大学考研高数复习资料-D1_6极限存在准则

合集下载

高等数学1.6极限存在准则两个重要极限公式教学内容.ppt

高等数学1.6极限存在准则两个重要极限公式教学内容.ppt

2024年9月27日星期五
2
目录
上页
下页
返回
作为准则Ⅰ的应用,我们讨论一个重要极限:
lim
n
1
1 n n
?
首先,证
xn
1
1 n
n
是单调的.
xn
1
1 n
n
=1111
11nn nn
1111
1 n
1
1 n
1
1 n
1
n 1 n 1
1 n
n 1
n2 n 1
n 1

1
1
n 1
夹逼准则不仅说明了极限存在,而且给出了求极限的
方法.下面利用它证明另一个重要的
极限公式: lim sin x 1 x0 x
证:

x
(
0
,
2
)
时,
BD
1x
oC
A
△AOB 的面积<圆扇形AOB的面积<△AOD的面积

1 2
sin
x
1 2
x
1 2
tan
x
亦故即有
1sin sxinxxxctoa1snxx
目录
上页
下页
返回
内容小结
1. 极限存在的两个准则 夹逼准则; 单调有界准则 .
2. 两个重要极限

注: 代表相同的表达式
2024年9月27日星期五
15
目录
上页
下页
返回
作业
习 题 1-6 1 (2)(4 ) 2 (3)(4)(6)
思考与练习
3(3)(4)
1. 填空题 ( 1~4 )

2023考研数学高等数学每章知识点汇总精品

2023考研数学高等数学每章知识点汇总精品

2023考研数学高等数学每章知识点汇总精品高等数学基础知识篇一1、函数、极限与连续重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。

2、一元函数积分学重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。

3、一元函数微分学重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。

4、向量代数与空间解析几何(数一)主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。

5、多元函数微分学重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。

另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

6、多元函数积分学重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。

此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。

7、无穷级数(数一、数三)重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。

8、常微分方程及差分方程重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。

此外,数三考查差分方程的基本概念与一介常系数线形方程求解方法。

高等数学 极限存在的判断准则

高等数学 极限存在的判断准则
n
n lim 由此可得 n→ ∞ a
( a > 0)
n n n ⇒ lim a =1 由 1 a n ( n a 时 ) ≤ ≤ ≥ (1) 当 a ≥ 1 时, n→ ∞
∴ lim n a = lim (2) 当 0 < a < 1 时,
n→ ∞
1 1a
n→ ∞ n
=
1
n→ ∞
1 >1 a
lim n 1 a
第三节 极限存在的判别准则
1. 夹逼性定理 2. 单调有界性定理 3. 小结、作业
1/17
一. 夹逼定理
定理1 设有数列 { x n }, { yn }, { z n },满足: (1) ∃N , n > N : zn ≤ xn ≤ yn (2) lim yn = lim z n = A, 则ຫໍສະໝຸດ n→ ∞2 2解
n
<
1
++
<
2
,
注:1) 求n项和的数列极限时常用夹逼准则。 2) 使用夹逼准则时需要对极限的值有个猜测。
3/17
n 例2 再求 lim n→∞
n
证: 由AG不等式 :
( n − 2) + 2 n ⋅1 ⋅ 1 n n ≤ 1≤ n = n 1 n n− 2 2 n lim ≤ 1+ , ( n ≥ 2). ⇒ n→ ∞ n = 1. n
n →∞
由保序性, ∃N, ∀n > N :
n
a < aε .
两边取对数,得
log a n < ε. n
n n
当n → ∞时,下列无穷大量阶的 比较有
log a n n a (a > 1) n! n

高等数学 极限存在的判断准则

高等数学 极限存在的判断准则
n
n lim 由此可得 n→ ∞ a
( a > 0)
n n n ⇒ lim a =1 由 1 a n ( n a 时 ) ≤ ≤ ≥ (1) 当 a ≥ 1 时, n→ ∞
∴ lim n a = lim (2) 当 0 < a < 1 时,
n→ ∞
1 1a
n→ ∞ n
=
1
n→ ∞
1 >1 a
lim n 1 a
第三节 极限存在的判别准则
1. 夹逼性定理 2. 单调有界性定理 3. 小结、作业
1/17
一. 夹逼定理
定理1 设有数列 { x n }, { yn }, { z n },满足: (1) ∃N , n > N : zn ≤ xn ≤ yn (2) lim yn = lim z n = A, 则
n→ ∞
4/17
1.
例3 求下列数列的极限
n! ! n (1) x n = n ; (由前面讨论知lim n = 0) n→∞ n n n a ( 2) x n = ; n! 证: ∀n > [a ],
a a a a a a an ≤ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0< 1 2 [a ] [a ] + 1 [a ] + 2 n n!
设 lim x n = a , 对 x n = n + 3 x n−1两边求极限得 n→∞ 2n − 1
1 a = a ⇒ a = 0, ∴ lim x n = 0. n→∞ 2
例 2 设 A > 0 , x1 > 0, x n+1
试证 { x n } 收敛 , 并求此极限 .
A 1 = ( x n + ), ( n = 1,2, ) xn 2

2020考研数学:高数这些定理需牢记(一)

2020考研数学:高数这些定理需牢记(一)

2020考研数学:高数这些定理需牢记(一)对于考研数学来说,高数部分很重要,要想拿分,必须把一些定理记牢。

为此,整理了“2020考研数学:高数这些定理需牢记(一)”的文章,希望对大家有所帮助。

2020考研数学:高数这些定理需牢记(一)以下是2020考研数学:高数这些定理需牢记(一)的具体内容:一、函数与极限一、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。

函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。

二、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。

定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。

如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。

定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。

三、函数的极限函数极限的定义定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A0(或f(x)>0),反之也成立。

函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。

一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f (x)的图形水平渐近线。

如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。

高等数学极限存在准则

高等数学极限存在准则

x x0 ( x )
x x0 ( x )
那末 lim f ( x)存在, 且等于A. x x0 ( x)
A
A
A
(( 1 x0
y h( x) y f (x) y g(x)
x0
)) 2
x0
准则 Ⅰ和准则 Ⅰ'称为夹逼准则. 问题: 1. 怎样使用数列夹逼准则?
回答:关键是构造数列 yn和 zn,使得对于一切正整
于是有sin x BD, x 弧 AB, tan x AC,
sin x x tan x, 即 cos x sin x 1, x
上式对于 x 0也成立. 2
当 0 x 时,
2
0 cos x 1 1 cos x
2sin2 x 2
2( x)2
x2 ,
22
lim x 2 0, lim(1 cos x) 0,
x x
3. lim xsin 1 _0___ ;
x0
x
作业
2. lim xsin 1 __1__ ;
x
x
4. lim (1 1)n _e___1;
n n
P55 1 (4),(5),(6) ; 2 (2),(3),(4) ; 4 (4) , (5)
第七节 目录 上页 下页 返回 结束
xn
存在.
xn1
3 xn ,
xn21 3 xn ,
lim
n
x2 n1
lim(3
n
xn ),
A2 3 A, 解得 A 1 13 , A 1 13 (舍去)
2
2
lim n
xn
1
2
13 .
二、两个重要极限
(1) lim sin x 1 x0 x

高数6极限存在准则PPT课件

高数6极限存在准则PPT课件

即 亦故即有
1 2
sin
x
1 2
x
1 2
tan
x
1sin sxinxxxctoa1snxx
(0
x
π 2
)
显然有
cos x sin x 1 x
(0
x
π
)
lim cos x 1, 注 lim sin x 1
x0
x0 x
注 目录 上页 下页 返回 结束
例2. 求 lim tan x . x0 x
n
f
(xn ) 不存在
.
法2 找两个趋于 x0 的不同数列 xn及 xn , 使
lim
n
f
(xn )
lim
n
f
(xn )
(2) 数列极限存在的夹逼准则
函数极限存在的夹逼准则
目录 上页 下页 返回 结束
2. 两个重要极限
(1) lim sin 1
1
sin t
1
t
目录 上页 下页 返回 结束
例4.

lim 1
x0
cos x2
x
.
解:
原式 =
lim
x0
2 sin 2 x2
x 2
1 2
lxim0
sin
x 2
x 2
2
1 2
12
1 2
例5. 已知圆内接正 n 边形面积为
π
An
n R2 sin
π n
cos
π n
n
证明: lim
n
An
π
R2
.
证:
lim
0 x x0 时, 有 f (x) A .

(完整版)1极限存在准则-两个重要极限

(完整版)1极限存在准则-两个重要极限

(完整版)1极限存在准则-两个重要极限第一章第六节极限存在准则两个重要极限【教学目的】1、了解函数和数列的极限存在准则;2、掌握两个常用的不等式;3、会用两个重要极限求极限。

【教学内容】1、夹逼准则;2、单调有界准则;3、两个重要极限。

【重点难点】重点是应用两个重要极限求极限。

难点是应用函数和数列的极限存在准则证明极限存在,并求极限。

【教学设计】从有限到无穷,从已知到未知,引入新知识(3分钟)。

首先给出极限存在准则(10分钟),并举例说明如何应用准则求极限(5分钟);然后重点讲解两个重要的极限类型,并要求学生能利用这两个重要极限求极限(10分钟);课堂练习(5分钟)。

【授课内容】引入:考虑下面几个数列的极限1、∑=∞→+1000121limi n i n 1000个0相加,极限等于0。

2、∑=∞→+ni n in 121lim无穷多个“0”相加,极限不能确定。

3、n n x ∞→lim,其中n x =1x =对于2、3就需要用新知识来解决,下面我们来介绍极限存在的两个准则:一、极限存在准则1. 夹逼准则准则Ⅰ 如果数列n n y x ,及n z 满足下列条件:,lim ,lim )2()3,2,1()1(a z a y n z x y n n n n nn n ===≤≤∞→∞→Λ那么数列n x 的极限存在, 且a x n n =∞→lim .证:,,a z a y n n →→Θ使得,0,0,021>>?>?N N ε,1ε<->a y N n n 时恒有当,2ε<->a z N n n 时恒有当取12max{,},N N N =上两式同时成立,,εε+<<-a y a n 即,εε+<<-a z a n 当n N >时,恒有,εε+<≤≤<-a z x y a n n n ,成立即ε<-a x n .lim a x n n =∴∞→上述数列极限存在的准则可以推广到函数的极限准则Ⅰ′ 如果当),(0δx U x o∈ (或M x >)时,有,)(lim ,)(lim )2(),()()()1()()(00A x h A x g x h x f x g x x x x x x ==≤≤∞→→∞→→那么)(lim )(0x f x x x ∞→→存在, 且等于A .准则 I 和准则 I ' 称为夹逼准则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1
n11)n
(1
1 x
)
x
(1
1 n
)n1
lim (1
n
n11)n
lim
n
(1 n11)n1 e
1
1 n1
(P53~54)
lim (1
n
1 n
)n1
lim [(1
n
1n)n(1
1n)]
e
lim (1
x
1 x
)
x
e
目录 上页 下页 返回 结束

时, 令 x (t 1), 则
从而有
t
lim (1
xn
n
为确定起见 , 仅讨论 x x0 的情形.
目录 上页 下页 返回 结束
定理1. lim f (x) A
xx0
有定义, 且
xn x0 , f (xn )
有 lim
n
f
(xn )
A.
证:“ ” 设 lim f (x) A, 即 0, 0, 当 xx0
有 f (x) A .
解:
原式 =
lim
x0
2 sin 2 x2
x 2
1 2
lxim0
sin
x 2
x 2
2
1 2
12
例5. 已知圆内接正 n 边形面积为
π
An
n R2
sin
π n
cos
π n
n
证明:
R
证:
lim
n
An
lim π
n
R2
sin
π n
π
cos
π n
n
说明: 计算中注意利用
目录 上页 下页 返回 结束
2.
证: 当 x 0 时, 设 n x n 1, 则
t
11)
(t
1)
tlim(tt 1)(t1)
t
lim (1
1t )t
1
t
lim [(1
1t )t
(1
1t )]
e

lim (1
x
1 x
)
x
e
说明:
此极限也可写为
1
lim(1 z) z
e
z0
目录 上页 下页 返回 结束
例6. 求
解: 令 t x, 则
lim (1
t
1t )t
lim 1
t
说明
例1. 证明
不存在 .
证: 取两个趋于 0 的数列
xn
1 2n π

xn
2n
1 π
π 2
(n 1, 2,)
有 lim sin 1 lim sin 2n π 0 n xn n
lim sin
n
1 xn
lim sin(2n π
n
π2) 1
由定理 1 知
不存在 .
目录 上页 下页 返回 结束
2. 函数极限存在的夹逼准则
第六节
第一章
极限存在准则及
两个重要极限
一、函数极限与数列极限的关系 及夹逼准则
二、 两个重要极限
目录 上页 下页 返回 结束
一、 函数极限与数列极限的关系及夹逼准则
1. 函数极限与数列极限的关系
定理1.
lim f (x) A
xx0
x
xn: xn x0 , f (xn ) 有定义,
xn x0 (n ), 有 lim f (xn ) A
定理2. 当 x U (x0 , ) 时, g(x) f (x) h(x) , 且
( x X 0)
lim g(x) lim h(x) A
x x0 (x )
x x0 (x )
lim f (x) A
(
x x
x0 )
( 利用定理1及数列的夹逼准则可证 )
目录 上页 下页 返回 结束
解:
lim
x0
tan x
x
lim x0
sin x
x
1 cos
x
lim sin x lim 1 1 x0 x x0 cos x
例3. 求
解: 令 t arcsin x, 则 x sin t , 因此
原式 lim t t0 sin t
sin t 1
t
目录 上页 下页 返回 结束
例4. 求
二、 两个重要极限
证:

x
(
0
,
π 2
)
时,
BD
1
x O
C
A
△AOB 的面积<圆扇形AOB的面积<△AOD的面积

1 2
sin
x
1 2
tan
x
亦故即有 显然有
sin x x tan x
(0
x
π 2
)
cos x sin x 1 x
(0
x
π 2
)

注 目录 上页 下页 返回 结束
例2. 求

(xn )
xn x0 , f (xn ) 有定义
有 lim
n
f
(xn )
A.
说明: 此定理常用于判断函数极限不存在 .
法1 找一个数列
xn x0 ,
使 lim
n
f
(xn )
不存在
.
法2 找两个趋于 的不同数列 xn及 xn , 使
lim
n
f
(xn )
lim
n
f
(xn )
目录 上页 下页 返回 结束
xn: xn x0 , f (xn ) 有定义 , 且
对上述 , N, 当
时, 有
于是当 n N 时 f (xn ) A .

lim
n
f
(xn )
A
“ ” 可用反证法证明. (略)
y
A
O x0 x
目录 上页 下页 返回 结束
定理1. lim f (x) A
x x0 (x )
第七节 目录 上页 下页 返回 结束
法1 找一个数列 xn: xn x0 , 且 xn x0 ( n )
使
lim
n
f
(xn )不存在
.
法2 找两个趋于 x0 的不同数列 xn及 xn , 使
lim
n
f
(xn )
lim
n
f
(xn )
(2) 数列极限存在的夹逼准则
函数极限存在的夹逼准则
目录 上页 下页 返回 结束
2. 两个重要极限
或 注: 代表相同的表达式
目录 上页 下页 返回 结束
思考与练习
填空题 ( 1~4 )
1. lim sin x __0___ ; x x
3. lim xsin 1 __0__ ;
x0
x
作业
2. lim xsin 1 _1___ ;
x
x
4. lim (1 1)n _e__1_; n n
P56 1 (4),(5),(6) ; 2 (2),(3),(4) ; 4 (4) , (5)
:若利用
lim (1
( x)
1 (x)
)
(
x)
e, 则
原式
lim (1
x
1 x
)
x
1
e1
目录 上页 下页 返回 结束
例7. 求
解:
原式
=
lim [(sin
x
1 x
cos
பைடு நூலகம்
1x ) 2
x
]2
x
lim (1
x
sin
2 x
)
2
1
(1
sin
2 x
sin
)
2 x
e
目录 上页 下页 返回 结束
内容小结
1. 函数极限与数列极限关系的应用 (1) 利用数列极限判别函数极限不存在
相关文档
最新文档