利用计算器:[1]求反比例函数解析式
2023年中考数学第一轮复习之模块三 函数—专题3 反比例函数(含解析)

2023年中考数学第一轮复习模块三 函数题型梳理题型一、反比例函数概念及其解析式 1.(2022·海南)若反比例函数(0)ky k x=≠的图象经过点(2,3)-,则它的图象也一定经过的点是( )A .(2,3)--B .(3,2)--C .(1,6)-D .(6,1)2.(2022·贵州遵义)反比例函数()0ky k x=≠与一次函数1y x =-交于点()3,A n ,则k 的值为__________.3(2022·黑龙江哈尔滨)已知反比例函数6y x=-的图象经过点()4,a ,则a 的值为___________.题型二、反比例函数的图像与性质1.(2022·北京)在平面直角坐标系xOy 中,若点12(2,),(5,)A y B y 在反比例函数(0)ky k x=>的图象上,则1y ______2y (填“>”“=”或“<”)2.(2022·广东)点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( ) A .1y B .2yC .3yD .4y3.(2022·广西贺州)己知一次函数y kx b =+的图象如图所示,则y kx b =-+与by x=的图象为( )A .B .C .D .4.(2022·湖南)在同一平面直角坐标系中,函数1(0)y kx k =+≠和(0)ky k x=≠的图像大致是( )A .B .C .D .题型三、反比例函数k 的几何意义1.(2022·湖南郴州)如图,在函数()20=>y x x 的图像上任取一点A ,过点A 作y 轴的垂线交函数()80y x x=-<的图像于点B ,连接OA ,OB ,则AOB 的面积是( )A .3B .5C .6D .102.(2022·黑龙江)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD的顶点B在反比例函数3yx=的图象上,顶点A在反比例函数kyx=的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是()A.2B.1C.1-D.2-3.(2022·四川内江)如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数8yx=和kyx=的图象交于P、Q两点.若S∥POQ=15,则k的值为()A.38B.22C.﹣7D.﹣224.(2022·广西桂林)如图,点A在反比例函数y=kx的图像上,且点A的横坐标为a(a<0),AB∥y轴于点B,若AOB的面积是3,则k的值是_____.5.(2022·辽宁)如图,在平面直角坐标系中,∥AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =kx(x >0)的图像经过点A ,若S ∥OAB =1,则k 的值为___________.6.(2022·山东烟台)如图,A ,B 是双曲线y =kx(x >0)上的两点,连接OA ,O B .过点A 作AC ∥x 轴于点C ,交OB 于点D .若D 为AC 的中点,∥AOD 的面积为3,点B 的坐标为(m ,2),则m 的值为 _____.7.(2022·黑龙江齐齐哈尔)如图,点A 是反比例函数(0)ky x x=<图象上一点,过点A 作AB ∥y 轴于点D ,且点D 为线段AB 的中点.若点C 为x 轴上任意一点,且∥ABC 的面积为4,则k =______________.8.(2022·贵州铜仁)如图,点A 、B 在反比例函数ky x=的图象上,AC y ⊥轴,垂足为D ,BC AC ⊥.若四边形AOBC 间面积为6,12AD AC =,则k 的值为_______.题型四、反比例函数的不等式问题1.(2022·湖北荆州)如图是同一直角坐标系中函数12y x =和22y x =的图象.观察图象可得不等式22x x>的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >2.(2022·内蒙古呼和浩特)点()121,-a y 、()2,a y 在反比例函数(0)ky k x=>的图象上,若120y y <<,则a 的取值范围是______.3.(2022·广西梧州)如图,在平面直角坐标系中,一次函数1y kx b =+的图象与反比例函数2my x=的图象交于点()()2,2,,1A B n --.当12y y <时,x 的取值范围是_________.题型五、反比例函数的实际问题1.(2022·江苏常州)某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( ) A .50y x =+ B .50y x =C .50y x=D .50=x y2.(2022·河南)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的1R ),1R 的阻值随呼气酒精浓度K 的变化而变化(如图2),血液酒精浓度M 与呼气酒精浓度K 的关系见图3.下列说法不正确...的是( )A .呼气酒精浓度K 越大,1R 的阻值越小B .当K =0时,1R 的阻值为100C .当K =10时,该驾驶员为非酒驾状态D .当120=R 时,该驾驶员为醉驾状态3.(2022·山西)根据物理学知识,在压力不变的情况下,某物体承受的压强()Pa p 是它的受力面积2()m S 的反比例函数,其函数图象如图所示,当20.25m S =时,该物体承受的压强p 的值为_________ Pa .4.(2022·吉林)密闭容器内有一定质量的气体,当容器的体积V (单位:3m )变化时,气体的密度ρ(单位:3kg/m )随之变化.已知密度ρ与体积V 是反比例函数关系,它的图像如图所示.(1)求密度ρ关于体积V 的函数解析式; (2)当3m 10V =时,求该气体的密度ρ.题型六、反比例函数的综合题1.(2022·内蒙古通辽)如图,点D 是OABC 内一点,AD 与x 轴平行,BD 与y 轴平行,BD =,120BDC ∠=︒,BCD S =△()0ky x x =<的图像经过C ,D 两点,则k 的值是( )A .-B .6-C .-D .12-2.(2022·湖北十堰)如图,正方形ABCD 的顶点分别在反比例函数()110k y k x =>和()220ky k x=>的图象上.若BD y ∥轴,点D 的横坐标为3,则12k k +=( )A .36B .18C .12D .93.(2022·贵州毕节)如图,在平面直角坐标系中,正方形ABCD 的顶点A ,B 分别在x 轴、y 轴上,对角线交于点E ,反比例函数(0,0)ky x k x=>>的图像经过点C ,E .若点(3,0)A ,则k 的值是_________.4.(2022·贵州黔东南)如图,在平面直角坐标系中,等腰直角三角形ABC 的斜边BC x ⊥轴于点B ,直角顶点A 在y 轴上,双曲线()0ky k x=≠经过AC 边的中点D ,若BC =k =______.5.(2022·山东威海)正方形ABCD 在平面直角坐标系中的位置如图所示,点A 的坐标为(2,0),点B 的坐标为(0,4).若反比例函数y =k x(k ≠0)的图象经过点C ,则k 的值为 _____.6.(2022·四川宜宾)如图,∥OMN 是边长为10的等边三角形,反比例函数y =kx(x >0)的图象与边MN 、OM分别交于点A 、B (点B 不与点M 重合).若AB ∥OM 于点B ,则k 的值为______.题型七、反比例函数与一次函数综合1.(2022·山东聊城)如图,直线()30y px p =+≠与反比例函数()0ky k x=>在第一象限内的图象交于点()2,A q ,与y 轴交于点B ,过双曲线上的一点C 作x 轴的垂线,垂足为点D ,交直线3y px =+于点E ,且:3:4AOB COD S S =△△.(1)求k ,p 的值;(2)若OE 将四边形BOCE 分成两个面积相等的三角形,求点C 的坐标.2.(2022·黑龙江大庆)已知反比例函数k y x =和一次函数1y x =-,其中一次函数图象过(3,)a b ,31,3k a b ⎛⎫++ ⎪⎝⎭两点.(1)求反比例函数的关系式;(2)如图,函数1,33y x y x ==的图象分别与函数(0)ky x x =>图象交于A ,B 两点,在y 轴上是否存在点P ,使得ABP △周长最小?若存在,求出周长的最小值;若不存在,请说明理由.3.(2022·黑龙江绥化)在平面直角坐标系中,已知一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫⎪⎝⎭两点,且与反比例函数22ky x =的图象在第一象限内交于P ,K 两点,连接OP ,OAP △的面积为54.(1)求一次函数与反比例函数的解析式; (2)当21y y >时,求x 的取值范围;(3)若C 为线段OA 上的一个动点,当PC KC +最小时,求PKC 的面积.4.(2022·湖南岳阳)如图,反比例函数()0ky k x=≠与正比例函数()0y mx m =≠的图象交于点()1,2A -和点B ,点C 是点A 关于y 轴的对称点,连接AC ,BC .(1)求该反比例函数的解析式; (2)求ABC 的面积;(3)请结合函数图象,直接写出不等式kmx x<的解集.5.(2022·四川宜宾)如图,一次函数y ax b =+的图象与x 轴交于点()40A ,,与y 轴交于点B ,与反比例函数()0ky x x=>的图象交于点C 、D .若tan 2BAO ∠=,3BC AC =.(1)求一次函数和反比例函数的表达式; (2)求OCD 的面积.6.(2022·湖北恩施)如图,在平面直角坐标系中,O 为坐标原点,已知∥ACB =90°,A (0,2),C (6,2).D 为等腰直角三角形ABC 的边BC 上一点,且S △ABC =3S △ADC .反比例函数y 1=kx(k ≠0)的图象经过点D .(1)求反比例函数的解析式;(2)若AB 所在直线解析式为()20y ax b a =+≠,当12y y >时,求x 的取值范围.7.(2022·山东青岛)如图,一次函数y kx b =+的图象与x 轴正半轴相交于点C ,与反比例函数2y x=-的图象在第二象限相交于点(1,)A m -,过点A 作AD x ⊥轴,垂足为D ,AD CD =.(1)求一次函数的表达式;(2)已知点(,0)E a 满足CE CA =,求a 的值.8.(2022·辽宁营口)如图,在平面直角坐标系中,OAC 的边OC 在y 轴上,反比例函数()0ky x x=>的图象经过点A 和点()2,6B ,且点B 为AC 的中点.(1)求k 的值和点C 的坐标; (2)求OAC 的周长.9.(2022·内蒙古呼和浩特)如图,在平面直角坐标系中,一次函数1y kx b =+的图象与反比例函数2my x=的图象交于A 、B 两点,且A 点的横坐标为1,过点B 作BE x ∥轴,AD BE ⊥于点D ,点71,22⎛⎫- ⎪⎝⎭C 是直线BE上一点,且AC =.(1)求一次函数与反比例函数的解析式; (2)根据图象,请直接写出不等式0mkx b x+-<的解集.10.(2022·四川达州)如图,一次函数1y x=+与反比例函数kyx=的图象相交于(,2)A m,B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2023年中考数学第一轮复习模块三 函数题型梳理题型一、反比例函数概念及其解析式 1.(2022·海南)若反比例函数(0)ky k x=≠的图象经过点(2,3)-,则它的图象也一定经过的点是( )A .(2,3)--B .(3,2)--C .(1,6)-D .(6,1) 【答案】C【分析】先利用反比例函数(0)ky k x=≠的图象经过点(2,3)-,求出k 的值,再分别计算选项中各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断. 【详解】解:∥反比例函数(0)ky k x=≠的图象经过点(2,3)-,∥k =2×(﹣3)=﹣6,∥(﹣2)×(﹣3)=6≠﹣6, (﹣3)×(﹣2)=6≠﹣6, 1×(﹣6)=﹣6, ,6×1=6≠﹣6,则它一定还经过(1,﹣6),故选:C .2.(2022·贵州遵义)反比例函数()0ky k x=≠与一次函数1y x =-交于点()3,A n ,则k 的值为__________. 【答案】6【分析】将点()3,A n ,代入1y x =-,求得n ,进而即可求解. 【详解】解:将点()3,A n ,代入1y x =-, 即312n =-=, ()3,2A ∴,326k ∴=⨯=, 故答案为:6.【点睛】本题考查了一次函数与反比例函数综合,求得点A 的坐标是解题的关键.3(2022·黑龙江哈尔滨)已知反比例函数6y x =-的图象经过点()4,a ,则a 的值为___________.【答案】32-【分析】把点的坐标代入反比例函数解析式,求出a 的值即可. 【详解】解:把点()4,a 代入6y x =-得:6342a =-=-. 故答案为:32-.题型二、反比例函数的图像与性质1.(2022·北京)在平面直角坐标系xOy 中,若点12(2,),(5,)A y B y 在反比例函数(0)ky k x=>的图象上,则1y ______2y (填“>”“=”或“<”)【答案】>【分析】根据反比例函数的性质,k >0,在每个象限内,y 随x 的增大而减小,进行判断即可. 【详解】解:∥k >0,∥在每个象限内,y 随x 的增大而减小, 25<, ∥1y >2y . 故答案为:>.2.(2022·广东)点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( ) A .1yB .2yC .3yD .4y【答案】D【分析】根据反比例函数的性质可直接进行求解. 【详解】解:由反比例函数解析式4y x=可知:40>,∥在每个象限内,y 随x 的增大而减小,∥点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上, ∥1234y y y y >>>,故选D .3.(2022·广西贺州)己知一次函数y kx b =+的图象如图所示,则y kx b =-+与by x=的图象为( )A .B .C .D .【答案】A【分析】根据题意可得0,0k b >>,从而得到一次函数y kx b =-+的图象经过第一、二、四象限,反比函数by x=的图象位于第一、三象限内,即可求解. 【详解】解:根据题意得:0,0k b >>, ∥0k -<,∥一次函数y kx b =-+的图象经过第一、二、四象限,反比函数by x=的图象位于第一、三象限内.故选:A 4.(2022·湖南)在同一平面直角坐标系中,函数1(0)y kx k =+≠和(0)ky k x=≠的图像大致是( )A .B .C .D .【答案】D【分析】分0k >或0k <,根据一次函数与反比例函数的性质即可得出答案. 【详解】解:当0k >时,一次函数1y kx =+经过第一、二、三象限,反比例函数ky x=位于第一、三象限;当0k <时,一次函数1y kx =+经过第一、二、四象限,反比例函数ky x=位于第二、四象限; 故选:D .题型三、反比例函数k 的几何意义1.(2022·湖南郴州)如图,在函数()20=>y x x 的图像上任取一点A ,过点A 作y 轴的垂线交函数()80y x x=-<的图像于点B ,连接OA ,OB ,则AOB 的面积是( )A .3B .5C .6D .10【答案】B【分析】作AD ∥x 轴,BC ∥x 轴,由1122OBE OCBE AOE ADOE S S S S ∆∆==,即可求解; 【详解】解:如图,作AD ∥x 轴,BC ∥x 轴,∥8OCBE S BC BE =⋅=,2ADOE S AD AE =⋅=∥10OCBE ADOE S S += ∥1122OBE OCBE AOE ADOE S S S S ∆∆==,∥()152AOB OBE AOE OCBE ADOE S S S S S ∆∆∆=+=+=故选:B . 2.(2022·黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数3y x=的图象上,顶点A 在反比例函数ky x=的图象上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .1-D .2-【答案】D【分析】连接OA ,设AB 交y 轴于点C ,根据平行四边形的性质可得1522AOBOBADS S ==,AB ∥OD ,再根据反比例函数比例系数的几何意义,即可求解.【详解】解:如图,连接OA ,设AB 交y 轴于点C ,∥四边形OBAD 是平行四边形,平行四边形OBAD 的面积是5, ∥1522AOBOBADSS ==,AB ∥OD ,∥AB ∥y 轴, ∥点B 在反比例函数3y x=的图象上,顶点A 在反比例函数ky x=的图象上, ∥3,22COBCOAkSS ==-,∥35222AOBCOBCOAk SSS=+=-=,解得:2k =-.故选:D .3.(2022·四川内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =和ky x=的图象交于P 、Q 两点.若S ∥POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣22【答案】D【分析】设点P (a ,b ),Q (a ,k a ),则OM =a ,PM =b ,MQ =k a-,则PQ =PM +MQ =kb a -,再根据ab =8,S △POQ =15,列出式子求解即可.【详解】解:设点P (a ,b ),Q (a ,k a ),则OM =a ,PM =b ,MQ =ka-,∥PQ =PM +MQ =kb a-. ∥点P 在反比例函数y =8x的图象上,∥ab =8.∥S △POQ =15,∥12PQ •OM =15,∥12a (b ﹣k a)=15.∥ab ﹣k =30. ∥8﹣k =30, 解得:k =﹣22. 故选:D .4.(2022·广西桂林)如图,点A 在反比例函数y =kx的图像上,且点A 的横坐标为a (a <0),AB ∥y 轴于点B ,若AOB 的面积是3,则k 的值是 _____.【答案】﹣6【分析】根据题意和反比例函数的性质,可以得到k 的值. 【详解】解:设点A 的坐标为(a ,ka),由图可知点A 在第二象限,∥a <0,0ka>, ∥k <0,∥∥AOB 的面积是3, ∥32k a a⋅=,解得k =-6, 故答案为:-6. 5.(2022·辽宁)如图,在平面直角坐标系中,∥AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =kx(x >0)的图像经过点A ,若S ∥OAB =1,则k 的值为___________.【答案】2【分析】作A 过x 轴的垂线与x 轴交于C ,证明∥ADC ∥∥BDO ,推出S ∥OAC = S ∥OAB =1,由此即可求得答案.【详解】解:设A (a ,b ) ,如图,作A 过x 轴的垂线与x 轴交于C ,则:AC =b ,OC =a ,AC ∥OB ,∥∥ACD =∥BOD =90°,∥ADC =∥BDO ,∥∥ADC ∥∥BDO ,∥S ∥ADC =S ∥BDO ,∥S ∥OAC =S ∥AOD + S ∥ADC =S ∥AOD + S ∥BDO = S ∥OAB =1, ∥12×OC ×AC =12ab =1, ∥ab =2,∥A (a ,b ) 在y =k x上, ∥k =ab =2 .故答案为:2 .6.(2022·山东烟台)如图,A ,B 是双曲线y =k x(x >0)上的两点,连接OA ,O B .过点A 作AC ∥x 轴于点C ,交OB 于点D .若D 为AC 的中点,∥AOD 的面积为3,点B 的坐标为(m ,2),则m 的值为 _____.【答案】6【分析】应用k 的几何意义及中线的性质求解. 【详解】解:D 为AC 的中点,AOD ∆的面积为3,∴AOC ∆的面积为6,所以122k m ==,解得:m =6.故答案为:6.7.(2022·黑龙江齐齐哈尔)如图,点A 是反比例函数(0)k y x x=<图象上一点,过点A 作AB ∥y 轴于点D ,且点D 为线段AB 的中点.若点C 为x 轴上任意一点,且∥ABC 的面积为4,则k =______________.【答案】4- 【分析】设点,k A a a ⎛⎫ ⎪⎝⎭,利用()1242=⨯-⨯=ABC k S a a △即可求出k 的值. 【详解】解:设点,k A a a ⎛⎫ ⎪⎝⎭, ∥点D 为线段AB 的中点.AB ∥y 轴∥22AB AD a ==-,又∥()1242=⨯-⨯=ABC k S a a△, ∥4k =-.故答案为:4-8.(2022·贵州铜仁)如图,点A 、B 在反比例函数k y x =的图象上,AC y ⊥轴,垂足为D ,BC AC ⊥.若四边形AOBC 间面积为6,12AD AC =,则k 的值为_______.【答案】3 【分析】设点,k A a a ⎛⎫ ⎪⎝⎭,可得AD a =,k OD a =,从而得到CD =3a ,再由BC AC ⊥.可得点B 3,3⎛⎫ ⎪⎝⎭k a a ,从而得到23k BC a=,然后根据AOD AOBC OBCD S S S =+四边形梯形,即可求解. 【详解】解∥设点,k A a a ⎛⎫ ⎪⎝⎭, ∥AC y ⊥轴,∥AD a =,k OD a=,∥12AD AC =, ∥AC 2a =,∥CD =3a ,∥BC AC ⊥.AC y ⊥轴,∥BC ∥y 轴,∥点B 3,3⎛⎫ ⎪⎝⎭k a a , ∥233k k k BC a a a=-=, ∥AOD AOBC OBCD S S S =+四边形梯形,四边形AOBC 间面积为6, ∥12136232k k a k a a ⎛⎫+⨯=+ ⎪⎝⎭, 解得:3k =.故答案为:3.题型四、反比例函数的不等式问题1.(2022·湖北荆州)如图是同一直角坐标系中函数12y x =和22y x =的图象.观察图象可得不等式22x x>的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >【答案】D 【分析】根据图象进行分析即可得结果;【详解】解:∥22x x >∥12y y >由图象可知,函数12y x =和22y x=分别在一、三象限有一个交点,交点的横坐标分别为11x x ==-,, 由图象可以看出当10x -<<或1x >时,函数12y x =在22y x =上方,即12y y >,故选:D .2.(2022·内蒙古呼和浩特)点()121,-a y 、()2,a y 在反比例函数(0)k y k x=>的图象上,若120y y <<,则a 的取值范围是______.【答案】1a > 【分析】反比例函数中k >0,则同一象限内y 随x 的增大而减小,由于120y y <<,得到021a a <-<,从而得到a 的取值范围.【详解】解:∥在反比例函数y =k x中,k >0, ∥在同一象限内y 随x 的增大而减小,∥120y y <<,∥这两个点在同一象限,∥021a a <<-,解得:1a >,故答案为:1a >.3.(2022·广西梧州)如图,在平面直角坐标系中,一次函数1y kx b =+的图象与反比例函数2m y x=的图象交于点()()2,2,,1A B n --.当12y y <时,x 的取值范围是_________.【答案】-2<x <0或x >4【分析】先求出n 的值,再观察图象,写出一次函数的图象在反比例函数的图象下方时对应的自变量的取值范围即可.【详解】解:∥反比例函数2m y x=的图象经过A (-2,2), ∥m =-2×2=-4, ∥4y x=-, 又反比例函数4y x=-的图象经过B (n ,-1), ∥n =4,∥B (4,-1), 观察图象可知:当12y y <时,图中一次函数的函数值小于反比例函数的函数值,则x 的取值范围为:-2<x <0或x >4.故答案为:-2<x <0或x >4.题型五、反比例函数的实际问题1.(2022·江苏常州)某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( )A .50y x =+B .50y x =C .50y x =D .50=x y 【答案】C【分析】根据:平均每人拥有绿地y =总面积总人数,列式求解. 【详解】解:依题意,得:平均每人拥有绿地50y x=. 故选:C2.(2022·河南)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的1R ),1R 的阻值随呼气酒精浓度K 的变化而变化(如图2),血液酒精浓度M 与呼气酒精浓度K 的关系见图3.下列说法不正确...的是( )A .呼气酒精浓度K 越大,1R 的阻值越小B .当K =0时,1R 的阻值为100C .当K =10时,该驾驶员为非酒驾状态D .当120=R 时,该驾驶员为醉驾状态【答案】C【分析】根据函数图象分析即可判断A ,B ,根据图3公式计算即可判定C ,D .【详解】解:根据函数图象可得,A.R 随K 的增大而减小,则呼气酒精浓度K 越大,1R 的阻值越小,故正确,不符合题意;B. 当K =0时,1R 的阻值为100,故正确,不符合题意;C. 当K =10时,则332200102200101022mg/100ml M K --=⨯⨯=⨯⨯=,该驾驶员为酒驾状态,故该选项不正确,符合题意;D. 当120=R 时,40K =,则332200102200401088mg/100ml M K --=⨯⨯=⨯⨯=,该驾驶员为醉驾状态,故该选项正确,不符合题意;故选:C.3.(2022·山西)根据物理学知识,在压力不变的情况下,某物体承受的压强()Pa p 是它的受力面积2()m S 的反比例函数,其函数图象如图所示,当20.25m S =时,该物体承受的压强p 的值为_________ Pa .【答案】400【分析】先根据待定系数法求出反比例函数解析式,再把S =0.25代入,问题得解. 【详解】解:设反比例函数的解析式为()0k p k S=≠, 由图象得反比例函数经过点(0.1,1000),∥0.11000100k =⨯=,∥反比例函数的解析式为100p S =, 当S =0.25时,1004000.25p ==.故答案为:400 4.(2022·吉林)密闭容器内有一定质量的气体,当容器的体积V (单位:3m )变化时,气体的密度ρ(单位:3kg/m )随之变化.已知密度ρ与体积V 是反比例函数关系,它的图像如图所示.(1)求密度ρ关于体积V 的函数解析式;(2)当3m 10V =时,求该气体的密度ρ.【答案】(1)()100V Vρ=> (2)13kg/m【分析】(1)用待定系数法即可完成;(2)把V =10值代入(1)所求得的解析式中,即可求得该气体的密度.(1)设密度ρ关于体积V 的函数解析式为()0,0k V k V ρ=>≠, 把点A 的坐标代入上式中得:2.54k =, 解得:k =10, ∥()100V V ρ=>. (2)当3m 10V =时,10110ρ==(3kg/m ). 即此时该气体的密度为13kg/m .题型六、反比例函数的综合题1.(2022·内蒙古通辽)如图,点D 是OABC 内一点,AD 与x 轴平行,BD 与y 轴平行,BD =,120BDC ∠=︒,BCD S =△()0k y x x =<的图像经过C ,D 两点,则k 的值是( )A .-B .6-C .-D .12-【答案】C【分析】过点C 作CE ∥y 轴于点E ,延长BD 交CE 于点F ,可证明∥COE ∥∥ABE (AAS ),则OE =BD由S ∥BDC =12•BD •CF CF =9,由∥BDC =120°,可知∥CDF =60°,所以DF D 的纵坐标为C (m ,D (m +9,,则k m +9),求出m 的值即可求出k 的值.【详解】解:过点C 作CE ∥y 轴于点E ,延长BD 交CE 于点F ,∥四边形OABC 为平行四边形,∥AB ∥OC ,AB =OC ,∥∥COE =∥ABD ,∥BD ∥y 轴,∥∥ADB =90°,∥∥COE ∥∥ABD (AAS ),∥OE =BD∥S ∥BDC =12•BD •CF ∥CF =9,∥∥BDC =120°,∥∥CDF =60°,∥DF∥点D 的纵坐标为设C (m,D (m +9,,∥反比例函数y =k x(x <0)的图像经过C 、D 两点, ∥km +9),∥m =-12,∥k =-故选:C .2.(2022·湖北十堰)如图,正方形ABCD 的顶点分别在反比例函数()110k y k x =>和()220k y k x=>的图象上.若BD y ∥轴,点D 的横坐标为3,则12k k +=( )A .36B .18C .12D .9【答案】B 【分析】设P A =PB =PC =PD =t (t ≠0),先确定出D (3,23k ),C (3-t ,23k +t ),由点C 在反比例函数y =2k x 的图象上,推出t =3-23k ,进而求出点B 的坐标(3,6-23k ),再点C 在反比例函数y =1k x的图象上,整理后,即可得出结论.【详解】解:连接AC ,与BD 相交于点P ,设P A =PB =PC =PD =t (t ≠0).∥点D 的坐标为(3,23k ), ∥点C 的坐标为(3-t ,23k +t ). ∥点C 在反比例函数y =2k x 的图象上, ∥(3-t )(23k +t )=k2,化简得:t =3-23k , ∥点B 的纵坐标为23k +2t =23k +2(3-23k )=6-23k , ∥点B 的坐标为(3,6-23k ),∥3×(6-23k )=1k ,整理,得:1k +2k =18. 故选:B .3.(2022·贵州毕节)如图,在平面直角坐标系中,正方形ABCD 的顶点A ,B 分别在x 轴、y 轴上,对角线交于点E ,反比例函数(0,0)k y x k x=>>的图像经过点C ,E .若点(3,0)A ,则k 的值是_________.【答案】4【分析】作CF 垂直y 轴, 设点B 的坐标为(0,a ),可证明AOB BFC ≌(AAS ),得到CF =OB =a ,BF =AO =3,可得C 点坐标,因为E 为正方形对称线交点,所以E 为AC 中点,可得E 点坐标,将点C 、E 的坐标代入反比例函数解析式中,即可求出k 的值.【详解】作CF 垂直y 轴于点F ,如图,设点B 的坐标为(0,a ),∥四边形ABCD 是正方形,∥AB =BC ,∥ABC =90°,∥∥OBA +∥OAB =∥OBA +∥FBC =90°∥∥OAB =∥FBC在∥BFC 和∥AOB 中90OAB FBC AOB BFC AB BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∥AOB BFC ≌∥BF =AO =3,CF =OB =a∥OF =OB +BF =3+a∥点C 的坐标为(a ,3+a )∥点E 是正方形对角线交点,∥点E 是AC 中点,∥点E 的坐标为33,22+a +a ⎛⎫ ⎪⎝⎭∥反比例函数(0,0)k y x k x=>>的图象经过点C ,E ∥()()133/223k a a k a a⎧==+⎪+⎪⎨⎪=+⎪⎩ 解得:k =4故答案为:44.(2022·贵州黔东南)如图,在平面直角坐标系中,等腰直角三角形ABC 的斜边BC x ⊥轴于点B ,直角顶点A 在y 轴上,双曲线()0k y k x=≠经过AC 边的中点D,若BC =k =______. 【答案】32- 【分析】根据ABC 是等腰直角三角形,BC x ⊥轴,得到AOB是等腰直角三角形,再根据BC = A 点,C 点坐标,根据中点公式求出D 点坐标,将D 点坐标代入反比例函数解析式即可求得k△【详解】∥ABC 是等腰直角三角形,BC x ⊥轴.∥90904545ABO ABC ∠=︒-∠=︒-︒=︒;2AB ==. ∥AOB 是等腰直角三角形.∥BO AO ===故:A,(C .(D . 将D 点坐标代入反比例函数解析式.32D D k x y =⋅==-. 故答案为:32-. 5.(2022·山东威海)正方形ABCD 在平面直角坐标系中的位置如图所示,点A 的坐标为(2,0),点B 的坐标为(0,4).若反比例函数y =k x(k ≠0)的图象经过点C ,则k 的值为 _____.【答案】24【分析】过点C作CE∥y轴,由正方形的性质得出∥CBA=90°,AB=BC,再利用各角之间的关系得出∥CBE=∥BAO,根据全等三角形的判定和性质得出OA=BE=2,OB=CE=4,确定点C的坐标,然后代入函数解析式求解即可.【详解】解:如图所示,过点C作CE∥y轴,∥点B(0,4),A(2,0),∥OB=4,OA=2,∥四边形ABCD为正方形,∥∥CBA=90°,AB=BC,∥∥CBE+∥ABO=90°,∥∥BAO+∥ABO=90°,∥∥CBE=∥BAO,∥∥CEB=∥BOA=90°,∥ABO BCE,∥OA=BE=2,OB=CE=4,∥OE=OB+BE=6,∥C(4,6),将点C代入反比例函数解析式可得:k=24,故答案为:24.6.(2022·四川宜宾)如图,∥OMN是边长为10的等边三角形,反比例函数y=kx(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB∥OM于点B,则k的值为______.【答案】【分析】过点B 作BC ∥x 轴于点C ,过点A 作AD ∥x 轴于点D ,设OC =x ,利用含30度角的直角三角形的性质以及勾股定理求得点B (x ),点A (15-2x ,-,再利用反比例函数的性质列方程,解方程即可求解.【详解】解:过点B 作BC ∥x 轴于点C ,过点A 作AD ∥x 轴于点D ,如图:∥∥OMN 是边长为10的等边三角形,∥OM =MN =ON =10,∥MON =∥MNO =∥M =60°,∥∥OBC =∥MAB =∥NAD =30°,设OC =x ,则OB =2x ,BC ,MB =10-2x ,MA =2MB =20-4x ,∥NA =10-MA =4x -10,DN =12NA =2x -5,AD x -- ∥OD =ON -DN =15-2x ,∥点B (x ),点A (15-2x ,-,∥反比例函数y =k x(x >0)的图象与边MN 、OM 分别交于点A 、B ,∥x =(15-2x -,解得x =5(舍去)或x =3,∥点B (3,,∥k题型七、反比例函数与一次函数综合1.(2022·山东聊城)如图,直线()30y px p =+≠与反比例函数()0k y k x=>在第一象限内的图象交于点()2,A q ,与y 轴交于点B ,过双曲线上的一点C 作x 轴的垂线,垂足为点D ,交直线3y px =+于点E ,且:3:4AOB COD S S =△△.(1)求k ,p 的值;(2)若OE 将四边形BOCE 分成两个面积相等的三角形,求点C 的坐标.【答案】(1)8k ,12p = (2)点C 的坐标为(4,2)【分析】(1)先求出点B 的坐标,得到3OB =,结合点A 的横坐标为2,求出AOB 的面积,再利用:3:4AOB COD S S =△△求出4COD S =,设,k C m m ⎛⎫ ⎪⎝⎭,代入面积中求出k ,得到反比例函数解析式,再将点A 横坐标代入出点A 纵坐标,最后将点A 坐标代入直线()30y px p =+≠即可求解;(2)根据(1)中点C 的坐标得到点E 的坐标,结合OE 将四边形BOCE 分成两个面积相等的三角形,列出关于m 的方程,解方程即可求解.(1)解:∥直线3y px =+与y 轴交点为B ,∥()0,3B ,即3OB =.∥点A 的横坐标为2, ∥13232AOB S =⨯⨯=. ∥:3:4AOB COD S S =△△,∥4COD S =, 设,k C m m ⎛⎫ ⎪⎝⎭,∥142k m m⋅=, 解得8k .∥点()2,A q 在双曲线8y x=上, ∥4q =, 把点()2,4A 代入3y px =+,得12p =, ∥8k ,12p =; (2)解:由(1)得,k C m m ⎛⎫ ⎪⎝⎭, ∥1,32E m m ⎛⎫+ ⎪⎝⎭. ∥OE 将四边形BOCE 分成两个面积相等的三角形,∥BOE COE S S =△△, ∥32BOE S π=△,13422COE m S m ⎛⎫=+- ⎪⎝⎭△, ∥3134222m m π⎛⎫=+- ⎪⎝⎭, 解得4m =或4m =-(不符合题意,舍去),∥点C 的坐标为(4,2).2.(2022·黑龙江大庆)已知反比例函数k y x =和一次函数1y x =-,其中一次函数图象过(3,)a b ,31,3k a b ⎛⎫++ ⎪⎝⎭两点.(1)求反比例函数的关系式;(2)如图,函数1,33y x y x ==的图象分别与函数(0)k y x x =>图象交于A ,B 两点,在y 轴上是否存在点P ,使得ABP △周长最小?若存在,求出周长的最小值;若不存在,请说明理由.【答案】(1)3y x=(2)【分析】(1)用待定系数法求出函数解析式;(2)作点B 关于y 轴的对称点'B ,连接'AB ,交y 轴于点P ,进行计算即可;(1) 解:把(3,)(31,)3k a b a b ++,代入1y x =-,得 313113b a k b a =-⎧⎪⎨+=+-⎪⎩, 解得,3k =, 所以反比例函数解析式是3y x=;(2)存在点P 使∥ABP 周长最小,理由: 解133y x y x ⎧=⎪⎪⎨⎪=⎪⎩和33y x y x =⎧⎪⎨=⎪⎩得, 31x y =±⎧⎨=±⎩和13x y =±⎧⎨=±⎩, 0x ,∴31x y =⎧⎨=⎩和13x y , ∴()()3,1,1,3A B ,作点B 关于y 轴的对称点'B ,连接'AB ,交y 轴于点P ,当点A 、P 、'B 在一条直线上时,线段'AB 的长度最短,所以存在点P 使∥ABP 周长最小,∥ABP 的周长=AB BP AP ++'AP AB B A =++'AB B A =+ ,===3.(2022·黑龙江绥化)在平面直角坐标系中,已知一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫ ⎪⎝⎭两点,且与反比例函数22k y x =的图象在第一象限内交于P ,K 两点,连接OP ,OAP △的面积为54.(1)求一次函数与反比例函数的解析式;(2)当21y y >时,求x 的取值范围;(3)若C 为线段OA 上的一个动点,当PC KC +最小时,求PKC 的面积.【答案】(1)115,22y x =-+22.y x= (2)01x <<或4x >, (3)65【分析】(1)先运用待定系数法求出直线解析式,再根据OAP △的面积为54和直线解析式求出点P 坐标,从而可求出反比例函数解析式;(2)联立方程组并求解可得点K 的坐标,结合函数图象可得出x 的取值范围;(3)作点K 关于x 轴的对称点K ',连接KK ',PK '交x 轴于点C ,连接KC ,则PC +KC 的值最小,求出点C 的坐标,再根据PKC AKM KMC PAC S S S S ∆∆∆∆=--求解即可.(1)解:∥一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫ ⎪⎝⎭两点, ∥把()5,0A ,50,2B ⎛⎫ ⎪⎝⎭代入11y k x b =+得, 1505,2k b b +=⎧⎪⎨=⎪⎩,解得,11252k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∥一次函数解析式为115,22y x =-+ 过点P 作PH x ⊥轴于点H ,∥(5,0),A∥5,OA 又5,4PAO S ∆= ∥15524PH ⨯⨯= ∥1,2PH = ∥151222x -+=, ∥4,x = ∥1(4,)2P ∥1(4,)2P 在双曲线上, ∥2142,2k =⨯= ∥22.y x= (2) 解:联立方程组得,15222y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩解得,1112x y =⎧⎨=⎩ ,22412x y =⎧⎪⎨=⎪⎩∥(1,2),k根据函数图象可得,反比例函数图象在直线上方时,有01x <<或4x >, ∥当21y y >时,求x 的取值范围为01x <<或4x >,(3)解:作点K 关于x 轴的对称点K ',连接KK '交x 轴于点M ,则K '(1,-2),OM =1,连接PK '交x 轴于点C ,连接KC ,则PC +KC 的值最小, 设直线PK '的解析式为,y mx n =+ 把1(4,),(1,2)2P K '-代入得,2142m n m n +=-⎧⎪⎨+=⎪⎩解得,56176m n ⎧=⎪⎪⎨⎪=-⎪⎩∥直线PK '的解析式为517,66y x =- 当0y =时,106657x -=,解得,751x =, ∥17(,0)5C ∥175OC = ∥17121,55MC OC OM =-=-= 178555AC OA OC =-=-= 514AM OA OM =-=-=,∥PKC AKM KMC PAC S S S S ∆∆∆∆=--1112181422225252=⨯⨯-⨯⨯-⨯⨯ 122455=-- 65= 4.(2022·湖南岳阳)如图,反比例函数()0k y k x =≠与正比例函数()0y mx m =≠的图象交于点()1,2A -和点B ,点C 是点A 关于y 轴的对称点,连接AC ,BC .(1)求该反比例函数的解析式;(2)求ABC 的面积;(3)请结合函数图象,直接写出不等式k mx x<的解集. 【答案】(1)2y x =- (2)4(3)1x <-或01x <<【分析】(1)把点()1,2A -代入()0k y k x=≠可得k 的值,求得反比例函数的解析式; (2)根据对称性求得B 、C 的坐标然后利用三角形面积公式可求解. (3)根据图象得出不等式k mx x <的解集即可. (1)解:把点()1,2A -代入()0k y k x =≠得:21k =-, ∥2k =-, ∥反比例函数的解析式为2y x=-; (2)∥反比例函数()0k y k x=≠与正比例函数()0y mx m =≠的图象交于点()1,2A -和点B , ∥()1,2B -,∥点C 是点A 关于y 轴的对称点, ∥()1,2C ,∥2CD =, ∥()122242ABC S =⨯⨯+=△. (3) 根据图象得:不等式k mx x<的解集为1x <-或01x <<. 5.(2022·四川宜宾)如图,一次函数y ax b =+的图象与x 轴交于点()40A ,,与y 轴交于点B ,与反比例函数()0ky x x =>的图象交于点C 、D .若tan 2BAO ∠=,3BC AC =.。
初三数学反比例函数试题答案及解析

初三数学反比例函数试题答案及解析1. 如果反比例函数的图像在每个象限内随的增大而减小,那么的取值范围是 .【答案】k >【解析】∵反比例函数y=的图象在每个象限内y 随x 的增大而减小,∴2k-1>0,解得k >. 故答案为:k >.【考点】反比例函数的性质.2. 已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是( )A .(﹣6,1)B .(1,6)C .(2,﹣3)D .(3,﹣2)【答案】B .【解析】∵反比例函数y=的图象经过点(2,3), ∴k=2×3=6,A 、∵(﹣6)×1=﹣6≠6,∴此点不在反比例函数图象上;B 、∵1×6=6,∴此点在反比例函数图象上;C 、∵2×(﹣3)=﹣6≠6,∴此点不在反比例函数图象上;D 、∵3×(﹣2)=﹣6≠6,∴此点不在反比例函数图象上. 故选B .【考点】反比例函数图象上点的坐标特征.3. 如图,在平面直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,∠ABO=90°,OA 与反比例函数y=的图象交于点D ,且OD=2AD ,过点D 作x 轴的垂线交x 轴于点C .若S 四边形ABCD=10,则k 的值为 .【答案】﹣16【解析】∵OD=2AD , ∴,∵∠ABO=90°,DC ⊥OB , ∴AB ∥DC ,∴△DCO ∽△ABO , ∴, ∴,∵S 四边形ABCD =10, ∴S △ODC =8, ∴OC×CD=8,OC×CD=16,∴k=﹣16,故答案为:﹣16.【考点】1、相似三角形的判定与性质;2、反比例函数系数k的几何意义4.反比例函数的图象在二、四象限,则m的取值范围.【答案】m<1.【解析】先根据反比例函数的性质列出关于m的不等式,求出m的取值范围即可.∵反比例函数的图象在二、四象限,∴m-1<0解得:m<1.【考点】反比例函数的性质.5.某村的粮食总产量为a(a为常数)吨,设该村的人均粮食产量为y吨,人口数为x,则y与x之间的函数关系式的大致图象应为()【答案】C【解析】因xy=a,y=,y与x成反比例,所以选C.6.若双曲线过两点(-1,y1),(-3,y2),则有y1____y2(可填“”、“”、“”).【答案】<.【解析】将(﹣1,y1),(﹣3,y2),分别代入y=得,y1=﹣2,y2=﹣,y1<y2..故答案是<.【考点】反比例函数图象上点的坐标特征.7.老师给出一个函数,甲、乙、丙、丁四位同学分别指出了这个函数的一个性质: 甲:函数图象不经过第二象限;乙:函数图象上两个点A(x1,y1)、B(x2,y2)且x1<x2,y1<y2;丙:函数图象经过第一象限;丁:y随x的增大而减小.老师说这四位同学的叙述都是正确的,请你构造一个满足上述性质的一个函数:____________.【答案】y=(x>0)【解析】函数图象上两个点A(x1,y1)、B(x2,y2)且x1<x2,y1>y2,y随x的增大而减小,若是反比例函数则k>0,函数图象不经过第二象限,函数图象经过第一象限,只取第一象限的分支.8.已知y=y1-y2,其中y1是x的反比例函数,y2是x2的正比例函数,且x=1时y=3,x=-2时y=-15.求:(1)y与x之间的函数关系式;(2)当x=2时y的值.【答案】(1)y=-3x2. (2)-9.【解析】(1)y1是x的反比例函数,可设y1=,y2是x2的正比例函数,可设y2=k2x2,则y与x的关系式为y=-k2x2,x=1时y=3;x=-2时y=-15,代入求出k1=6,k2=3.(2)将x=2代入解析式y=-3x2,y=3-3×4=-9.9.反比例函数y1=,y2=(k≠0)在第一象限的图象如图,过y1上的任意一点A,作x轴的平行线交y2于点B,交y轴于点C,若S△AOB=2,则k=_________.【答案】12.【解析】根据y1=,过y1上的任意一点A,得出△CAO的面积为4,进而得出△CBO面积为3,即可得出k的值.试题解析:∵y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,∴S△AOC=×8=4,又∵S△AOB =2,∴△CBO面积为6,∴|k|=6×2=12,∵根据图示知,y2=(k≠0)在第一象限内,∴k>0,∴k=12考点: 反比例函数系数k的几何意义.10.如图,已知一次函数(m为常数)的图象与反比例函数(k为常数,)的图象相交于点 A(1,3).(1)求这两个函数的解析式及其图象的另一交点的坐标;(2)观察图象,写出使函数值的自变量的取值范围.【答案】(1)一次函数解析式为:y1=x+2,B(﹣3,﹣1);(2)根据图象得:函数值y1≥y2的自变量x的取值范围是:x≥1或﹣3≤x<0.【解析】(1)利用待定系数法把 A(1,3)代入一次函数y1=x+m与反比例函数中,可解出m、k的值,进而可得解析式,求B点坐标,就是把两函数解析式联立,求出x、y的值;(2)根据函数图象可以直接写出答案.试题解析:(1)∵一次函数y1=x+m(m为常数)的图象与反比例函数(k为常数,k≠0)的图象相交于点 A(1,3),∴3=1+m,k=1×3,∴m=2,k=3,∴一次函数解析式为:y1=x+2,反比例函数解析式为:y2=,由,解得:x1=﹣3,x2=1,当x1=﹣3时,y1=﹣1,x 2=1时,y1=3,∴两个函数的交点坐标是:A(1,3)和B(﹣3,﹣1)∴B(﹣3,﹣1);(2)根据图象得:函数值y1≥y2的自变量x的取值范围是:x≥1或﹣3≤x<0.考点:反比例函数解析式,一次函数解析式,反比例函数的性质.11.已知y是x的反比例函数,当x=5时,y=8.(1)求反比例函数解析式;(2)求y=-10时x的值.【答案】(1);(2).【解析】(1)由y是x的反比例函数可设,将x=5,y=8代入可求得k,从而得到反比例函数解析式;(2)把y=-10代入即可求得x的值.试题解析:(1)∵y是x的反比例函数,∴设.∵当x=5时,y="8" ,∴,解得k="40."∴反比例函数解析式为.(2)把y=-10代入得,解得 .【考点】1.待定系数法的应用;2.曲线上点的坐标与方程的关系.12.若反比例函数经过点(1,2),则下列点也在此函数图象上的是()A.(1,-2)B.(-1,﹣2)C.(0,﹣1)D.(﹣1,﹣1)【答案】B【解析】设反比例函数图象的解析式为,∵反比例函数的图象经过点(1,2),∴k=1×2=2,而1×(-2)=-2,-1×(-2)=2,0×(-1)=0,-1×(-1)=1.∴点(-1,-2)在反比例函数图象上.故选B.【考点】反比例函数图像上点的坐标的特征.13.如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,-3),反比例函数的图象经过点C,一次函数的图象经过点C,一次函数的图象经过点A,(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.【答案】解:(1)∵点A的坐标为(0,2),点B的坐标为(0,-3),∴AB=5。
考点11 反比例函数(精讲)(原卷版)

考点11.反比例函数(精讲)【命题趋势】反比例函数也是非常重要的函数,年年都会考,总分值为12分左右,预计2024年各地中考一定还会考,反比例函数与一次函数结合出现在解答题中是各地中考必考的一个解答题,反比例函数的图象与性质和平面几何的知识结合、反比例函数中|k|的几何意义等也会是小题考查的重点。
【知识清单】1:反比例函数的概念(☆☆)反比例函数的概念:一般地,函数kyx=(k是常数,k≠0)叫做反比例函数.自变量x和函数值y的取值范围都是不等于0的任意实数.2:反比例函数的图象和性质(☆☆☆)1)反比例函数的图象和性质表达式kyx=(k是常数,k≠0)k k>0k<0大致图象所在象限第一、三象限第二、四象限增减性在每个象限内,y随x的增大而减小在每个象限内,y随x的增大而增大对称性轴对称图形(对称轴为直线y=x和y=-x),中心对称图形(对称中心为原点)2)待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.3:反比例函数中|k|的几何意义(☆☆☆)1)反比例函数图象中有关图形的面积2)涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+;(3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.4:反比例函数与一次函数的综合(☆☆☆)1)涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标。
2022——2023学年河北省邢台市中考数学专项提升仿真模拟卷(3月4月)含答案

2022-2023学年河北省邢台市中考数学专项提升仿真模拟卷(3月)一、选一选:(本题共12个小题,每小题3分,共36分.)1.计算9﹣(﹣3)的结果是()A.﹣12B.6C.﹣6D.122.在函数y =中,自变量x 的取值范围是()A.x >1B.x >3C.x≠1D.x≠33.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B 时,点B 所表示的实数是()A.1B.-6C.2或-6D.没有同于以上答案4.如图,PAB 为割线且PA=AB ,PO 交⊙O 于C ,若OC=3,OP=5,则AB 的长为()A. B. C.D.5.下列命题正确的是()A.方程2x 2=x 只有一个实根B.方程211x x -+有两个没有相等的实根C.方程x 2﹣3=0有两个相等的实根D.方程2x 2﹣3x+4=0无实根6.在Rt ABC ∆中,1290,12,cos 13C AC A∠===,则tanA 等于()A.513B.1312 C.125D.5127.下面一组按规律排列的数:1,2,4,8,16,…,第2005个数是()A.22004B.22004﹣1C.22003D.以上答案均没有对8.在区级数学竞赛中,某校8名参赛学生的成绩与全区参赛学生平均成绩80分的差分别为(单位:分):5,2-,8,14,7,5,9,6-,则该校8名参赛学生的平均成绩是______.9.某商店有两个进价没有同的计算器都卖了64元,其中一个盈利60%,另一个20%,在这次买卖中这家商店()A.赚了32元B.赚了8元C.赔了8元D.没有赔没有赚10.下列各图形中,是对称图形但没有一定是轴对称图形的图形是()A.平行四边形B.菱形C.正方形D.等腰梯形11.如图,四个二次函数的图象中,分别对应的是:①2y ax =;②2y bx =;③2y cx =;④2y dx =,则a b c d ,,,的大小关系为A.a b c d >>>B.a b d c >>>C.b a c d>>> D.b a d c>>>12.如图,已知M 是▱ABCD 的AB 边的中点,CM 交BD 于E ,则图中阴影部分的面积与▱ABCD 的面积之比是()A.16B.14C.13D.512二、填空题:(本题共8个小题,每小题2分,共16分)13.已知x =,xy=1,则2222x y xy x y--=_____.14.人类的遗传物质就是DNA ,人类的DNA 是很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为__________.15.函数y=kx+b 中,y 随x 的增大而减小,且kb >0,则这个函数的图象必定第_____象限.16.把一张长方形纸条按如图所示折叠后,若∠A OB ′=70°,则∠B ′OG =_____.17.将下列式子因式分解:x ﹣x 2﹣y+y 2=_____.18.如图,已知AC =DB ,要使△ABC ≌△DCB ,则需要补充的条件为_____.19.如图,在⊙O 的内接四边形ABCD 中,AB=CD,则图中与∠1相等的角有_________.20.如果a 、b 、c 为互没有相等的实数,且满足关系式b 2+c 2=2a 2+16a +14与bc =a 2﹣4a ﹣5,那么a 的取值范围是_____.三、解答题(本题共3个小题,每小题7分,共21分)21.计算:()3010.1254tan 602π-⎛⎫⨯-+-+ ⎪⎝⎭的值.22.如图,在坡角α为30 的山顶C 上有一座电视塔,在山脚A 处测得电视塔顶部B 的仰角为45 ,斜坡AC 的长为400米,求电视塔BC 的高.23.如图,在△ABC 中,BA =BC ,∠B =120°,AB 的垂直平分线MN 交AC 于D ,求证:AD =12DC .四、解答题:(本题共3个小题,每小题8分,共24分)24.如图,函数y=kx+b的图像与反比例函数myx的图像相交于A、B两点,(1)利用图中条件,求反比例函数和函数的解析式(2)根据图像写出使函数的值大于反比例函数的值的x的取值范围.25.如图,MN切⊙O于P,AB是⊙O的弦,AM⊥MN于M,BN⊥MN于N,PQ⊥AB于Q.求证:PQ2=AM•BN.26.如图,已知梯形ABCD中,AD∥BC,AD=2,BC=4,对角线AC=5,BD=3,试求此梯形的面积.五、解答题:(本题共2个小题,第27小题11分,第28小题12分,共23分)27.某校初三年级学生参加赈灾义演,甲班捐款200元,乙班30名同学捐款200元,这样,两班人均捐款比甲班人均捐款多1元,甲班有多名学生参加这次赈灾?(规定班级人数没有超过60人)28.阅读下列材料:如图1,⊙O1和⊙O2外切于点C,AB是⊙O1和⊙O2外公切线,A、B为切点,求证:AC⊥BC证明:过点C作⊙O1和⊙O2的内公切线交AB于D,∵DA、DC是⊙O1的切线∴DA=DC.∴∠DAC=∠DCA.同理∠DCB=∠DBC.又∵∠DAC+∠DCA+∠DCB+∠DBC=180°,∴∠DCA+∠DCB=90°.即AC⊥BC.根据上述材料,解答下列问题:(1)在以上的证明过程中使用了哪些定理?请写出两个定理的名称或内容;(2)以AB所在直线为x轴,过点C且垂直于AB的直线为y轴建立直角坐标系(如图2),已知A、B两点的坐标为(﹣4,0),(1,0),求A、B、C三点的抛物线y=ax2+bx+c的函数解析式;(3)根据(2)中所确定的抛物线,试判断这条抛物线的顶点是否落在两圆的连心O1O2上,并说明理由.2022-2023学年河北省邢台市中考数学专项提升仿真模拟卷(3月)一、选一选:(本题共12个小题,每小题3分,共36分.)1.计算9﹣(﹣3)的结果是()A.﹣12B.6C.﹣6D.12【正确答案】D+=【详解】试题解析:原式9312.故选D.点睛:有理数的减法法则:减去一个数等于加上这个数的相反数.y=中,自变量x的取值范围是()2.在函数A.x>1B.x>3C.x≠1D.x≠3【正确答案】A【详解】试题解析:根据题意得,3x−3>0,解得x>1.故选A.3.点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长到B时,点B所表示的实数是()A.1B.-6C.2或-6D.没有同于以上答案【正确答案】C【分析】根据数轴的性质解题即可.【详解】解:∵点A为数轴上的表示-2的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-2-4=-6;②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为-2+4=2.故选C.注意数的大小变化和平移之间的规律:左减右加.与点A的距离为4个单位长度的点B有两个,一个向左,一个向右.4.如图,PAB 为割线且PA=AB ,PO 交⊙O 于C ,若OC=3,OP=5,则AB 的长为()A.B. C.D.【正确答案】B【详解】试题解析:延长PO 到E ,延长线与圆O 交于点E ,连接EB ,AC ,∵OC =3,OP =5,∴OE =OC =3,∴EP =OE +OP =3+5=8,CP =OP −OC =5−3=2,设PA =AB =x ,则BP =2x ,∵四边形ACEB 为圆O 的内接四边形,∴∠ACP =∠E ,又∠P =∠P ,∴△ACP ∽△EBP ,,CP AP BP EP ∴=即228xx =,解得:x =x =-(舍去),则AB =故选B.点睛:两组角对应相等,两三角形相似.5.下列命题正确的是()A.方程2x 2=x 只有一个实根B.方程211x x -+有两个没有相等的实根C.方程x 2﹣3=0有两个相等的实根D.方程2x 2﹣3x+4=0无实根【正确答案】D【详解】试题解析:A.方程22x x =有两个没有相等的实数根,故错误;B.21 1x x -+没有是方程,故错误;C.方程230x -=有两个没有相等的实数根;故错误.D.方程22340x x -+=中()224342470b ac ∆=-=--⨯⨯=-<,方程无实数根.正确.故选D.6.在Rt ABC ∆中,1290,12,cos 13C AC A∠===,则tanA 等于()A.513B.1312 C.125D.512【正确答案】D【分析】根据12cos 13A =求出第三边的表达式,然后求出tanA 即可.【详解】∵12cos 13A =,AC=12,∴AB=13,∴=5,则tanA=BC AC =512.故选D.本题考查解直角三角形,解此题的关键在于根据∠A 的余弦值求得其它边长,然后根据正切函数的定义求解即可.7.下面一组按规律排列的数:1,2,4,8,16,…,第2005个数是()A.22004B.22004﹣1C.22003D.以上答案均没有对【正确答案】A【详解】试题解析:∵一组按规律排列的数:1,2,4,8,16,…,∴这些数变为:012345222222⋯、、、、、,,∴第2005个数是20042.故选A.点睛:由于按规律排列的数:1,2,4,8,16,…,每一个数是前面的数的2倍,由此即可确定第2005个数.8.在区级数学竞赛中,某校8名参赛学生的成绩与全区参赛学生平均成绩80分的差分别为(单位:分):5,2-,8,14,7,5,9,6-,则该校8名参赛学生的平均成绩是______.【正确答案】85【详解】分析:先求出总分,再求出平均分即可.解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+[(−2)+(−6)+8]=40(分),∴该校8名参赛学生的平均成绩是80+(40÷8)=85(分).故答案为85.点睛:本题考查的是正数和负数,熟知正数和负数的概念是解答此题的关键.9.某商店有两个进价没有同的计算器都卖了64元,其中一个盈利60%,另一个20%,在这次买卖中这家商店()A.赚了32元B.赚了8元C.赔了8元D.没有赔没有赚【正确答案】B【分析】要计算赔赚,就要分别求出两个计算器的进价,再与售价作比较即可.因此就要先设出未知数,根据进价+利润=售价,利用题中的等量关系列方程求解.【详解】设盈利60%的进价为x 元,则:x+60%x=64160%x=64x=40再设亏损20%的进价为y 元,则;y-20%y=6480%y=64y=80所以总进价是:40+80=120(元)总售价是:64+64=128(元)售价>进价,128-120=8(元)答:赚了8元.故选:B .此题主要考查百分数的实际应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.10.下列各图形中,是对称图形但没有一定是轴对称图形的图形是()A.平行四边形B.菱形C.正方形D.等腰梯形【正确答案】A【详解】试题解析:A.平行四边形是对称图形,没有是轴对称图形,故本选项正确;B.菱形是对称图形,也是轴对称图形,故本选项错误;C.正方形是对称图形,也是轴对称图形,故本选项错误;D.等腰梯形没有是对称图形,是轴对称图形,故本选项错误.故选A.点睛:根据轴对称图形与对称图形的概念对各选项分析判断后利用排除法求解.11.如图,四个二次函数的图象中,分别对应的是:①2y ax =;②2y bx =;③2y cx =;④2y dx =,则a b c d ,,,的大小关系为A .a b c d>>> B.a b d c >>> C.b a c d>>> D.b a d c>>>【正确答案】A【详解】由二次函数中,“当二次项系数为正时,图象开口向上,当二次项系数为负时,图象开口向下”“二次项系数的值越大,图象的开口越小”分析可得:a b c d >>>.故选A.点睛:(1)二次函数2 (0)y ax a =≠的图象的开口方向由“a 的符号”确定,当0a >时,图象的开口向上,当0a <时,图象的开口向下;(2)二次函数2 (0)y ax a =≠的图象的开口大小由a 的大小确定,当a 越大时,图象的开口越小.12.如图,已知M 是▱ABCD 的AB 边的中点,CM 交BD 于E ,则图中阴影部分的面积与▱ABCD 的面积之比是()A.16 B.14 C.13 D.512【正确答案】C【分析】先过E 作GH ⊥CD ,分别交AB 、CD 于H 、G ,再设EH=h ,BM=a ,S △BEM =12ah=x ,根据平行四边形的性质,M 是AB 中点,可得AB=CD=2a ,再利用AB ∥CD ,根据平行线分线段成比例定理的推论可知△BME ∽△DCE ,根据比例线段易得GH=3h ,根据三角形面积公式以及平行四边形的面积公式易求S 平行四边形ABCD 以及S 阴影,进而可求它们的比值.【详解】如图,过E 作GH ⊥CD ,分别交AB 、CD 于H 、G ,设1,,2BEM EH h BM a S ah x ==== ,∵M 是AB 中点,12BM AB ∴=,∵四边形ABCD 是平行四边形,,AB CD ∴=//AB CD ,∴AB =CD =2a ,//AB CD ,∴△BME ∽△DCE ,∴EH :GE =BM :CD =1:2,∴GH =3h ,∴S 四边形ABCD =AB ×GH =2a ×3h =6ah =12x ,113222CBE MBC BME S S S a h ah ah x =-=⋅⋅-== ,同理有2MED S x = ,S 阴影4CBE MED S S x ,=+=∴S 阴影:S 四边形ABCD =4x :12x =1:3.故选C.二、填空题:(本题共8个小题,每小题2分,共16分)13.已知x =,xy=1,则2222x y xy x y --=_____.【正确答案】14【详解】试题解析:122x ⨯==-1,xy =12y x ∴===-原式()()()1.4xy x y xy x y x y x y -====+-+故答案为1.414.人类的遗传物质就是DNA ,人类的DNA 是很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为__________.【正确答案】3×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的值与小数点移动的位数相同.当原数值 10时,n是正数;当原数的值<1时,n是负数.【详解】解:30000000=3×107.故3×107.本题考查了科学记数法,解题的关键是正确得到n的值.15.函数y=kx+b中,y随x的增大而减小,且kb>0,则这个函数的图象必定第_____象限.【正确答案】二、三、四【详解】试题解析:∵函数y=kx+b中,y随x的增大而减小,∴k<0,∴此函数图象必二、四象限,∵kb>0,∴b<0,∴函数图象与y轴的交点在y轴的负半轴上,∴这个函数的图象必定第二、三、四象限.故答案为二、三、四.16.把一张长方形纸条按如图所示折叠后,若∠A OB′=70°,则∠B′OG=_____.【正确答案】55°【分析】由翻折性质得,∠BOG=∠B′OG,根据邻补角定义可得.【详解】解:由翻折性质得,∠BOG=∠B′OG,∵∠AOB′+∠BOG+∠B′OG=180°,∴∠B′OG=12(180°﹣∠AOB′)=12(180°﹣70°)=55°.故答案为55°.考核知识点:补角,折叠.17.将下列式子因式分解:x ﹣x 2﹣y+y 2=_____.【正确答案】(x ﹣y )(1﹣x ﹣y )【详解】试题解析:()()()()()()()22221.x x y y x y x y x y x y x y x y x y --+=---=--+-=---故答案为()()1.x y x y ---点睛:因式分解的常用方法:提公因式法,公式法,十字相乘法.本题是公式法和提公因式法相.18.如图,已知AC =DB ,要使△ABC ≌△DCB ,则需要补充的条件为_____.【正确答案】AB =DC (答案没有)【分析】本题中有公共边BC =CB ,利用SSS 来判定全等则只需要添加条件AB =DC 即可.【详解】解:由题意可知:AC =DB ,BC =CB ,∴利用SSS 来判定全等则只需要添加条件AB =DC ,故答案为:AB =DC (答案没有).本题考查三角形全等的判定,掌握判定定理是本题的解题关键.19.如图,在⊙O 的内接四边形ABCD 中,AB=CD,则图中与∠1相等的角有_________.【正确答案】∠6,∠2,∠5【详解】因为AB=CD ,所以 AB = CD,则根据同圆或等圆中,同弧或等弧所对的圆周角相等得,与∠1相等的角有6,∠2,∠5.故答案为∠6,∠2,∠5.20.如果a 、b 、c 为互没有相等的实数,且满足关系式b 2+c 2=2a 2+16a +14与bc =a 2﹣4a ﹣5,那么a 的取值范围是_____.【正确答案】a >﹣1且a≠﹣56且a≠1214±且a≠﹣78【详解】试题解析:222221614,45b c a a bc a a +=++=-- ,22222()216142(45)4844(1)b c a a a a a a a ∴+=+++--=++=+,即有2(1).b c a +=±+又245bc a a =--,所以b ,c 可作为一元二次方程222(1)450x a x a a ±++--=③的两个没有相等实数根,故224(1)4(45)24240a a a a =+---=+> ,解得a >−1.若当a =b 时,那么a 也是方程③的解,222(1)450a a a a a ∴±++--=,即24250a a --=或650a --=,解得,1214a ±=或5.6a =-当a =b =c 时,16140450a a +=--=,,解得75,84a a =-=-(舍去),所以a 的取值范围为1a >-且56a ≠-且1214a ±≠且7.8a ≠-故答案为1a >-且56a ≠-且1214a ±≠且7.8a ≠-三、解答题(本题共3个小题,每小题7分,共21分)21.计算:()3010.1254tan 602π-⎛⎫⨯-+-+ ⎪⎝⎭ 的值.【详解】试题分析:根据实数运算顺序和运算法则计算即可.试题解析:原式()0.1258111=⨯-++=-++22.如图,在坡角α为30 的山顶C 上有一座电视塔,在山脚A 处测得电视塔顶部B 的仰角为45 ,斜坡AC 的长为400米,求电视塔BC 的高.【正确答案】2001)米【详解】试题分析:易求得CD 长,利用30°的余弦值即可求得AD 长,进而利用45°正切值可求得BD 长,让BD CD -即为电视塔BC 的高.试题解析:在Rt ACD △中,400AC =米,30α=︒,200CD ∴=米,3cos 4002AD AC α=⋅=⨯=(米).又4590BAD D ∠=︒∠=︒,,45B .∴∠=︒BD AD ∴==(米).)2002001BC BD CD ∴=-==米.∴电视塔BC 高)2001-米.23.如图,在△ABC 中,BA =BC ,∠B =120°,AB 的垂直平分线MN 交AC 于D ,求证:AD =12DC .【正确答案】证明见解析【分析】连接BD,根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,然后求出∠A=∠C=∠ABD=30°,再求出∠DBC=90°,再根据直角三角形30°所对的直角边等于斜边的一半即可得证.【详解】如图,连接DB.∵BA=BC,∠B=120°,∴∠A=∠C=30°,∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠ABD=30°,又∵∠ABC=120°,∴∠DBC=120°-30°=90°,Rt△CBD中,∠C=30°,∴12BD CD=,∴12AD CD=.本题考查了30°角所对的直角边等于斜边的一半的性质,线段垂直平分线上的点与线段两端点的距离相等的性质,作出辅助线构造出直角三角形是解题的关键.四、解答题:(本题共3个小题,每小题8分,共24分)24.如图,函数y=kx+b的图像与反比例函数myx=的图像相交于A、B两点,(1)利用图中条件,求反比例函数和函数的解析式(2)根据图像写出使函数的值大于反比例函数的值的x的取值范围.【正确答案】(1)2yx=-,y=-x-1;(2)x<-2或0<x<1【分析】(1)利用已知求出反比例函数的解析式,再利用两函数交点求出函数解析式;(2)利用函数图象求出使函数的值大于反比例函数的值的x的取值范围.【详解】(1)据题意,反比例函数myx=的图象点A(−2,1),∴有m=xy=−2,∴反比例函数解析式为2 yx =-,又反比例函数的图象点B(1,n),∴n=−2,∴B(1,−2),将A、B两点代入y=kx+b,有212k bk b-+=⎧⎨+=-⎩,解得11 kb=-⎧⎨=-⎩,∴函数的解析式为y=−x−1,(2)函数的值大于反比例函数的值时,x取相同值,函数图象在反比例函数上方即函数大于反比例函数,∴x<−2或0<x<1.此题主要考查了待定系数法求反比例函数解析式以及待定系数法求函数解析式,利用图象判定函数的大小关系是中学的难点,同学们应掌握.25.如图,MN切⊙O于P,AB是⊙O的弦,AM⊥MN于M,BN⊥MN于N,PQ⊥AB于Q.求证:PQ2=AM•BN.【正确答案】答案见解析【详解】试题分析:连接AP BP ,,根据垂直的定义得到90AMP PQB ∠=∠=︒,根据相似三角形的性质得到,PQ PB AM PA =同理可得:,PB BN PA PQ =等量代换得到,PQ BN AM PQ =于是得到结论.试题解析:证明:连接AP BP ,,∵AM MN ⊥于M ,PQ AB ⊥于Q .90AMP PQB ∴∠=∠=︒,12∠=∠ ,PAM BPQ ∴ ∽,,PQ PB AM PA∴=同理可得:,PB BN PA PQ =,PQ BN AM PQ∴=2PQ AM BN ∴=⋅.26.如图,已知梯形ABCD 中,AD ∥BC ,AD=2,BC=4,对角线AC=5,BD=3,试求此梯形的面积.【正确答案】【详解】试题分析:过点A 作AF ⊥BC 于F ,作//AE BD 交CB 的延长线于E ,易得四边形AEBD 是平行四边形,即可求得BE =AD =2,AE =BD =3,然后设EF =x ,则CF =6−x ,由勾股定理可得22222AF AE EF AC CF =-=-,,即可得方程:22925(6)x x -=--,,解此方程求得EF 的长,继而可求得AF 的长,然后可求得此梯形的面积.试题解析:过点A 作AF ⊥BC 于F ,作//AE BD 交CB 的延长线于E ,∵//AD BC∴四边形AEBD 是平行四边形,∴BE =AD =2,AE =BD =3,∵BC =4,∴CE =BE +BC =6,设EF =x ,则CF =6−x ,22222AF AE EF AC CF =-=- ,∴22925(6)x x -=--,解得:53x =2143AF ∴=∴S 梯形ABCD 1()2AF AD BC =+=五、解答题:(本题共2个小题,第27小题11分,第28小题12分,共23分)27.某校初三年级学生参加赈灾义演,甲班捐款200元,乙班30名同学捐款200元,这样,两班人均捐款比甲班人均捐款多1元,甲班有多名学生参加这次赈灾?(规定班级人数没有超过60人)【正确答案】50【详解】试题分析:本题先根据题意得出等量关系即两班人均捐款比甲班人均捐款多1元,从而列出方程得2002002001,30x x +=-+解出方程,检验并作答.试题解析:设甲班有x 名同学参加这次赈灾.根据题意,得2002002001,30x x +=-+去分母,整理,得217060000x x -+=.()()501200x x --=.解得:1250120.x x ==,经检验,1250120.x x ==,均为原方程的根,2120x =没有合题意,舍去.50x ∴=.答:甲班有50名同学参加这次赈灾.点睛:分式方程一定要注意检验.28.阅读下列材料:如图1,⊙O 1和⊙O 2外切于点C ,AB 是⊙O 1和⊙O 2外公切线,A 、B 为切点,求证:AC ⊥BC证明:过点C 作⊙O 1和⊙O 2的内公切线交AB 于D ,∵DA 、DC 是⊙O 1的切线∴DA=DC .∴∠DAC=∠DCA .同理∠DCB=∠DBC .又∵∠DAC+∠DCA+∠DCB+∠DBC=180°,∴∠DCA+∠DCB=90°.即AC ⊥BC .根据上述材料,解答下列问题:(1)在以上的证明过程中使用了哪些定理?请写出两个定理的名称或内容;(2)以AB 所在直线为x 轴,过点C 且垂直于AB 的直线为y 轴建立直角坐标系(如图2),已知A 、B 两点的坐标为(﹣4,0),(1,0),求A 、B 、C 三点的抛物线y=ax 2+bx+c 的函数解析式;(3)根据(2)中所确定的抛物线,试判断这条抛物线的顶点是否落在两圆的连心O 1O 2上,并说明理由.【正确答案】(1)见解析;(2)213222y x x =+-;(3)见解析【详解】试题分析:(1)由切线长相等可知用了切线长定理;由三角形的内角和是180°,可知用了三角形内角和定理;(2)先根据勾股定理求出C 点坐标,再用待定系数法即可求出、、A B C 三点的抛物线的函数解析式;(3)过C 作两圆的公切线,交AB 于点D ,由切线长定理可求出D 点坐标,根据,C D 两点的坐标可求出过,C D 两点直线的解析式,根据过一点且互相垂直的两条直线解析式的关系可求出过两圆圆心的直线解析式,再把抛物线的顶点坐标代入直线的解析式看是否适合即可.试题解析:(1)DA 、DC 是1O 的切线,∴DA =DC .应用的是切线长定理;180DAC DCA DCB DBC ∠+∠+∠+∠= ,应用的是三角形内角和定理.(2)设C 点坐标为(0,y ),则222AB AC BC =+,即()()222224141y y --=-+++,即225172y =+,解得y =2(舍去)或y =−2.故C 点坐标为(0,−2),设、、A B C 三点的抛物线的函数解析式为2y ax bx c =++,则164002,a b c a b c c -+=⎧⎪++=⎨⎪=-⎩解得12322a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩,故所求二次函数的解析式为2132.22y x x =+-(3)过C 作两圆的公切线CD 交AB 于D ,则AD =BD =CD ,由A (−4,0),B (1,0)可知3(,0)2D -,设过CD 两点的直线为y =kx +b ,则3022k b b ⎧-+=⎪⎨⎪=-⎩,解得432k b ⎧=-⎪⎨⎪=-⎩,故此函数的解析式为423y x =--,∵过12,O O 的直线必过C 点且与直线423y x =--垂直,故过12,O O 的直线的解析式为324y x =-,由(2)中所求抛物线的解析式可知抛物线的顶点坐标为325(,)28--,代入直线解析式得33252,428⎛⎫⨯--=- ⎪⎝⎭故这条抛物线的顶点落在两圆的连心12O O 上.2022-2023学年河北省邢台市中考数学专项提升仿真模拟卷(4月)一、选一选(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.13的相反数是()A.3B.﹣3C.13 D.132.下列运算中,正确的是()A.2x+2y=2xyB.(xy)2÷1xy=(xy)3C.(x2y3)2=x4y5D.2xy﹣3yx=xy3.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱4.口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列为随机的是()A.随机摸出1个球,是白球B.随机摸出1个球,是红球C.随机摸出1个球,是红球或黄球D.随机摸出2个球,都是黄球5.如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC变换得到Rt△ODE,若点C 的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移36.如果多项式p=a2+2b2+2a+4b+5,则p的最小值是()A.1B.2C.3D.4二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.9的平方根是_________.8.若∠α=32°22′,则∠α的余角的度数为_____.9.化简:﹣的结果是_____.10.一组数据2、﹣2、4、1、0的方差是_____.11.若关于x的一元二次方程ax2﹣bx+2=0(a≠0)的一个解是x=1,则3﹣a+b的值是_____.12.如图,直线∥,∠α=∠β,∠1=40°,则∠2=_____________°.13.圆锥的母线长为6cm,底面圆半径为4cm,则这个圆锥的侧面积为_____cm2.14.如图,⊙O的内接四边形ABCD中,∠A=105°,则∠BOD等于_____.15.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,若AD=BC,则sin∠A=_____.16.抛物线y=mx2﹣2mx+m﹣3(m>0)在﹣1<x<0位于x轴下方,在3<x<4位于x轴上方,则m的值为_____.三、解答题(本大题共有10小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算或解方程(1)(﹣12)﹣2+|3tan30°﹣1|﹣(π﹣3)°;(2)1x-2=1-x2-x﹣3.18.近年来,“在初中数学教学时总使用计算器是否直接影响学生计算能力的发展”这一问题受到了广泛关注,为此,某校随机了n名学生对此问题的看法(看法分为三种:没有影响,影响没有大,影响很大),并将结果绘制成如下没有完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题:n名学生对使用计算器影响计算能力的发展看法人数统计表看法没有影响影响没有大影响很大学生人数(人)4060m(1)求n的值;(2)统计表中的m=;(3)估计该校1800名学生中认为“影响很大”的学生人数.19.在一个没有透明袋子中有1个红球和3个白球,这些球除颜色外都相同.(1)从袋中任意摸出2个球,用树状图或列表求摸出的2个球颜色没有同的概率;(2)在袋子中再放入x个白球后,进行如下实验:从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀.经大量试验,发现摸到白球的频率稳定在0.95左右,求x的值.20.学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.21.写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,.求证:.证明:22.如图,物理实验室有一单摆在左右摆动,摆动过程中选取了两个瞬时状态,从C处测得E、F两点的俯角分别为∠ACE=60°,∠BCF=45°,这时点F相对于点E升高了4cm.求该摆绳CD的长度.(到0.1cm≈1.41)23.如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线的点到路面的距离为6米.(1)按如图所示建立平面直角坐标系,求表示该抛物线的函数表达式;(2)一辆货运卡车高为4m,宽为2m,如果该隧道内设双向车道,那么这辆货车能否通过?24.如图,在等边△ABC中,M是边BC延长线上一点,连接AM交△ABC的外接圆于点D,延长BD至N,使得BN=AM,连接CN、MN,(1)求证:△CMN是等边三角形;(2)判断CN与⊙O的位置关系,并说明理由;(3)若AD:AB=3:4,BN=4,求等边△ABC的边长.25.如图1,矩形ABCD中,P是AB边上的一点(没有与A,B重合),PE平分∠APC交射线AD于E,过E作EM⊥PE交直线CP于M,交直线CD于N.(1)求证:CM=CN;(2)若AB:BC=4:3,①当APPB=时,E恰好是AD的中点;②如图2,当△PEM与△PBC相似时,求ENEM的值.26.如图1,已知函数y=ax+2与x轴、y轴分别交于点A、B,反比例函数y=kx点M.(1)若M是线段AB上的一个动点(没有与点A、B重合).当a=﹣3时,设点M的横坐标为m,求k与m之间的函数关系式.(2)当函数y=ax+2的图象与反比例函数y=kx的图象有公共点M,且OM=54,求a的值.(3)当a=﹣2时,将Rt△AOB在象限内沿直线y=x个单位长度得到Rt△A′O′B′,如图2,M是Rt△A′O′B′斜边上的一个动点,求k的取值范围.2022-2023学年河北省邢台市中考数学专项提升仿真模拟卷(4月)一、选一选(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.13的相反数是()A.3B.﹣3C.13 D.13【正确答案】D【分析】在一个数前面放上“﹣”,就是该数的相反数.【详解】解:13的相反数为﹣13.故选:D.本题考查了相反数的概念,求一个数的相反数只要改变这个数的符号即可.2.下列运算中,正确的是()A.2x+2y=2xyB.(xy)2÷1xy=(xy)3C.(x2y3)2=x4y5D.2xy﹣3yx=xy 【正确答案】B【详解】解:A.2x与2y没有是同类项,没有能合并,故A错误;B.正确;C.原式=x4y6,故C错误;D.原式=﹣xy,故D错误;故选B.3.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱【正确答案】A【详解】试题分析:根据四棱锥的侧面展开图得出答案.试题解析:如图所示:这个几何体是四棱锥.故选A.考点:几何体的展开图.4.口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列为随机的是()A.随机摸出1个球,是白球B.随机摸出1个球,是红球C.随机摸出1个球,是红球或黄球D.随机摸出2个球,都是黄球【正确答案】B【详解】A、从甲袋中随机摸出1个球,是白球是没有可能;B、从甲袋中随机摸出1个球,是红球是随机;C、从乙袋中随机摸出1个球,是红球或黄球是必然;D、从乙袋中随机摸出2个球,都是黄球是没有可能,故选B.必然指在一定条件下,一定发生的.没有可能是指在一定条件下,一定没有发生的,没有确定即随机是指在一定条件下,可能发生也可能没有发生的.5.如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC变换得到Rt△ODE,若点C 的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移3【正确答案】A【详解】根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选A.本题考查坐标与图形变化-旋转,坐标与图形变化-平移.掌握旋转和平移的性质是解题关键.6.如果多项式p=a2+2b2+2a+4b+5,则p的最小值是()A.1B.2C.3D.4【正确答案】B【详解】解:p=a2+2b2+2a+4b+5=(a+1)2+2(b+1)2+2≥2,故选B.点睛:本题考查配方法的应用、非负数的性质.解答本题的关键是明确题意,找出所求问题需要的条件,利用配方法和非负数的性质解答.二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.9的平方根是_________.【正确答案】±3【分析】根据平方根的定义解答即可.【详解】解:∵(±3)2=9,∴9的平方根是±3.故答案为±3.本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.若∠α=32°22′,则∠α的余角的度数为_____.【正确答案】57°38'【详解】解:90°﹣∠α=90°﹣32°22′=57°38'.故答案为57°38'.9.化简:﹣_____.。
6.2.6待定系数法求反比例函数解析式

待定系数法求反比例函数解析式1.(2015•杭州模拟)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(8,4).将矩形OABC绕点O逆时针旋转,使点B落在y轴上的点B′处,得到矩形OA′B′C′,OA′与BC相交于点D,则经过点D的反比例函数解析式是()A.B.C.D.【考点】待定系数法求反比例函数解析式;坐标与图形变化-旋转.【分析】利用∠COD的正切值列式求出CD的长度,然后写出点D的坐标,再利用待定系数法求反比例函数解析式解答即可.【解答】解:∵B(8,4),∴OA=8,AB=OC=4,∴A′O=OA=8,A′B′=AB=4,tan∠COD==,即=,解得CD=2,∴点D的坐标为(2,4),设经过点D的反比例函数解析式为y=(k≠0),则=4,解得k=8,所以,经过点D的反比例函数解析式为y=.故选B.【点评】本题考查了待定系数法求反比例函数解析式,利用三角函数求出CD的长度,从而得到点D的坐标是解题的关键,还考查了坐标与图形﹣旋转.2.(2015•邯郸二模)如图,反比例函数y=的图象经过点M,则此反比例函数的解析式为()A.y=﹣B.y=C.y=﹣D.y=【考点】待定系数法求反比例函数解析式.【分析】根据图象得到图象过(﹣1,2)点,代入求出k=﹣2,即可得到答案.【解答】解:由图象可知:图象过(﹣1,2)点,代入得:k=﹣2,∴y=﹣.故选C.【点评】本题主要考查对用待定系数法求反比例函数的解析式的理解和掌握,能看出图象所反映的特点是解此题的关键.数形结合思想的巧妙运用.3.(2015•石峰区模拟)如图,反比例函数y=的图象经过直角三角形OAB的顶点A,D为斜边OA的中点,则过点D的反比例函数的解析式是()A.y=B.y=﹣C.y=D.y=【考点】待定系数法求反比例函数解析式.【分析】根据题意设点A坐标(x,),由D为斜边OA的中点,可得出D(x,),从而得出过点D的反比例函数的解析式.【解答】解:设点A坐标(x,),∵反比例函数y=的图象经过Rt△OAB的顶点A,D为斜边OA的中点,∴D(x,),∴过点D的反比例函数的解析式为y=.故选:C.【点评】本题考查了待定系数法求反比例函数解析式,反比例函数系数k 的几何意义,本知识点是中考的重要考点,同学们应高度关注.4.(2015•拱墅区二模)若反比例函数图象经过二次函数y=x 2﹣4x+7的顶点,则这个反比例函数的解析式为()A .B .C .D .【考点】待定系数法求反比例函数解析式;二次函数的性质.【分析】先利用二次函数的性质求出抛物线的顶点坐标,再设反比例函数的解析式为y=,将顶点坐标代入反比例函数的解析式求解即可.【解答】解:∵y=x 2﹣4x+7=(x ﹣2)2+3,∴抛物线的顶点为(2,3),设反比例函数的解析式为y=,把(2,3),代入得k=2×3=6,∴反比例函数的解析式为y=.故选A .【点评】本题主要考查了二次函数的性质及待定系数法求反比例函数解析式,解题的关键是求出抛物线的顶点坐标.5.(2015•周村区一模)已知y 1=mx (m ≠0),y 2=(k ≠0),当x=1时,y 1=y 2,当x=2时,y 1=y 2+9,当x=3时,y 1﹣y 2值为()A .3B .12C .16D .21【考点】待定系数法求反比例函数解析式;待定系数法求正比例函数解析式.【分析】先利用当x=1时,y 1=y 2,当x=2时,y 1=y 2+9得到,再解关于k 、m 的方程组确定反比例函数和一次函数解析式,然后计算自变量为3时两个对应的函数值之差.【解答】解:根据题意得,解得,所以y 1=6x ,y 2=,所以x=3时,y 1﹣y 2=3×6﹣=16.故选C .【点评】本题考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=xk (k 为常数,k ≠0);把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了待定系数法求一次函数解析式.6.(2015•萝岗区一模)某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.如图所示的是该电路中电流I与电阻R之间的函数关系的图象,则用电阻R表示电流I的函数解析式为()A.B.C.D.【考点】待定系数法求反比例函数解析式;反比例函数的应用.【分析】根据函数图象可用电阻R表示电流I的函数解析式为I=,再把(3,1)代入可得k的值,进而可得函数解析式.【解答】解:设用电阻R表示电流I的函数解析式为I=,∵过(3,1),∴k=3×1=3,∴,故选:B.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.7.(2015•西城区一模)在平面直角坐标系xOy中,第一象限内的点P在反比例函数的图象上,如果点P的纵坐标是3,OP=5,那么该函数的表达式为()A.y=B.y=﹣C.y=D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】过P作PD⊥x轴于D,则PD=3,根据勾股定理求得OD,得出D的坐标,然后根据待定系数法即可求得反比例函数的解析式.【解答】解:在RT△OPD中,过P作PD⊥x轴于D,则PD=3,∴OD==4,∴P(4,3),∴代入反比例函数y=得,3=,解得k=12,∴反比例函数的解析式为y=,故选A.【点评】本题考查了待定系数法求反比例函数的解析式,熟练掌握待定系数法是解题的关键.8.(2015•澧县模拟)在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”,例如点(﹣1,﹣1),(0,0),(),…都是“梦之点”,显然,这样的“梦之点”有无数个,应用:若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,则这个反比例函数的解析式是()A.y=B.y=C.y=D.y=【考点】待定系数法求反比例函数解析式.【分析】先由“梦之点”的定义得出m=2,再将点P坐标代入y=,运用待定系数法即可求出反比例函数的解析式.【解答】解:(1)∵点P(2,m)是“梦之点”,∴m=2,∵点P(2,2)在反比例函数y=(n为常数,n≠0)的图象上,∴n=2×2=4,∴反比例函数的解析式为y=;故选D.【点评】本题考查了待定系数法求反比例函数的解析式,熟练掌握待定系数法是解题的关键.9.(2015秋•天桥区期末)下列函数中,图象经过点(2,﹣3)的反比例函数关系式是()A.y=﹣B.y=C.y=D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】首先设反比例函数解析式为y=,再把(2,﹣3)代入可得k的值,进而可得反比例函数解析式.【解答】解:设反比例函数解析式为y=,∵图象经过点(2,﹣3),∴﹣3=,解得:k=﹣6,∴反比例函数关系式是y=﹣,故选:D.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.10.(2015秋•渝北区期末)已知反比例函数的图象经过点P(2,﹣1),则这个反比例函数的解析式为()A.y=B.y=﹣C.y=D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】设反比例函数的解析式是y=,把P的坐标代入函数解析式即可求得k的值,从而求得解析式.【解答】解:设反比例函数的解析式是y=,根据题意得:﹣1=,则k=﹣2.则函数的解析式是y=﹣.故选D.【点评】本题考查了待定系数法求反比例函数的解析式,待定系数法是求函数解析式的基本方法.11.(2015秋•重庆校级期中)如图,在平面直角坐标系中.矩形OABC的对角线OB,AC 相交于点D,且BE∥AC,AE∥OB.如果OA=3,OC=2,则经过点E的反比例函数解析式为()A.B.C.D.【考点】待定系数法求反比例函数解析式.【分析】连接DE,交AB于F,先证明四边形AEBD是平行四边形,再由矩形的性质得出DA=DB,证出四边形AEBD是菱形,由菱形的性质得出AB与DE互相垂直平分,求出EF、AF,得出点E的坐标;设经过点E的反比例函数解析式为:y=,把点E坐标代入求出k的值即可.【解答】解:∵BE∥AC,AE∥OB,∴四边形AEBD是平行四边形,∵四边形OABC是矩形,∴DA=AC,DB=OB,AC=OB,AB=OC=2,∴DA=DB,∴四边形AEBD是菱形;连接DE,交AB于F,如图所示:∵四边形AEBD是菱形,∴AB与DE互相垂直平分,∵OA=3,OC=2,∴EF=DF=OA=,AF=AB=1,3+=,∴点E坐标为:(,1),设经过点E的反比例函数解析式为:y=,把点E代入得:k=,∴经过点E的反比例函数解析式为:y=.故选A.【点评】本题考查了平行四边形的判定、菱形的判定、矩形的性质、坐标与图形特征以及反比例函数解析式的求法;本题综合性强,有一定难度.12.(2015秋•荣成市校级期中)点A(a,b)是反比例函数y=上的一点,且a,b是方程x2﹣mx+4=0的根,则反比例函数的解析式是()A.y=B.y=C.y=D.y=【考点】待定系数法求反比例函数解析式;根与系数的关系.【分析】根据a,b是方程x2﹣mx+4=0的根,由根与系数的关系得到ab=4,由于A(a,b)是反比例函数y=上的一点,即可得到结论.【解答】解:∵a,b是方程x2﹣mx+4=0的根,∴ab=4,∵A(a,b)是反比例函数y=上的一点,∴k=ab=4,∴反比例函数的解析式是y=.故选C.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是掌握反比例函数图象上的点的坐标特点:横纵坐标的积=k.13.(2015春•衡阳县期中)若反比例函数y=的图象经过点(3,﹣2),那么这个函数的表达式为()A.y=﹣6x B.y=﹣C.y=6x D.y=【考点】待定系数法求反比例函数解析式.【分析】直接把点(3,﹣2)代入y=计算出m的值即可.【解答】解:把点(3,﹣2)代入y=,得m=3×(﹣2)=﹣6,所以反比例函数解析式为y=﹣.故选B.【点评】本题考查了待定系数法求反比例函数解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.14.(2014•嘉峪关校级模拟)如果反比例函数的图象经过点P(﹣2,﹣1),那么这个反比例函数的表达式为()A.B.C.D.【考点】待定系数法求反比例函数解析式.【分析】先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.【解答】解:设y=,将点(﹣2,﹣1)代入解析式可得,k=2,所以y=.故选:C.【点评】此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.15.(2014•江干区一模)图象经过点(2,1)的反比例函数是()A.y=﹣B.y=C.y=D.y=2x【考点】待定系数法求反比例函数解析式.【分析】设反比例函数解析式y=,然后把点(2,1)代入后计算出k的值即可.【解答】解:设反比例函数解析式y=,把(2,1)代入得k=2×1=2,所以反比例函数解析式y=.故选B.【点评】本题考查了待定系数法求反比例函数的解析式:先设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);再把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;然后解方程,求出待定系数;最后写出解析式.16.(2014•泗县校级模拟)若y与﹣3x成反比例,x与成正比例,则y是z的()A.正比例函数B.反比例函数C.一次函数D.不能确定【考点】待定系数法求反比例函数解析式.【分析】根据正比例函数的定义分析.【解答】解:由题意可列解析式y=,x=∴y=﹣z∴y是z的正比例函数.故选A.【点评】本题考查正比例函数的知识.关键是先求出函数的解析式,然后代值验证答案.17.(2014春•上街区校级期中)已知变量x、y满足下面的关系:则x,y之间用关系式表示为()x…﹣3﹣2﹣1123…y…1 1.53﹣3﹣1.5﹣1…A.y=B.y=﹣C.y=﹣D.y=【考点】待定系数法求反比例函数解析式.【分析】由x、y的关系可求得其满足反比例关系,再由待定系数法即可得出解析式.【解答】解:设此函数的解析式为y=(k≠0),把x=﹣3,y=1,代入得k=﹣3,故x,y之间用关系式表示为y=﹣.故选C.【点评】本题主要考查了用待定系数法求反比例函数的解析式,即图象上点的横纵坐标积为一定值.18.(2014秋•即墨市期末)如图,P是反比例函数图象上的一点,且点P到x轴的距离为3,到y轴的距离为2,则反比例函数的解析式是()A.y=B.y=﹣C.y=D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】根据题意,首先正确写出点P的坐标,再进一步运用待定系数法求解.【解答】解:根据题意,得点P(﹣2,3).设y=.把P(﹣2,3)代入,得k=﹣6.所以解析式为y=﹣.故选B.【点评】主要考查了用待定系数法求反比例函数的解析式.19.(2014春•任城区校级月考)已知点A(2,3)在双曲线y=上,那么此双曲线的解析式为()A.y=B.y=C.y=D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】直接把点A(2,3)代入反比例函数解析式中得到关于k的方程,然后解方程即可.【解答】解:把点A(2,3)代入y=得k=2×3=6,所以反比例函数解析式为y=.故选C.【点评】本题考查来了待定系数法求反比例函数的解析式:先设反比例函数解析式为y=(k≠0),再把反比例函数图象上一个点的坐标代入求出k的值,从而确定其解析式.20.(2014秋•房山区期末)已知点P(﹣3,2)是反比例函数的图象上一点,则此反比例函数的解析式是()A.B.C.D.【考点】待定系数法求反比例函数解析式.【分析】首先把P(﹣3,2)代入反比例函数中,即可算出k的值,进而得到反比例函数解析式.【解答】解:把P(﹣3,2)代入反比例函数中,k=﹣3×2=﹣6,则反比例函数解析式为:y=﹣,故选:D.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是就是把P(﹣3,2)代入反比例函数中算出k值.21.(2014秋•滨州期末)某反比例函数的图象过点(1,﹣4),则此反比例函数解析式为()A.y=B.y=C.y=﹣D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】设反比例函数的解析式为y=,将点(1,﹣4)代入求得k即可.【解答】解:设反比例函数的解析式为y=,∵图象过(1,﹣4)点,∴k=1×(﹣4)=﹣4,∴反比例函数的解析式为y=﹣.故选C.【点评】本题考查了待定系数法求函数解析式的知识,比较简单,待定系数法求函数的解析式,是中学阶段的重点,同学们要注意掌握.22.(2014春•慈溪市期末)已知反比例函数的图象经过点(2,6),则这个反比例函数的解析式为()A.y=3x B.y=C.y=D.y=【考点】待定系数法求反比例函数解析式.【分析】把(2,6)代入函数y=中可先求出k的值,那么就可求出函数解析式.【解答】解:由题意知,k=2×6=12.则反比例函数的解析式为:y=.故选D.【点评】本题考查了待定系数法求解反比例函数解析式,此为近几年中考的热点问题,同学们要熟练掌握.23.(2014春•太仓市期中)某物质的密度p(kg/m3)关于其体积V(m3)的函数关系如图所示,那么函数关系式是()A.B.C.D.Vp=3【考点】待定系数法求反比例函数解析式.【分析】根据图象可得物质的密度p(kg/m3)关于其体积V(m3)的函数关系式为反比例函数形式,设p=,再把(6,2)代入函数关系式可得k的值,进而得到反比函数关系式.【解答】解:设物质的密度p(kg/m3)关于其体积V(m3)的函数关系式为p=,∵函数图象经过(6,2),∴k=6×2=12,∴p=,故选:A.【点评】此题主要考查了用待定系数法求反比例函数的解析式,关键是掌握步骤:(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.24.(2014秋•龙岗区校级期中)反比例函数图象经过点(﹣2,3),则该反比例函数解析式为()A.y=B.y=C.y=D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】首先设反比例函数解析式为y=,再根据反比例函数图象上点的坐标特点可得k=﹣2×3=﹣6,进而可得反比例函数解析式.【解答】解:设反比例函数解析式为y=,∵反比例函数图象经过点(﹣2,3),∴k=﹣2×3=﹣6,∴反比例函数解析式为y=﹣,故选:A.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.25.(2014秋•湘乡市校级月考)已知反比例函数y=的图象在一、三象限,那么直线y=kx﹣k不经过第()象限.A.一B.二C.三D.四【考点】待定系数法求反比例函数解析式;反比例函数的性质.【分析】根据反比例函数的性质得k>0,然后根据一次函数的进行判断直线y=kx﹣k不经过的象限.【解答】解:∵反比例函数y=的图象在一、三象限,∴k>0,∴直线y=kx﹣k经过第一、三、四象限,即不经过第二象限.故选B.【点评】本题考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数与一次函数的性质.26.(2013•崇左)若反比例函数的图象经过点(m,3m),其中m≠0,则此反比例函数图象经过()A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限【考点】待定系数法求反比例函数解析式;反比例函数的性质.【分析】由反比例函数的图象经过点(m,3m),其中m≠0,将x=m,y=3m代入反比例解析式中表示出k,根据m不为0,得到k恒大于0,利用反比例函数图象的性质得到此反比例函数图象在第一、三象限.【解答】解:∵反比例函数的图象经过点(m,3m),m≠0,∴将x=m,y=3m代入反比例解析式得:3m=,∴k=3m2>0,则反比例y=图象过第一、三象限.故选A【点评】此题考查了利用待定系数法求反比例函数解析式,以及反比例函数的性质,熟练掌握待定系数法是解本题的关键.27.(2013•湘潭)如图,点P(﹣3,2)是反比例函数(k≠0)的图象上一点,则反比例函数的解析式()A.B.C.D.【考点】待定系数法求反比例函数解析式.【分析】把P点坐标代入反比例函数解析式即可算出k的值,进而得到答案.【解答】解:∵点P(﹣3,2)是反比例函数(k≠0)的图象上一点,∴k=﹣3×2=﹣6,∴反比例函数的解析式为y=,故选:D.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是反比例函数图象经过的点必能满足解析式.28.(2013•本溪)如图,在矩形OABC中,AB=2BC,点A在y轴的正半轴上,点C在x 轴的正半轴上,连接OB,反比例函数y=(k≠0,x>0)的图象经过OB的中点D,与BC 边交于点E,点E的横坐标是4,则k的值是()A.1B.2C.3D.4【考点】待定系数法求反比例函数解析式.【分析】首先根据E点横坐标得出D点横坐标,再利用AB=2BC,得出D点纵坐标,进而得出k的值.【解答】解:∵在矩形OABC中,AB=2BC,反比例函数y=(k≠0,x>0)的图象经过OB的中点D,与BC边交于点E,点E的横坐标是4,∴D点横坐标为:2,AB=OC=4,BC=AB=2,∴D 点纵坐标为:1,∴k=xy=1×2=2.故选:B .【点评】此题主要考查了点的坐标性质以及k 与点的坐标性质,得出D 点坐标是解题关键.29.(2013•抚顺)如图,等边△OAB 的边OB 在x 轴的负半轴上,双曲线过OA 的中点,已知等边三角形的边长是4,则该双曲线的表达式为()A .B .C .D .【考点】待定系数法求反比例函数解析式;等边三角形的性质.【分析】如图,过点C 作CD ⊥OB 于点D .根据等边三角形的性质、中点的定义可以求得点C 的坐标,然后把点C 的坐标代入双曲线方程,列出关于系数k 的方程,通过解该方程即可求得k 的值.【解答】解:如图,过点C 作CD ⊥OB 于点D .∵△OAB 是等边三角形,该等边三角形的边长是4,∴OA=4,∠COD=60°,又∵点C 是边OA 的中点,∴OC=2,∴OD=OC •cos60°=2×=1,CD=OC •sin60°=2×=.∴C (﹣1,).则=,解得,k=﹣,∴该双曲线的表达式为.故选B .【点评】本题考查了待定系数法求反比例函数解析式,等边三角形的性质.解题的关键是求得点C的坐标.30.(2013•来宾)已知反比例函数的图象经过点(2,﹣1),则它的解析式是()A.y=﹣2x B.y=2x C.D.【考点】待定系数法求反比例函数解析式.【分析】函数经过一定点,将此点坐标代入函数解析式(k≠0),即可求得k的值.【解答】解:设反比例函数的解析式为(k≠0).∵函数经过点P(2,﹣1),∴k=2×(﹣1)=﹣2,∴反比例函数解析式为y=﹣.故选:D.【点评】此题主要考查了待定系数法求反比例函数解析式,用待定系数法求反比例函数的解析式,是中学阶段的重点.1.(2013•长安区模拟)若反比例函数y=的图象过(﹣1,2),则一次函数y=﹣2x﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】待定系数法求反比例函数解析式;一次函数图象与系数的关系.【分析】利用待定系数法求得k值后,再根据一次函数y=﹣2x﹣k中的﹣2、﹣k的符号判定该直线所经过的象限.【解答】解:∵反比例函数y=的图象过(﹣1,2),∴k=xy=﹣1×2=﹣2;∴一次函数y=﹣2x﹣K的解析式为y=﹣2x+2;∵﹣2<0,2>0,∴直线y=﹣2x+2的图象经过第第一、二、四象限,∴该直线不经过第三象限;故选C.【点评】本题考查了待定系数法求反比例函数解析式、一次函数图象与系数的关系.直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.2.(2013•长海县模拟)如图,过原点O的直线与反比例函数的图象相交于点A、B,根据图中提供的信息可知,这个反比例函数的解析式为()A.y=3x B.y=﹣3x C.D.【考点】待定系数法求反比例函数解析式.【分析】根据中心对称的性质求出A点的坐标,再用待定系数法求函数解析式.【解答】解:因为A、B是反比例函数和正比例函数的交点,所以A、B关于原点对称,由图可知,A点坐标为(1,3),设反比例函数解析式为y=,将(1,3)代入解析式得:k=1×3=3,可得函数解析式为y=.故选C.【点评】从图中观察出A、B两点关于原点对称是解题的关键.另外对待定系数法因该有正确的认识:先设出某个未知的系数,然后根据已知条件求出未知系数的方法叫待定系数法.3.(2013•大丰市一模)一个反比例函数的图象经过点(2,3),则这个反比例函数的解析式为()A.y=6x B.C.y=x+1D.【考点】待定系数法求反比例函数解析式.【分析】根据题意设该反比例函数为y=(k≠0),然后把点(2,3)代入该函数式来求k的值.【解答】解:设该反比例函数为y=(k≠0),则k=xy.∵该反比例函数的图象经过点(2,3),∴k=2×3=6,∴该反比例函数的解析式为:y=.故选D.【点评】本题考查了待定系数法求反比例函数解析式.设反比例函数解析式y=时,不要漏掉限制性条件k ≠0,这是易错的地方.4.(2013秋•余姚市期末)反比例函数的图象经过点(1,﹣2),则此函数的解析式是()A .y=2xB .C .D .【考点】待定系数法求反比例函数解析式.【分析】把(1,﹣2)代入函数y=中可先求出k 的值,那么就可求出函数解析式.【解答】解:由题意知,k=1×(﹣2)=﹣2.则反比例函数的解析式为:y=﹣.故选:B .【点评】本题考查了待定系数法求解反比例函数解析式,此为近几年中考的热点问题,同学们要熟练掌握.5.(2013春•张家港市期末)如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (﹣,5),D 是AB 边上的点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析式是()A .y=B .y=C .y=﹣D .y=﹣【考点】待定系数法求反比例函数解析式;矩形的性质;相似三角形的判定与性质.【分析】先作EF ⊥CO ,垂足为点F ,连接OD ,构造全等三角形,再由勾股定理和相似三角形的性质,求出E 点坐标,利用待定系数法解答即可.【解答】解:作EF ⊥CO ,垂足为点F ,连接OD .因为点B 的坐标为(﹣,5),所以AB=,AO=5,根据折叠的性质,OE=OA=5,根据勾股定理,OB==,∵△OEF ∽△OBC ,∴=,即=,解得:EF=3,又∵点A的坐标为(0,5),∴OF===4,∴E点坐标为(﹣4,3),设解析式为y=,将(﹣4,3)代入解析式得k=﹣4×3=﹣12,∴解析式为y=﹣.故选D.【点评】此题是一道综合性较强的题目,将翻折变换和用待定系数法求函数解析式结合起来,有一定难度.6.(2013春•保亭县期末)已知反比例函数的图象经过点(﹣1,2),则它的解析式是()A.y=B.y=﹣C.y=D.y=【考点】待定系数法求反比例函数解析式.【分析】首先设出函数解析式y=,再利用待定系数法把(﹣1,2)代入解析式可得k的值,进而得到解析式.【解答】解:设函数解析式为y=,∵反比例函数的图象经过点(﹣1,2),∴k=﹣1×2=﹣2,∴函数解析式为y=﹣.故选:B.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.7.(2013春•微山县期末)对于函数y=,若x=2时,y=﹣3,则这个函数的解析式是()A.y=B.y=C.y=﹣D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】设反比例函数的解析式y=,再根据题意求得k,即可求得反比例函数的解析式.【解答】解:设反比例函数的解析式y=,把x=2时,y=﹣3,代入解析式y=,解得k=﹣6,则反比例函数的解析式是y=,故选:C.【点评】本题考查了待定系数法确定反比例函数的解析式,反比例函数中只有一个待定系数,因此只需知道经过的一个点的坐标或一对x、y的值.8.(2013春•高邮市期末)若反比例函数的图象经过点(﹣1,2),则它的解析式是()A.B.C.D.【考点】待定系数法求反比例函数解析式.【分析】首先设出反比例函数解析式,再把(﹣1,2)代入解析式可得k的值,进而得到答案.【解答】解:设反比例函数解析式为y=,∵反比例函数的图象经过点(﹣1,2),∴k=﹣1×2=﹣2,∴反比例函数解析式为y=﹣,故选:B.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.9.(2013秋•江山市校级期中)已知反比例函数图象经过点(3,﹣2),则反比例函数解析式是()A.B.C.D.【考点】待定系数法求反比例函数解析式.【分析】把(3,﹣2)代入函数y=中可先求出k的值,那么就可求出函数解析式.【解答】解:由题意知,k=﹣2×3=﹣6.则反比例函数的解析式为:y=﹣.故选A.【点评】本题考查了待定系数法求反比例函数的解析式,属于中招考试的热点题型,同学们要熟练掌握.。
反比例函数

反比例函数导言:反比例函数是初中阶段学习的一个非常重要的章节,也是知识点很多的一个章节,其经常出现在解答题,一般设有2——3个问题。
本章要求不仅要理解反比例函数的相关基本概念,还要将反比例函数和一次函数以及图形结合起来,综合解题,要掌握综合运用数学思想和方法分析问题并解决问题的能力。
【纸上谈兵】1.反比例函数概念 形如xky =(k 是常数,k ≠0)的函数称为反比例函数,自变量x 的取值范围是不等于零的一切实数。
反比例函数解析式也可以写成xy=k 或y=kx -1的形式。
2.反比例函数xky =(k ≠0)的图像与性质3.k 的几何意义如图1,设点P (a ,b )是双曲线xky =上任意一点,作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则矩形PBOA 的面积是k (三角形PAO 和三角形PBO 的面积都是k 21). 如图2,由双曲线的对称性可知,P 关于原点的对称点Q 也在双曲线上,作QC ⊥PA 的延长线于C ,则有三角形PQC 的面积为k 2.图1 图24.用待定系数法求反比例函数解析式 由于反比例函数)0(≠=k xky 中只有一个待定系数k ,所以只要知道函数图像上的一个点的坐标或函数的一对对应值就可以求出k 的值,从而确定函数的解析式.【军师妙计安天下】 1.图象:(1)图象的形状:双曲线.k越大,图象的弯曲度越小,曲线越平直.k越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当0>k 时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小; 当<k 时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.(3)对称性:图象关于原点对称,即若(a ,b )在双曲线的一支上,则(-a ,-b )在双曲线的另一支上. 图象关于直线xy ±=对称,即若(a ,b )在双曲线的一支上,则(b ,a )和(-b ,-a )在双曲线的另一支上. 2.说明(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线xy k 1=与双曲线x y k2=的关系:当021<k k 时,两图象没有交点;当021>k k 时,两图象必有两个交点,且这两个交点关于原点成中心对称.【武将马上定乾坤】 《军师临阵指点一》 如图,直线y=x+2与双曲线y=xm 3-在第二象限有两个交点,那么m 的取值范围在数轴上表示为( )军师指点:根据题意知,直线y=x+2与双曲线y=xm 3-在第二象限有两个交点, 即x+2=xm 3-有两根, 即x 2+2x+3-m=0有两解, △=4-4×(3-m )>0, 解得m >2,∵双曲线在二、四象限, ∴m-3<0, ∴m <3,∴m 的取值范围为:2<m <3.故在数轴上表示为.故选B .A .B .C .D .《军师临阵指点二》如图,一次函数y 1=x+1的图象与反比例函数y 2= (k 为常数,且k ≠0)的图象都经过点A (m ,2)(1)求点A 的坐标及反比例函数的表达式;(2)结合图象直接比较:当x >0时,y 1和y 2的大小. 军师指点:(1)将A 的坐标代入y 1=x+1, 得:m+1=2,解得:m=1, 故点A 坐标为(1,2), 将点A 的坐标代入:xky=2, 得:2=1k, 解得:k=2, 则反比例函数的表达式y 2=x2;(2)结合函数图象可得: 当0<x <1时,y 1<y 2; 当x=1时,y 1=y 2; 当x >1时,y 1>y 2.《军师临阵指点三》如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A 、C 分别在坐标轴上,点B 的坐标为(4,2),直线321+-=x y 交AB ,BC 分别于点M ,N ,反比例函数xky =的图象经过点M ,N .(1)求反比例函数的解析式;(2)若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标. 军师指点:考点:反比例函数与一次函数的交点问题.分析:(1)求出OA=BC=2,将y=2代入y=﹣x+3求出x=2,得出M 的坐标,把M 的坐标代入反比例函数的解析式即可求出答案;(2)求出四边形BMON 的面积,求出OP 的值,即可求出P 的坐标. 解:(1)∵B (4,2),四边形OABC 是矩形,∴OA=BC=2。
26.1.1 反比例函数 课件-人教版数学九年级下册

感悟新知
知1-练
1-1.[月考·成都锦江区]下列函数中,y是x的反比例函数的 是( B )
A. y=x-4 1 C. y=32x
B. y=25x D. y=x12
感悟新知
知2-讲
知识点 2 反比例关系与反比例函数的区别与联系
1. 如果xy=k(k为常数,k ≠ 0),那么x与y这两个量成反比例 关系,这里的x和y既可以是单项式,也可以是多项式.
学习目标
第二十六章 反比例函数
26.1 反比例函数
26.1.1 反比例函数
学习目标
1 课时讲解 反比例函数的定义
反比例关系与反比例函数的区别与联系 求反比例函数的解析式 在实际问题中建立反比例函数模型
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 反比例函数的定义
知1-讲
0),整理,得y=x-k 5-2,显然,y不是x的反比例函数.
感悟新知
知2-练
例 2 已知y=y1+y2,y1与x成正比例,y2与x成反比例,并 且当x=2时,y=-4;当x=-1 时,y=5,求y关于x 的函数解析式.
思路引导:
感悟新知
解:∵ y1与x成正比例,∴设y1=k1x(k1≠0).
知2-练
感悟新知
(2)求当x=8时的函数值y. 【解】当 x=8 时,y=2×(8-1)+68=1434.
知2-练
感悟新知
知识点 3 求反比例函数的解析式
知3-讲
1. 确定反比例函数解析式的方法是待定系数法,由于在反
比例函数y=,即可求出k的值,从而确 定其解析式.
综合应用创新
把x=3代入y=-2x,得y=-2x. 所以y是x的反比例函数,函数解析式为y=-2x. 补全表格如下:
2024年贵州毕节中考数学试题及答案

2024年贵州毕节中考数学试题及答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A. 2-B. 0C. 2D. 42. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D.3. 计算23a a +的结果正确的是( )A. 5aB. 6aC. 25aD. 26a 4. 不等式1x <的解集在数轴上的表示,正确的是( )A. B.C.D.5. 一元二次方程220x x -=的解是( )A. 13x =,21x = B. 12x =,20x = C. 13x =,22x =- D. 12x =-,21x =-6.为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A 100人 B. 120人 C. 150人 D. 160人8. 如图,ABCD Y 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB BC =B. AD BC =C. OA OB =D. AC BD^9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次10. 如图,在扇形纸扇中,若150AOB Ð=°,24OA =,则»AB 长为( )A. 30πB. 25πC. 20πD. 10π11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )A. x y= B. 2x y = C. 4x y = D. 5x y=12. 如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是( ).的A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴的另一个交点的横坐标是2C. 当1x <-时,y 随x 的增大而减小D. 二次函数图象与y 轴交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13.的结果是________.14.如图,在ABC V 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15.在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF Ð=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2-,③()01-,④122´中任选3个代数式求和;的(2)先化简,再求值:()21122x x -×+,其中3x =.18. 已知点()1,3在反比例函数k y x=的图象上.(1)求反比例函数的表达式;(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.19.根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的32名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC Ð=°,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21.为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A Ð;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN ¢为法线,AO 为入射光线,OD 为折射光线.)测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N ¢在同一平面内,测得20cm AC =,45A Ð=°,折射角32DON Ð=°.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52°»,cos320.84°»,tan 320.62°»)23.如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC Ð相等的角:______;(2)求证:OD AB ^;【(3)若2OA OE =,2DF =,求PB 的长.24.某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.销售单价x /元…1214161820…销售量y /盒…5652484440…(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.25. 综合与探究:如图,90AOB Ð=°,点P 在AOB Ð的平分线上,PA OA ^于点A .(1)【操作判断】如图①,过点P 作PC OB ^于点C ,根据题意在图①中画出PC ,图中APC Ð的度数为______度;(2)问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ^交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ^交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值.【参考答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置填涂)【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】D【8题答案】【答案】B【9题答案】【答案】A【10题答案】【答案】C【11题答案】【答案】C【12题答案】【答案】D二、填空题(本大题共4题,每题4分,共16分)【13题答案】【14题答案】【答案】5【15题答案】【答案】20【16题答案】三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)【17题答案】【答案】(1)见解析(2)12x-,1【18题答案】【答案】(1)3 yx =(2)a c b<<,理由见解析【19题答案】【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)2 3【20题答案】【答案】(1)见解析(2)12【21题答案】【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【22题答案】【答案】(1)20cm(2)3.8cm【23题答案】【答案】(1)DCEÐ(答案不唯一)(2)163(3)163【24题答案】【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【25题答案】【答案】(1)画图见解析,90(2)见解析 (3)23或83。