优选高等数学极限存在准则两个重要极限公式

合集下载

1-7存在准则两个重要极限

1-7存在准则两个重要极限

例1 求 lim( 1 1 1 ).
n n2 1 n2 2
n2 n
解 n 1 1 n ,
n2 n n2 1
n2 n n2 1
又 lim n
n lim n2 n n
1 1 1 1,
n
lim n lim 1 1, 由夹逼定理得
n n2 1
n
1
1 n2
lim( 1 1 1 ) 1.
x [x]
x [x]
x [x]
lim (1 1 )[ x] x [x] 1
lim (1 1 )[ x]1 lim (1 1 )1 e,
x [x] 1
x [x] 1
lim (1 1 )x e.
x
x
令 t x,
lim (1 1 )x lim (1 1)t lim (1 1 )t
7、 lim(1 x )2x _________. x x
8、 lim(1 1 ) x _________.
x
x
二、求下列各极限:
1、 lim 1 cos 2x x0 x sin x
2、 lim(tan x)tan 2x x 4
3、 lim( x a ) x x x a
4、 lim( n2 1)n n n 1
sin x x tan x, 即 cos x sin x 1, x
上式对于 x 0也成立. 当 0 x 时,
2
2
0 cos x 1 1 cos x 2sin 2 x 2( x)2 x2 , 22 2
lim x2 0, lim(1 cos x) 0,
x0 2
2、 lim sin 2x __________. x0 sin 3x
3、 lim arc cot x __________.

极限存在准则两个重要极限公式

极限存在准则两个重要极限公式

x x0
(x )
(x )
lim f (x) A
x x0 (x )
准则I和准则I′统称为夹逼准则.
注意:利用夹逼准则求极限的关键:构造出 yn 与 zn ,
且 yn与zn的极限是易求的.
2020/6/15
2
例1 求 lim( 1 1 1 ).
n n2 1 n2 2
n2 n
解: 因为 n < 1 + L + 1 < n
单调下降有下界数列必有极限 说 明:
(1) 在收敛数列的性质中曾证明:收敛的数列一定
有界,但有界的数列不一定收敛.
(2) 利用准则I I来判定数列收敛必须同时满足 数列
单调和有界这两个条件.
2020/6/15
9
(3) 准则 I I只能判定数列极限的存在性,而未给出 求极限的方法.
例如,数列 xn (1)n ,虽然有界但不单调; 数列 xn n ,虽然是单调的,但其无界, 易知,这两数列均发散.
sin x
=
1
5
x® 0 x
例2 求
解:
lim
x0
tan x
x
lim x0
sin x
x
1 cos
x
lim
x0
sin x
x
lim 1 x0 cos
x
1
例3 求
解: 令 t arcsin x, 则 x sin t , 因此
原式 lim t t0 sin t
sin t 1
t
注: 利用变量代换,可得更一般的形式 lim sin (x) 1 (x)0 (x)
(4) 对于准则I I函,数极限根据自变量的不同变化过程 (x x0 , x x0 , x , x , x ) 也有类似的 准则, 只是准则形式上略有不同. 例如,

两个重要极限公式

两个重要极限公式

两个重要极限公式
两个重要极限公式:极限是微积分中的基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。

1、第一个重要极限的公式:
lim sinx / x = 1 (x->0)当x→0时,sin / x的极限等于1。

特别注意的是x→∞时,1 / x是无穷小,根据无穷小的性质得到的极限是0。

2、第二个重要极限的公式:
lim (1+1/x) ^x = e(x→∞)当x →∞时,(1+1/x)^x的极限等于e;或当x →0 时,(1+x)^(1/x)的极限等于e。

极限的求法
连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。

利用恒等变形消去零因子(针对于0/0型)
利用无穷大与无穷小的关系求极限。

利用无穷小的性质求极限。

利用等价无穷小替换求极限,可以将原式化简计算。

利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。

高等数学 第1章 第七节 极限存在准则 两个重要极限

高等数学 第1章 第七节 极限存在准则  两个重要极限


lim
n
x n1
lim n
6 xn ,
A
6 A,
解得 A 3或A 2,(舍去)
lim n
xn
3.
14
3.两个重要极限的应用
例6: 求 lim tan x 1
x0 x
可作为公式
lim
x
s
in u x ux
1
lim ux 0
x
解: lim tan x lim sin x 1 lim sin x lim 1 11 1 x0 x x0 x cos x x0 x x0 cos x
1 n2 1
n2
1
22
n2
1
n2
n n2 1
,
1
lim 1 0, n 2n
lim n n n2 1
lim n
n
1
1
由夹逼定理知:
n2
0 0, 10
lim n
n
1 2
1
n2
1 22
n2
1 n2
存在, 且
lim n
n
1 2
1
n2
1
22
n2
1
n2
0.
8
例2 用夹逼准则证明:
lim sin x 1.
1yn xn zn n 1,2,3,,
2
lim
n
yn
a,
lim
n
z
n
a,
则数列x
n




在,

lim
n
xn
a.
准则1 若
1当x
U
x

2--4极限存在准则与两个重要极限

2--4极限存在准则与两个重要极限

x
lim
sin( t ) t
t 0
1
从上面的例子可以总结出: 如果一个函数的 极限满足下面两个条件: (1) 分子分母的极限值都为零(称为“ ”型未定 0 式); (2) 分式中含有三角函数. 则可考虑利用重要极限:
lim sin ( x )
x a
0
(x)
1 x
2 2
sin u ( x ) u( x )
1
如: lim
x 0
1 , lim
sin 2 x 2x
sin
1 x 1 x
x 0
1
lim
sin(ln x ) ln x
x1
1 , lim
x
1
第一个重要极限的关键在于sin后面为无穷小!
例 2 .求 lim
解: lim
tan x x
1
( 其中 lim ( x ) 0 )
x a
练习
f ( x ) x sin
x 0
sin x x
求 lim f ( x ), lim f ( x )
x
二 .准则 2 与 lim ( 1
n
1
) e
n
1.准则2
n 单调有界数列一定有极限
1 ) 该公式计算 ( 1 ) 型极限
x
1 x
)
x2
已知 A n A 0 ( 1 求 lim A n
n
r n
)
nt
sin x 1 x f (x) 1 x (1 x )
x 0 x 0
在 x 0 时是否有极限?
1
思考. 求 lim0 (cos x ) x

极限存在准则两个重要极限公式

极限存在准则两个重要极限公式

极限存在准则两个重要极限公式极限存在准则是数学中的一个重要概念,用于判断一个函数在其中一点处的极限是否存在。

在实际应用中,掌握极限存在准则对于求解极限问题非常重要。

在极限存在准则中,有两个非常重要的极限公式,分别是极限的保号性和夹逼定理。

首先,我们来介绍一下极限的保号性。

设函数f(x)在点x0的一些去心邻域内有定义,如果存在一个常数L,使得当x在x0的一些去心邻域内取值,并且f(x)>L,那么可以得出极限lim(x→x0)f(x)≥L;反之,如果存在一个常数L,使得当x在x0的一些去心邻域内取值,并且f(x)<L,那么可以得出极限lim(x→x0)f(x)≤L。

这就是极限的保号性。

保号性的一个重要应用是判断函数的极值。

如果在x0的一些去心邻域中,函数f(x)>0或f(x)<0,并且极限lim(x→x0)f(x)存在,那么就可以得出f(x)在x0处的极限是f(x0)。

这是因为根据保号性,当f(x)在x0的一些去心邻域内取正值时,可以推出极限lim(x→x0)f(x)≥0;同理,当f(x)在x0的一些去心邻域内取负值时,可以推出极限lim(x→x0)f(x)≤0。

由于极限存在,所以这时候只有一个可能,即极限lim(x→x0)f(x)等于0,即f(x)在x0处的极限是f(x0)。

下面我们来介绍夹逼定理。

设函数f(x)、g(x)和h(x)在其中一点x0的一些去心邻域内有定义,并且对于x在该邻域内取值,有f(x)≤g(x)≤h(x)。

如果极限lim(x→x0)f(x)和lim(x→x0)h(x)都存在,并且它们的极限值相等,即lim(x→x0)f(x)=lim(x→x0)h(x)=L,那么可以得出lim(x→x0)g(x)=L。

这就是夹逼定理。

夹逼定理常用于求极限的问题中,特别是当函数的表达式较复杂时,可以用一个更容易处理的函数夹逼该函数,从而求得极限。

夹逼定理的原理是通过限制函数g(x)在f(x)和h(x)之间,确定了极限的上下界。

极限存在准则与两个重要极限

极限存在准则与两个重要极限

100 000 2.718 27 100 000 2.718 30
1 000 000 2.718 28 1 000 000 2.718 28
e e
1.2 准则Ⅱ与第二个重要极限
因此,
lim
x
1
1 x
x
e

e 是无理数,它的值是 2.718 28 .在 1.1 中提到的指数函数 y ex 及自然对数 y ln x 中的
(2) lim g(x) lim h(x) A ,
xx0
xx0
则有 lim f (x) A . xx0
1.1 准则Ⅰ与第一个重要极限
作为准则Ⅰ及准则Ⅰ'的应用,下面证明一个重要极限: lim sin x 1 . x0 x
证明 在图所示的单位圆中,设圆心角 BOA x , AD 切圆 O 于 A , 且与 OB 延长线相交于 D ,于是有
3 1
x 1
1
lim
x 1
3
x
2x 1
2x
lim
x
2x 2x
3 1
lim
x
1 1
3
x
2x
1 x 2x
1
3
e2
1
e2
e.
1.7 无穷小阶的比较
在 1.4 节中我们已经知道,两个无穷小的和、差及乘积仍是无穷小.但是关于两
个无穷小的商却会出现不同的情况.例如,当 x 0 时,2x , x2 ,sin x 都是无穷小
an1
1
n
1
n1
1
1
1
21!1
n
1
1
1 3!
1
1 n
1

1.7极限存在准则 两个重要极限

1.7极限存在准则  两个重要极限
1.7极限存在准则 两个重要极限
一、夹逼准则
准则1、如果数列{xn},{yn}及{zn}满足下列条件: (1) yn xn zn (n 1,2,3 );
(2) lim n
yn
a, lim n
zn
a;
注:P36
那么数列{xn}的极限存在,且
lim
n
xn
a
例1:求
lim (
n
n
2
1 n 1
n2
2 n2
1.lim sin x 1 证明: x0 x
1
0.75
x
0.5
0.25
0 x /2
-15
-10
-5 -0.25
-0.5
5
10
15
sin x x tan x
1 x tan x sin x sin x
1 sin x sin x cos x x tan x
cosx sin x 1 x
x0
lim sin x 1 x0 x
1.特点:(1)正弦内、分母都趋向于零; (2)sin后形式和分母相同。
判断下列极限运算能否使用第一重要极限?
lim sin x ? x x
lim sin 2x ? x0 x
sin 1 lim x ? x 1
x
lim x ? x0 sin x
lim sin x 1 lim x 1
3.lim (1 1 )x5 x 2x
2.lim (1 1 )2x x 3x
4.lim x 1x x x 1
注:碰到幂指函数,常用第二个重要极限求解,方 法是凑指数。
练习:P42 2,3
注:对含有三角函数的 0 型极限,常用第一个重要极
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n2 1 np =?
n2
n2 n
n
n2
1
n2
1
2
n2
1
n
n2
n2

lim
n
n
2
n2
n
lim
n
1
1
n
1
lim
n
n2 n2 1
lim
n
n
n
2
1
n
2
1
2
n2
1
n
1
夹逼准则不仅说明了极限存在,而且给出了求极限的
方法.下面利用它证明另一个重要的
BD
极限公式: lim sin x 1 x0 x
例4 求
解:
lim
x0
tan x
x
lim x0
sin x
x
1 cos
x
lim
x0
sin x
x
lim
x0
1 cos
x
1
例5 求
解: 令t arcsin x, 则 x sin t , 因此
原式 lim t t0 sin t
sin t 1
t
注: 利用变量代换,可得更一般的形式 lim sin (x) 1 (x)0 (x)
优选高等数学极限存在准则两个重要极 限公式
2020年9月26日星期六
1
目录
上页
下页
返回
1. 单调有界准则
数列 xn : 单调增加 x1 x2 xn xn1 ,
单调减少 x1 x2 xn xn1 ,
准则I 单调有界数列必有极限 单调上升有上界数列必有极限 单调下降有下界数列必有极限
e
利用变量代换,可得更一般的形式
1
lim 1 (x) (x) e
(x ) 0
例1

lim
x
1
1 x
2
x
.
解:
原式
lim
x
1
1 x
x(2)
lim
x
1
1 x
x
2
e 2 .
例2 求
lim
x0
1
1
x x 3
lim
x0
1
3
x x 3
1 3
解:
lim
x0
1
1
x x 3
lim
例6 求
解: lim sin 3x 3 lim sin 3x 5x x0 sin 5x 5 x0 3x sin 5x
3 sin 3x
5x 3
lim
lim
5 x0 3x x0 sin 5x 5
例7
求lim x0
1
cos x2
x
.
2 sin 2
解: 原式 lim x0
x2
x 2
1 2
lim
x0
由条件 (1) a yn xn zn a

xn a
,

lim
n
xn
a
.
我们可将准则II推广到函数的情形:
准则II′ 当 x (x0 , ) 时, g(x) f (x) h(x) , 且
( x X 0)
lim g(x) lim h(x) A
x x0
x x0
(x )
n
是单调增加的.
其次,证
xn
1
1 n
n有界.
显然,xn
x1
2
是类单似调于增加xn的 .1 设1n数n列单调zn性 的1证1n 明n,1可则证得数列
yn
1
1 n
n
zn
1
1 n
n1
n 1 n1 n
1 n n1 n 1
1
1 1 n1 n 1
1 yn1
由于数列 yn 是单调增加的,所以数列 zn 是单调减少的.
(x )
lim f (x) A
x x0 (x )
准则II和准则II′统称为夹逼准则.
注意: 利用夹逼准则求极限关键是构造出 yn 与 zn , 并且 yn与zn的极限是容易求的 .
例3 求 lim( 1 1 1 ).
n n2 1 n2 2
n2 n
解: n 1 1 n ,

xn
1
1
n
n
1
1
n1
n
zn
z1
4
则 2 xn 4. 综上,根据极限存在准则Ⅰ可知,数列是
收敛的.
通常用字母 e 来表示这个极限,即
lim
n
1
1
n
n
e
(e 2.71828
)
也可以证明,当 x 取实数而趋于 或 时,函数
y
1
1 x
x
的极限都存在且都等于e
,即
lim
x
1
1 x
x
1x
oC
A
证:
当△AOB
x
(
0
,
2
)
时,
的面积< 圆扇形AOB的面积
<△AOD的面积

1 2
sin
x
1 2
x
1 2
tan
x
亦故即有
1sin sxinxxxctoa1snxx
(0
x
2
)
显然有
cos x sin x 1 x
(0
x
2
)
lim cos x 1, 注 lim sin x 1
x0
x0 x
n2 n n2 1
n2 n n2 1
又 lim n
n lim
n2 n n
1 1 1 1,
n
n
1
lim
n
lim n2 1 n
1,
1
1 n2
由夹逼准则得
lim( 1 1 1 ) 1.
n n2 1 n2 2
n2 n
思考题: nlimnn2 1 p
1
n2 2p
解: 利用夹逼准则 .由
x0
1
3
x x 3
1 3
lim x0
1
x 3
3
x
1 3
1
e 3
2. 夹逼准则
准则II (1) yn xn zn ( n 1, 2, )
(2)
lim
n
yn
lim
n
zn
a
证: 由条件 (2) ,当
0, N1, N2 ,
时,
lim
n
xn
a
当n N2 时, zn a
令 N max N1 , N2, 则当 n N 时, 有
sin2 x 2
x 2
2
1 2
lim
x0
sin x
x 2
2
2
1 12 2
1 2
内容小结
1. 极限存在的两个准则 夹逼准则; 单调有界准则 .
2. 两个重要极限
或 注: 代表相同的表达式
作业
习 题 1-6 1 (2)(4 )
3思(考3)与(练4)习
易知,这两数列均发散.
(4) 对于准则I函,数极限根据自变量的不同变化过程 (x x0 , x x0 , x , x , x ) 也有类似的 准则, 只是准则形式上略有不同. 例如,
准则I′ 设函数f (x) 在点 x0 的某个左邻域内单调 并且有界,则 f (x) 在 x0 的左极限 f (x0 ) 必存在.
说 明: (1) 在收敛数列的性质中曾证明:收敛的数列一 定有界,但有界的数列不一定收敛.
(2) 利用准则Ⅰ来判定数列收敛必须同时满足 数 列单调和有界这两个条件.
(3) 准则Ⅰ只能判定数列极限的存在性,而 未给出求极限的方法.
例如,数列 xn (1)n ,虽然有界但不单调; 数列 xn n ,虽然是单调的,但其无界,
作为准则Ⅰ的应用,我们讨论一个重要极限:
lim
n
1
1 n n
?
首先,证
xn
1
1 n
n
是单调的.
xn
1
1 n
n
=1111
11nn nn
1111
1 n
1
1 n
1
1 n
1
n 1 n 1
1 n
n 1
n2 n 1
n 1

1
1
n 1
n 1
xn1
所以,数列
xn
1
1 n
相关文档
最新文档