程y 2=2px 中,整理,得y 2-k p 2y -p 2=0,由韦达定理,y 1y 2=-p 2.当直线PQ 的斜率角为90°时,将x =2p 代入抛物线方程,得y =±p ,同样得到y 1²y 2= -p 2.(2)解:因为光线QN 经直线l 反射后又射向M 点,所以直线MN 与直线QN 关于直线l 对称,设点M (441,4)关于l 的对称点为M ′(x ′,y ′),则 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+'⨯-+'⨯-=⨯-'-'017244244121214414y x x y 解得⎪⎩⎪⎨⎧-='='1451y x 直线QN 的方程为y =-1,由题设P 点的纵坐标y 12,得p =2,(3)解:将y =4代入y 2=4x ,将y =-1代入直线l 故N 点坐标为(213,-1) 由P 、N 两点坐标得直线设M 点关于直线NP ⎪⎩⎪⎨-==⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+++⨯-=-⨯--1401224244121)2(4414111111y x y x x y 解得则又M 1(41,-1)的坐标是抛物线方程y 2=4x 的解,故抛物线上存在一点(41,-1)与点M 关于直线PN 对称.●锦囊妙计1.对直线方程中的基本概念,要重点掌握好直线方程的特征值(主要指斜率、截距)等问题;直线平行和垂直的条件;与距离有关的问题等.2.对称问题是直线方程的一个重要应用,中学里面所涉及到的对称一般都可转化为点关于点或点关于直线的对称.中点坐标公式和两条直线垂直的条件是解决对称问题的重要工具.3.线性规划是直线方程的又一应用.线性规划中的可行域,实际上是二元一次不等式(组)表示的平面区域.求线性目标函数z =ax +by 的最大值或最小值时,设t =ax +by ,则此直线往右(或左)平移时,t 值随之增大(或减小),要会在可行域中确定最优解.4.由于一次函数的图象是一条直线,因此有关函数、数列、不等式、复数等代数问题往往借助直线方程进行,考查学生的综合能力及创新能力.●歼灭难点训练一、选择题1.(★★★★★)设M =120110,1101102002200120012000++=++N ,则M 与N 的大小关系为( ) A.M >N B.M =N C.M <N D.无法判断2.(★★★★★)三边均为整数且最大边的长为11的三角形的个数为( )A.15B.30C.36D.以上都不对二、填空题3.(★★★★)直线2x -y -4=0上有一点P ,它与两定点A (4,-1),B (3,4)的距离之差最大,则P 点坐标是_________.4.(★★★★)自点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆x 2+y 2-4x -4y +7=0相切,则光线l 所在直线方程为_________.5.(★★★★)函数f (θ)=2cos 1sin --θθ的最大值为_________,最小值为_________. 6.(★★★★★)设不等式2x -1>m (x 2-1)对一切满足|m |≤2的值均成立,则x 的范围为_________.三、解答题7.(★★★★★)已知过原点O 的一条直线与函数y =log 8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y =log 2x 的图象交于C 、D 两点.(1)证明:点C 、D 和原点O 在同一直线上.(2)当BC 平行于x 轴时,求点A 的坐标.8.(★★★★★)设数列{a n }的前n 项和S n =na +n (n -1)b ,(n =1,2,…),a 、b 是常数且b ≠0.(1)证明:{a n }是等差数列.(2)证明:以(a n ,n S n -1)为坐标的点P n (n =1,2,…)都落在同一条直线上,并写出此直线的方程. (3)设a =1,b =21,C 是以(r ,r )为圆心,r 为半径的圆(r >0),求使得点P 1、P 2、P 3都落在圆C 外时,r 的取值范围.参考答案难点磁场证明:设线段的方程为y =f (x )=(bc -1)x +2-b -c ,其中|b |<1,|c |<1,|x |<1,且-1<b <1. ∵f (-1)=1-bc +2-b -c =(1-bc )+(1-b )+(1-c )>0f (1)=bc -1+2-b -c =(1-b )(1-c )>0∴线段y =(bc -1)x +2-b -c (-1<x <1)在x 轴上方,这就是说,当|a |<1,|b |<1,|c |<1时,恒有abc +2>a +b +c .歼灭难点训练一、1.解析:将问题转化为比较A (-1,-1)与B (102001,102000)及C (102002,102001)连线的斜率大小,因为B 、C 两点的直线方程为y =101x ,点A 在直线的下方,∴k AB >k AC ,即M >N . 答案:A2.解析:设三角形的另外两边长为x ,y ,则⎪⎩⎪⎨⎧>+≤<≤<11110110y x y x点(x ,y )应在如右图所示区域内当x =1时,y =11;当x =2时,y =10,11;当x =3时,y =9,10,11;当x =4时,y =8,9,10,11;当x =5时,y =7,8,9,10,11.以上共有15个,x ,y 对调又有15个,再加上(6,6),(7,7),(8,8),(9,9),(10,10)、(11,11)六组,所以共有36个.答案:C二、3.解析:找A 关于l 的对称点A ′,A ′B 与直线l 的交点即为所求的P 点.答案:P (5,6)4.解析:光线l 所在的直线与圆x 2+y 2-4x -4y +7=0关于x 轴对称的圆相切.答案:3x +4y -3=0或4x +3y +3=05.解析:f (θ)=2cos 1sin --θθ表示两点(cos θ,sin θ)与(2,1)连线的斜率. 答案:34 0 6.22+1-2x ,-2≤m ≤2,则f (-2)<0,且f (2)<0.答案:217-三、7.(1)1,点A (x 1,log 8x 1),因为A 、B (x 1,log 2x 1)、(x 2,log 2x 2). 由于log 2x 1112log x x k OC ==由此得k OC =k OD ,即O 、C 、D 在同一直线上.(2)解:由BC 平行于x 轴,有log 2x 1=log 8x 2,又log 2x 1=3log 8x 1∴x 2=x 13将其代入228118log log x x x x =,得x 13log 8x 1=3x 1log 8x 1, 由于x 1>1知log 8x 1≠0,故x 13=3x 1x 2=3,于是A (3,log 83).9.(1)证明:由条件,得a 1=S 1=a ,当n ≥2时,有a n =S n -S n -1=[na +n (n -1)b ]-[(n -1)a +(n -1)(n -2)b ]=a +2(n -1)b .因此,当n ≥2时,有a n -a n -1=[a +2(n -1)b ]-[a +2(n -2)b ]=2b .所以{a n }是以a 为首项,2b 为公差的等差数列.(2)证明:∵b ≠0,对于n ≥2,有21)1(2)1()1(2)1()11()1(11=--=--+--+=----b n b n a b n a a a b n n na a a S n S n n∴所有的点P n (a n ,n S n -1)(n =1,2,…)都落在通过P 1(a ,a -1)且以21为斜率的直线上.此直线方程为y -(a -1)= 21 (x -a ),即x -2y +a -2=0. (3)解:当a =1,b =21时,P n 的坐标为(n ,22-n ),使P 1(1,0)、P 2(2, 21)、P 3(3,1)都落在圆C 外的条件是 ⎪⎪⎩⎪⎪⎨⎧>-+->-+->+-222222222)1()3()21()1()1(r r r r r r r r r ⎪⎪⎩⎪⎪⎨⎧>+->+->-0108041750)1(222r r r r r 即 由不等式①,得r ≠1由不等式②,得r <25-2或r >25+2 由不等式③,得r <4-6或r >4+6再注意到r >0,1<25故使P 1、P 2、P 3)∪(4+6,+∞).①②③。
解析几何专题教案

解析几何专题教案一、教学目标1. 知识与技能:(1)掌握解析几何的基本概念和基本公式;(2)学会用坐标系表示点、直线、圆等几何图形;(3)能够运用解析几何方法解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳,培养学生的逻辑思维能力;(2)运用数形结合的方法,提高学生的问题解决能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生勇于探索、克服困难的精神。
二、教学内容1. 解析几何基本概念(1)坐标系(2)点、直线、圆的坐标表示2. 解析几何基本公式(1)两点间的距离公式(2)直线的一般方程与斜率(3)圆的标准方程与直径公式三、教学重点与难点1. 教学重点:(1)解析几何的基本概念和基本公式;(2)坐标系下点、直线、圆的表示方法。
2. 教学难点:(1)直线、圆的方程的求解;(2)运用解析几何解决实际问题。
四、教学过程1. 导入:(1)复习相关知识点,如坐标系、两点间的距离公式等;(2)通过实例引入解析几何的概念。
2. 讲解:(1)讲解解析几何的基本概念,如点、直线、圆的坐标表示;(2)引导学生掌握解析几何的基本公式,如直线的一般方程与斜率、圆的标准方程与直径公式。
3. 练习:(1)让学生独立完成相关练习题,巩固所学知识;(2)引导学生运用解析几何方法解决问题。
五、课后作业1. 完成教材后的练习题;2. 运用解析几何方法解决实际问题,如测量两地间的距离、计算圆的面积等。
教学评价:通过课后作业的完成情况,评价学生对解析几何知识的掌握程度以及运用能力。
六、教学案例分析1. 案例一:直线与圆的位置关系(1)问题描述:分析直线与圆的位置关系,判断直线是否与圆相交、相切或相离;(2)解决方案:运用解析几何公式,求解直线与圆的交点,分析位置关系;(3)案例分析:培养学生运用解析几何方法分析问题、解决问题的能力。
2. 案例二:几何图形的面积计算(1)问题描述:计算三角形、四边形的面积;(2)解决方案:运用解析几何方法,求解坐标系的交点,运用公式计算面积;(3)案例分析:培养学生运用解析几何方法解决实际问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改解析几何中的基本公式1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=特别地:x //AB 轴, 则=AB 。
y //AB 轴, 则=AB 。
2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++则:2221BA C C d +-=注意点:x ,y 对应项系数应相等。
3、 点到直线的距离:0C By Ax :l ),y ,x (P =++则P 到l 的距离为:22BA CBy Ax d +++=4、 直线与圆锥曲线相交的弦长公式:⎩⎨⎧=+=0)y ,x (F bkx y消y :02=++c bx ax ,务必注意.0>∆若l 与曲线交于A ),(),,(2211y x B y x则:2122))(1(x x k AB -+=5、 若A ),(),,(2211y x B y x ,P (x ,y )。
P 在直线AB 上,且P 分有向线段AB 所成的比为λ,则⎪⎪⎩⎪⎪⎨⎧λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x变形后:yy y y x x x x --=λ--=λ2121或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα适用范围:k 1,k 2都存在且k 1k 2≠-1 , 21121tan k k k k +-=α若l 1与l 2的夹角为θ,则=θtan 21211k k k k +-,]2,0(π∈θ注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。
(2)l 1⊥l 2时,夹角、到角=2π。
(3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。
7、 (1)倾斜角α,),0(π∈α;(2)]0[,π∈θθ→→,,夹角b a ;(3)直线l 与平面]20[π∈ββα,,的夹角;(4)l 1与l 2的夹角为θ,∈θ]20[π,,其中l 1//l 2时夹角θ=0; (5)二面角,θ],0(π∈α; (6)l 1到l 2的角)0(π∈θθ,, 8、 直线的倾斜角α与斜率k 的关系a) 每一条直线都有倾斜角α,但不一定有斜率。
b) 若直线存在斜率k ,而倾斜角为α,则k=tan α。
9、 直线l 1与直线l 2的的平行与垂直(1)若l 1,l 2均存在斜率且不重合:①l 1//l 2⇔ k 1=k 2②l 1⊥l 2⇔ k 1k 2=-1(2)若0:,0:22221111=++=++C y B x A l C y B x A l若A 1、A 2、B 1、B 2都不为零① l 1//l 2⇔212121C C B B A A ≠=;② l 1⊥l 2⇔ A 1A 2+B 1B 2=0; ③ l 1与l 2相交⇔2121B B A A ≠ ④ l 1与l 2重合⇔212121C C B B A A ==; 注意:若A 2或B 2中含有字母,应注意讨论字母=0与≠0的情况。
10、直线方程的五种形式名称 方程 注意点斜截式: y=kx+b 应分①斜率不存在 ②斜率存在点斜式: )( x x k y y -=- (1)斜率不存在: x x = (2)斜率存在时为)( x x k y y -=- 两点式: 121121x x x x y y y y --=--截距式:1=+bya x 其中l 交x 轴于)0,(a ,交y 轴于),0(b 当直线l 在坐标轴上,截距相等时应分:(1)截距=0 设y=kx (2)截距=0≠a 设1=+ay a x 即x+y=a一般式: 0=++C By Ax (其中A 、B 不同时为零) 11、确定圆需三个独立的条件圆的方程 (1)标准方程: 222)()(r b y a x =-+-, 半径圆心,----r b a ),(。
(2)一般方程:022=++++F Ey Dx y x ,()0422>-+F E D,)2,2(圆心----ED 2422FE D r -+=12、直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种若22BA C Bb Aa d +++=,0<∆⇔⇔>相离r d0=∆⇔⇔=相切r d0>∆⇔⇔<相交r d13、两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d 条公切线外切321⇔⇔+=r r d条公切线相交22121⇔⇔+<<-r r d r r 条公切线内切121⇔⇔-=r r d 无公切线内含⇔⇔-<<210r r d13、圆锥曲线定义、标准方程及性质 (一)椭圆定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+ (a 为常数)则P 点的轨迹是椭圆。
定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的距离与到定直线l 的距离之比为常数e (0<e<1),则P 点的轨迹是椭圆。
标准方程:12222=+by a x )0(>>b a定义域:}{a x a x ≤≤-值域:}{b y b x ≤≤- 长轴长=a 2,短轴长=2b 焦距:2c准线方程:ca x 2±=焦半径:)(21ca x e PF +=,)(22x ca e PF -=,212PF a PF -=,c a PF c a +≤≤-1等(注意涉及焦半径①用点P 坐标表示,②第一定义。
) 注意:(1)图中线段的几何特征:=11F A c a F A -=22,=21F A c a F A +=12 =11F B a F B F B F B ===122221 ,222122b a B A B A +==等等。
顶点与准线距离、焦点与准线距离分别与c b a ,,有关。
(2)21F PF ∆中经常利用余弦定理....、三角形面积公式.......将有关线段1PF 、2PF 、2c ,有关角21PF F ∠结合起来,建立1PF +2PF 、1PF •2PF 等关系(3)椭圆上的点有时常用到三角换元:⎩⎨⎧θ=θ=sin cos b y a x ;(4)注意题目中椭圆的焦点在x 轴上还是在y 轴上,请补充当焦点在y 轴上时,其相应的性质。
二、双曲线(一)定义:Ⅰ若F 1,F 2是两定点,21212F F a PF PF <=-(a 为常数),则动点P 的轨迹是双曲线。
Ⅱ若动点P 到定点F 与定直线l 的距离之比是常数e (e>1),则动点P 的轨迹是双曲线。
(二)图形:(三)性质方程:12222=-b y a x )0,0(>>b a 12222=-bx a y )0,0(>>b a定义域:}{a x a x x ≤≥或; 值域为R ;实轴长=a 2,虚轴长=2b焦距:2c准线方程:ca x 2±=焦半径:)(21c a x e PF +=,)(22x ca e PF -=,a PF PF 221=-;注意:(1)图中线段的几何特征:=1AF a c BF -=2,=2AF c a BF +=1顶点到准线的距离:c a a c a a 22+-或;焦点到准线的距离:ca c c a c 22+-或 两准线间的距离=ca 22(2)若双曲线方程为12222=-b y a x ⇒渐近线方程:⇒=-02222b y a x x a by ±=若渐近线方程为x a by ±=⇒0=±b y a x ⇒双曲线可设为λ=-2222b y a x若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上)(3)特别地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,此时双曲线为等轴双曲线,可设为λ=-22y x ;(4)注意21F PF ∆中结合定义a PF PF 221=-与余弦定理21cos PF F ∠,将有关线段1PF 、2PF 、21F F 和角结合起来。
(5)完成当焦点在y 轴上时,标准方程及相应性质。
二、抛物线(一)定义:到定点F 与定直线l 的距离相等的点的轨迹是抛物线。
即:到定点F 的距离与到定直线l 的距离之比是常数e (e=1)。
(二)图形:(三)性质:方程:焦参数-->=p p px y ),0(,22;焦点: )0,2(p,通径p AB 2=; 准线: 2p x -=; 焦半径:,2px CF += 过焦点弦长p x x px p x CD ++=+++=212122 注意:(1)几何特征:焦点到顶点的距离=2p;焦点到准线的距离=p ;通径长=p 2 顶点是焦点向准线所作垂线段中点。
(2)抛物线px y 22=上的动点可设为P ),2(2y py或或)2,2(2pt pt P P px y y x 2),(2=其中最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 赠人玫瑰,手留余香。