第六节:极限存在准则及两个重要极限
极限存在准则与两个重要极限.ppt

a,
lim
n
zn
a,
那末数列xn 的极限存在,
且lim n
xn
a.
证 yn a, zn a,
0, N1 0, N2 0, 使得
目录 上一页 下一页 退 出
当n
N
时恒有
1
yn
a
,
当n
N
时恒有
2
zn
a
,
取 N max{N1 , N2 }, 上两式同时成立,
4、1 ; 3
8、1 ; e
4、e 1 ;
目录 上一页 下一页 退 出
lim(3
n
xn ),
A2 3 A, 解得 A 1 13 , A 1 13 (舍去)
2
2
1 13
lim n
xn
2
.
目录 上一页 下一页 退 出
二、函数极限与数列极限的关系
定理2
目录 上一页 下一页 退 出
目录 上一页 下一页 退 出
三、柯西收敛准则
n! n 1 n 2
n1
1 (1 1 )(1 2 )(1 n ).
(n 1)! n 1 n 2
n1
显然 xn1 xn ,
x 是单调递增的; n
xn
1
1
1 2!
1 n!
1
1
1 2
1 2n1
3
1 2n1
3,
x 是有界的; n
1! n 2! n2
0106极限存在准则两个重要极限

xn + 1 =
2
2 2 x lim 3 + xn , xn + 1 = 3 + xn , n +1 = lim ( 3 + xn ), n→ ∞ n→ ∞
1 + 13 1 − 13 A = 3 + A, 解得 A1 = , A2 = (舍去), 2 2 1 + 13 ∴ lim xn = . 2 n→ ∞
◆ 进一步可证 :
1 x 1 x lim (1 + ) = e, lim (1 + ) = e, lim (1 + 1 ) x = e. x → +∞ x → −∞ x x x →∞ x
1 x ◆ lim (1 + ) = e x x →∞
1∞型
1 ⊗ 定理 若 lim ⊗ = ∞ , 则有 lim (1 + ) = e x →a x →a ⊗
显然 xn+1 > xn , ∴ {xn } 单调增 加;
xn < 1 + 1 + 1 1 1 1 1 1 + ++ < 1 + 1 + + + n ⋅ ( n − 1) 2⋅1 3⋅ 2 2! 3! n!
1 = 3 − < 3, ∴ 数列{x } 有上界 ; n n
1 n ∴ lim xn 存在 , 即 lim (1 + ) 存在, n→ ∞ n→ ∞ n 1 n 记 lim (1 + ) = e, e = 2.71828. n→ ∞ n
x →0
∴ lim (1 − cos x ) = 0, ∴ lim cos x = 1,
x →0
极限存在准则 两个重要极限

∴ {xn } 是单调递增的 ;
1 1 1 1 xn < 1 + 1 + + L + < 1 + 1 + + L + n −1 2! n! 2 2 1 = 3 − n − 1 < 3, ∴ {xn } 是有界的 ; 2 1n ) ∴ lim x n 存在. 记为lim(1 + ) = e (e = 2.71828L n→∞ n→∞ n
x → +∞
)
= lim (9
x → +∞
x
1 x x
)
1 x + 1 3
0
1 x
3 1 = 9 ⋅ lim 1 + x x → +∞ 3
1 3x ⋅x
= 9⋅e = 9
∴ lim cos x = 1,
x→0
∴ lim(1 − cos x ) = 0,
x→0
又 Q lim 1 = 1,
x→0
sin x ∴lim = 1. x→0 x
例3
1 − cosx . 求 lim 2 x→0 x
x 2sin2 2 lim 2 x→0
解: 原式 =
x
1 sin = lim x 2 x→0 2
1 令t= , x
x→0
1t lim(1 + x) = lim(1 + ) = e. x→0 t →∞ t
1 x
1 x
lim(1 + x) = e
例.
解: 令 t = −x, 则
t →∞
lim(1+ 1)−t t
1
= lim
两个极限存在准则和两个重要的极限

两个极限存在准则和两个重要的极限第一个极限存在准则是柯西-斯维亚切斯极限存在准则(Cauchy-Schwarz Limit Existence Criteria)。
其表述为:对于一个函数 f(x),如果对于任意的ε>0,存在一个δ>0,使得当 0<,x-a,<δ 时,总有,f(x)-f(a),<ε,则函数 f(x) 在点 a 处存在极限。
第二个极限存在准则是海涅定理(Heine's Theorem),也被称为局部有界性定理(Local Boundedness Theorem)。
其表述为:如果对于一个函数 f(x),在点 a 的一些邻域内 f(x) 有界,即存在一个常数 M>0,使得对于所有的x∈(a-δ,a+δ) 有,f(x),≤M,则函数 f(x) 在点 a 处存在极限。
这两个极限存在准则都用于判断函数在其中一点处的极限是否存在。
柯西-斯维亚切斯极限存在准则要求函数在该点的极限存在时,对于任意给定的ε>0,都能找到对应的δ>0,使得函数值与极限值的差小于ε。
而海涅定理则要求函数在该点附近有界,即函数在该点附近的函数值都不超过一些常数M。
这两个定理的应用范围和方法略有不同。
除了极限存在准则外,还有两个重要的极限:无穷小与无穷大。
无穷小是指极限趋近于零的数列或函数。
对于一个数列 {a_n},如果对于任意的正数ε>0,存在正整数 N,使得当 n>N 时,有,a_n,<ε,则该数列是无穷小。
对于一个函数 f(x),如果在其中一点 a 处,有lim(x→a) f(x)=0,则该函数在点 a 处是无穷小。
无穷大则是指极限趋于无穷的数列或函数。
对于一个数列 {a_n},如果对于任意的正数 M>0,存在正整数 N,使得当 n>N 时,有,a_n,>M,则该数列是无穷大。
对于一个函数 f(x),如果在其中一点 a 处,有lim(x→a) f(x)=∞(或表示为lim(x→a) ,f(x),=∞),则该函数在点 a 处是无穷大。
高数上册第一章第六节极限存在准则两个重要极限

【几何解释】
单调减少
单调增加
广义单调数列
*
相应地,函数极限也有类似的准则
统称为单调有界准则
准则Ⅱ及
【准则 】
准则
*
【补例2】
【证】 (舍去) 递推公式 注意到
*
【说明】
该方法只有在证明了极限存在时,才能由递推公式,通过解方程的方法求极限,否则可能导致荒谬的结论
如
①式两端取极限后 得
①
从而得
矛盾
*
【例4】
【解】 【例5】 【解】
*
【例6】
【解】 【例7】 【解】
*
三、小结
【两个准则】
【两个重要极限】 夹逼准则; 单调有界准则 .
*
【思考题】
求极限
*
【思考题解答】
抓大头
*
二、两个重要极限
三、小结 思考题
第六节 极限存在准则 两个重要极限
一、极限存在准则
一、极限存在准则
【证】
【夹逼准则】
*
上两式同时成立,
上述数列极限存在的准则可以推广到函数的极限
【注意】
02
利用夹逼准则Ⅰ关键是将xn作适当缩放,得到极限容易求的数列yn与zn,且极限相等.
准则 Ⅰ和准则 Ⅰ'称为夹逼准则.
利用夹逼准则Ⅰ′关键是对不易求极限的f(x)作适当缩放,得到极限容易求的g(x)与h(x),且极限相等.
*
【补例1】
【解】 由夹逼准则得 抓大头
*
【练习】
[提示] [提示] [提示]单调有界准则
*
[提示] [提示] 由夹逼定理得 【注】记住[x]的运算性质: 当 x > 0 时
2.【单调有界准则】
大一高等数学 第一章第六节 极限存在准则 两个重要极限

lim f (x) A
(
x x
x0 )
( 利用定理1及数列的夹逼准则可证 )
二、 两个重要极限证:Leabharlann 当x(0,
π 2
)
时,
△AOB 的面积<
圆扇形AOB的面积
BD
1
x O
C
A
<△AOD的面积
即 亦故即有 显然有
1 2
sin
x
1 2
tan
x
sin x x tan x
(0
x
π 2
)
cos x sin x 1 x
有
lim
n
f
(xn
)
A.
法1 找一个数列
xn x0 ,
使
lim
n
f
(xn
)
不存在
.
法2 找两个趋于
的不同数列 xn 及 xn , 使
lim
n
f
(xn )
lim
n
f
(xn )
例1. 证明
不存在 .
证: 取两个趋于 0 的数列
xn
1 2n π
及
xn
1 2n π
π 2
(n 1, 2,)
有 lim sin 1 lim sin 2n π 0 n xn n
3. lim xsin 1 __0__ ;
x0
x
2. lim xsin 1 _1___ ;
x
x
4. lim (1 1)n _e__1_; n n
作业
P56 1 (4),(5),(6) ;
(4) ;
2
(2),(3),
4
(4) , (5)
江苏专转本高数 第六节 极限存在准则

第六节 极限存在准则 两个重要极限
一、极限存在准则 二、两个重要极限 三、小结 思考题
机动 目录 上页 下页 返回 结束
2/22
一、极限存在准则
1.【夹逼准则】
【准则Ⅰ】 如果数列 xn , yn及 zn满足下列条件: (1) yn xn zn (n 1,2,3)
(2)
lim
n
yn
a,
2 作单位圆的切线,得ACO . 扇形OAB的圆心角为x , OAB的高为BD ,
于是有sin x BD, x 弧 AB, tan x AC ,
机动 目录 上页 下页 返回 结束
11/22
sin x x tan x, 即 cos x sin x 1,
x
上式对于
2
x
0也成立.当 0
x
x0 x 【解】 换元法
令 t arcsin x 则 x sin t
当 x 0 时,t 0 于是由复合函数的极限运算法则可得
lim arcsin x lim t 1
x0 x
t0 sin t
机动 目录 上页 下页 返回 结束
(2)
lim(1 1 )x e
1
或 lim(1 x)x e
n2 n
机动 目录 上页 下页 返回 结束
6/22
2.【单调有界准则】
如果数列xn满足条件
x1 x2 xn xn1 , 单调增加
广义单调数列
x1 x2 xn xn1 , 单调减少
【准则Ⅱ】 单调有界数列必有极限.
【几何解释】
x1 x2 x3xn xn1 A M
x
机动 目录 上页 下页 返回 结束
12/22
教材 【例2】
第六节 极限存在准则 两个重要极限

第六节 极限存在准则 两个重要极限 ㈠本课的基本要求了解极限存在的两个准则(夹逼准则和单调有界准则),会用两个重要极限求极限。
㈡本课的重点、难点重点是两个重要极限,难点是用两个重要极限求极限 ㈢教学内容本节介绍判定极限存在的两个准则,并利用它们求出微积分中两个重要极限:1sin lim=→xxx 及 e x xx =⎪⎭⎫⎝⎛+∞→11lim一.夹逼准则准则Ⅰ 如果数列}{},{n n y x 及}{n z 满足下列条件:⑴),3,2,1( =≤≤n z x y n n n ,⑵a z a yn n nn ==∞→∞→lim lim ,,那么数列}{n x 极限存在,且a x n n =∞→lim 。
证 因a z a y n n →→,,所以根据数列极限的定义,∃>∀,0ε正整数1N ,当1N n >时,有ε<-a y n ;又∃正整数2N ,当2N n >时,有ε<-a z n 。
现在取},max{21N N N =,则当N n >时,有ε<-a y n ,ε<-a z n 同时成立,即εε+<<-a y a n ,εε+<<-a z a n 同时成立。
又因n x 介于n y 和n z 之间,所以当N n >时,有εε+<≤≤<-a z x y a n n n ,即ε<-a x n 成立,这就证明了a x n n =∞→lim 。
上述数列极限存在准则可以推广到函数的极限: 准则Ⅰ’ 如果⑴当),(0r x U x∈(或M x >)时,)()()(x h x f x g ≤≤ ⑵A x h A x g x x x x x x ==∞→→∞→→)(,)(lim lim )()(00,那么)(lim)(0x f x x x ∞→→存在,且等于A 。
准则Ⅰ及准则Ⅰ’称为夹逼准则。
准则不仅告诉我们怎样判定一个函数(数列)极限是否存在,同时也给了我们一种新的求极限的方法:即为了求得某一函数的极限,不直接求(比较困难)它的极限,而是把它夹在两个已知(易求的)有同一极限的函数之间,那么这个函数的极限必存在,且等于这个公共的极限。