高考推理与证明专项训练题

合集下载

高中数学高考总复习推理与证明习题及详解

高中数学高考总复习推理与证明习题及详解

高中数学高考总复习推理与证明习题及详解一、选择题1.(2010·广东文,10)在集合{a ,b ,c ,d }上定义两种运算、⊗如下: 那么d ⊗(ac )=( )A .aB .bC .cD .d [答案] A[解析] 根据运算、⊗的定义可知,a c =c ,d ⊗c =a ,故选A.2.(文)(2010·福建莆田质检)如果将1,2,3,…,n 重新排列后,得到一个新系列a 1,a 2,a 3,…,a n ,使得k +a k (k =1,2,…,n )都是完全平方数,则称n 为“好数”.若n 分别取4,5,6,则这三个数中,“好数”的个数是( )A .3B .2C .1D .0 [答案] C[解析] 5是好数,4和6都不是,∵取a 1=3,a 2=2,a 3=1,a 4=5,a 5=4,则1+a 1=4=22,2+a 2=4=22,3+a 3=4=22,4+a 4=32,5+a 5=32.(理)(2010·寿光现代中学)若定义在区间D 上的函数f (x ),对于D 上的任意n 个值x 1,x 2,…,x n ,总满足f (x 1)+f (x 2)+…+f (x n )≥nf ⎝⎛⎭⎫x 1+x 2+…+x n n ,则称f (x )为D 上的凹函数,现已知f (x )=tan x 在⎝⎛⎭⎫0,π2上是凹函数,则在锐角三角形ABC 中,tan A +tan B +tan C 的最小值是( ) A .3 B.23 C .3 3 D. 3 [答案] C[解析] 根据f (x )=tan x 在⎝⎛⎭⎫0,π2上是凹函数,再结合凹函数定义得,tan A +tan B +tan C ≥3tan ⎝⎛⎭⎫A +B +C 3=3tan π3=3 3.故所求的最小值为3 3.3.(文)定义某种新运算“⊗”:S =a ⊗b 的运算原理为如图的程序框图所示,则式子5⊗4-3⊗6=( )A .2B .1C .3D .4 [答案] B[解析] 由题意知5⊗4=5×(4+1)=25,3⊗6=6×(3+1)=24,所以5⊗4-3⊗6=1. (理)如图所示的算法中,令a =tan θ,b =sin θ,c =cos θ,若在集合{θ|0<θ<3π2}中任取θ的一个值,输出的结果是sin θ的概率是( )A.13B.12C.23D.34 [答案] A[解析] 该程序框图的功能是比较a ,b ,c 的大小并输出最大值,因此要使输出的结果是sin θ,需sin θ>tan θ,且sin θ>cos θ,∵当θ∈⎝⎛⎭⎫0,π2时,总有tan θ>sin θ,当θ∈⎝⎛⎭⎫π2,π时,sin θ>0,tan θ<0,cos θ<0,当θ∈⎝⎛⎭⎫π,3π2时,tan θ>0,sin θ<0,故输出的结果是sin θ时,θ的范围是⎝⎛⎭⎫π2,π,结合几何概型公式得,输出sin θ的概率为π-π232π-0=13,故选A. 4.(2010·曲师大附中)设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则r =2S a +b +c ;类比这个结论可知:四面体S -ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球的半径为r ,四面体S -ABC 的体积为V ,则r =( )A.VS 1+S 2+S 3+S 4 B.2VS 1+S 2+S 3+S 4 C.3VS 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S 4 [答案] C[解析] 设三棱锥的内切球球心为O ,那么由V S -ABC =V O -ABC +V O -SAB +V O -SAC +V O -SBC ,即V =13S 1r +13S 2r +13S 3r +13S 4r ,可得r =3V S 1+S 2+S 3+S 4.5.(2010·辽宁锦州)类比“两角和与差的正余弦公式”的形式,对于给定的两个函数,S (x )=a x -a -x 2,C (x )=a x +a -x2,其中a >0,且a ≠1,下面正确的运算公式是( )①S (x +y )=S (x )C (y )+C (x )S (y ); ②S (x -y )=S (x )C (y )-C (x )S (y ); ③C (x +y )=C (x )C (y )-S (x )S (y ); ④C (x -y )=C (x )C (y )+S (x )S (y ). A .①③B.②④C.①④D.①②③④[答案] D[解析]实际代入逐个验证即可.如S(x)C(y)+C(x)S(y)=a x-a-x2·a y+a-y2+a x+a-x2·a y-a-y2=14(ax+y-a y-x+a x-y-a-x-y+a x+y+a y-x-a x-y-a-x-y)=14(2ax+y-2a-x-y)=a x+y-a-(x+y)2=S(x+y),故①成立.同理可验证②③④均成立.6.四个小动物换座位,开始是鼠、猴、兔、猫分别坐在1、2、3、4号位子上如图所示,第一次前后排动物互换座位,第二次左右列动物互换座位,…,这样交替进行下去,那么第2011次互换座位后,小兔的座位对应的是()第一次第二次第三次第四次A.编号1 B.编号2 C.编号3 D.编号4[答案] D[解析]根据动物换座位的规则,可得第四次、第五次、第六次、第七次换座后的结果如下图所示:第一次 第二次 第三次 第四次据此可以归纳得到:四个小动物在换座后,每经过四次换座后与原来的座位一样,即以4为周期,因此在第2011次换座后,四个小动物的位置应该是和第3次换座后的位置一样,即小兔的座位号是4,故选D.[点评] 因为问题只求小兔座位号,故可只考虑小兔座位号的变化,用1→2表示小兔从1号位换到2号位,则小兔座位的变化规律是:3→1→2→4→3→1→2→4→3…,显见变化周期为4,又2011=4×502+3,故经过2011次换座后,小兔位于4号座.7.(2010·山东文)观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则f (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x ) [答案] D[解析] 观察所给例子可看出偶函数求导后都变成了奇函数,∴g (-x )=-g (x ),选D. 8.甲、乙两位同学玩游戏,对于给定的实数a 1,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把a 1乘以2后再加上12;如果出现一个正面朝上,一个反面朝上,则把a 1除以2后再加上12,这样就可得到一个新的实数a 2.对实数a 2仍按上述方法进行一次操作,又得到一个新的实数a 3.当a 3>a 1时,甲获胜,否则乙获胜.若甲获胜的概率为34,则a 1的取值范围是( )A .[-12,24]B .(-12,24)C .(-∞,-12)∪(24,+∞)D .(-∞,-12]∪[24,+∞) [答案] D[解析] 因为甲、乙同时各掷一枚均匀的硬币,出现的可能情形有4种:(正,正)、(正,反)、(反,正)、(反,反),所以每次操作后,得到两种新数的概率是一样的.故由题意得即4a 1+36,a 1+18,a 1+36,14a 1+18出现的机会是均等的,由于当a 3>a 1时,甲胜且甲胜的概率为34,故在上面四个表达式中,有3个大于a 1,∵a 1+18>a 1,a 1+36>a 1,故在其余二数中有且仅有一个大于a 1,由4a 1+36>a 1得a 1>-12,由14a 1+18>a 1得,a 1<24,故当-12<a 1<24时,四个数全大于a 1,当a 1≤-12或a 1≥24时,有且仅有3个大于a 1,故选D.9.(2010·广州市)如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n (n ≥2),每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,…,则第7行第4个数(从左往右数)为( )11 12 12 13 16 13 14 112 112 14 15 120 130 120 15 ………………………………A.1140B.1105C.160D.142 [答案] A[解析] 第6行从左到右各数依次为16,130,160,160,130,16,第7行从左到右各数依次为17,142,1105,1140,1105,142,17,故选A. 10.(2010·山东淄博一中)如图,在梯形ABCD 中,AB ∥DC ,AB =a ,CD =b (a >b ).若EF ∥AB ,EF 到CD 与AB 的距离之比为m n ,则可推算出:EF =ma +nb m +n ,试用类比的方法,推想出下述问题的结果.在上面的梯形ABCD 中,延长梯形两腰AD 、BC 相交于O 点,设△OAB 、△OCD 的面积分别为S 1、S 2,EF ∥AB ,且EF 到CD 与AB 的距离之比为m n ,则△OEF 的面积S 0与S 1、S 2的关系是( )A .S 0=mS 1+nS 2m +nB .S 0=nS 1+mS 2m +nC.S 0=m S 1+n S 2m +nD.S 0=n S 1+m S 2m +n[答案] C[解析] 根据面积比等于相似比的平方求解. 二、填空题11.(2010·盐城调研)请阅读下列材料:若两个正实数a 1,a 2满足a 12+a 22=1,那么a 1+a 2≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1,因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.根据上述证明方法,若n 个正实数满足a 12+a 22+…+a n 2=1时,你能得到的结论为________.(不必证明)[答案] a 1+a 2+…+a n ≤n12.(文)如图甲,在△ABC 中,AB ⊥AC ,AD ⊥BC ,D 是垂足,则AB 2=BD ·BC ,该结论称为射影定理.如图乙,在三棱锥A -BCD 中,AD ⊥平面ABC ,AO ⊥平面BCD ,O 为垂足,且O 在△BCD 中,类比射影定理,探究S △ABC 、S △BCO 、S △BCD 之间满足的关系式是________.[答案] S △ABC 2=S △BCO ·S △BCD[解析] 根据类比推理,将线段的长推广为三角形的面积,从而得到答案.(理)(2010·湖南湘潭市)现有一个关于平面图形的命题:如图所示,同一个平面内有两个边长都是a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24,类比到空间,有两个棱长均为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为______.[答案] a 3813.(文)(2010·陕西理)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________________.[答案] 13+23+33+43+53+63=212 [解析] 观察所给等式可以发现: 13+23=32=(1+2)2 13+23+33=62=(1+2+3)2 13+23+33+43=102=(1+2+3+4)2 ……推想:13+23+33+…+n 3=(1+2+3+…+n )2∴第五个等式为:13+23+33+43+53+63=(1+2+…+6)2=212. (理)(2010·广东省佛山顺德区质检)已知一系列函数有如下性质: 函数y =x +1x 在(0,1]上是减函数,在[1,+∞)上是增函数;函数y =x +2x 在(0,2]上是减函数,在[2,+∞)上是增函数;函数y =x +3x 在(0,3]上是减函数,在[3,+∞)上是增函数;…………利用上述所提供的信息解决问题:若函数y =x +3mx (x >0)的值域是[6,+∞),则实数m 的值是________.[答案] 2[解析] 由题目提供信息可知y =x +3mx (x >0)在(0,3m ]上是减函数,在[3m ,+∞)上是增函数,∴当x =3m 时,y min =6,∴m =2.14.(文)(2010·湖南衡阳八中)如图(1)有关系S △P A ′B ′S △P AB=P A ′·PB ′P A ·PB ,则如图(2)有关系V P -A ′B ′C ′V P -ABC=________.[答案]P A ′·PB ′·PC ′P A ·PB ·PC[解析] 根据类比推理,将平面上三角形的结论,推广到空间,即V P -A ′B ′C ′V P -ABC=P A ′·PB ′·PC ′P A ·PB ·PC.简证如下:设B ′、B 到平面P AC 的距离分别为h 、H ,则h H =PB ′PB .又已知S △P A ′C ′S △P AC=P A ′·PC ′P A ·PC ,∴V P -A ′B ′C ′V P -ABC=13S △P A ′C ′·h13S △P AC·H =P A ′·PC ′·PB ′P A ·PC ·PB .(理)(2010·江苏姜堰中学)如图①,数轴上A (x 1)、B (x 2),点P 分AB 成两段长度之比APPB =λ,则点P 的坐标x P =x 1+λx 21+λ成立;如图②,在梯形ABCD 中,EF ∥AD ∥BC ,且AEEB =λ,则EF =AD +λ·BC 1+λ. 根据以上结论作类比推理,如图③,在棱台A 1B 1C 1-ABC 中,平面DEF 与平面ABC 平行,且A 1DDA =λ,△A 1B 1C 1、△DEF 、△ABC 的面积依次是S 1,S ,S 2,则有结论:________________________.[答案]S =S 1+λS 21+λ[解析] 将三棱台补成棱锥P -ABC ,不妨令P A 1=m ,DA =n ,则A 1D =nλ,那么, 由S 1S =m m +nλ,得m =n S 1S -S 1, 又由S S 2=m +nλm +n (λ+1),得m +nλ=n SS 2-S, ∴nλS 1S -S 1+nλ=n SS 2-S,∴S λS -S 1=SS 2-S,由此得S =S 1+λS 21+λ.三、解答题15.(2010·瑞安中学)用分析法...证明:3-2>5- 4. [证明] 证法1:要证3-2>5-4成立, ∵3-2>0,5-4>0,∴只要证(3-2)2>(5-4)2成立. 即证5-26>9-220成立. 即证-26>4-220成立, 只须证6<-2+20成立.∵20-2>0,故只须证6<24-420成立. 即证9>220成立,即证81>80成立.最后一个不等式显然成立,以上步步可逆,故原不等式成立.证法2:要证3-2>5-4成立,只须证3+4>5+2成立,只须证7+212>7+210成立,即证12>10成立,即证12>10成立,最后一个不等式显然成立,故原结论成立.16.(文)设数列{a n }的首项a 1=a ≠14,且a n +1=⎩⎨⎧12a n,n 为偶数a n+14,n 为奇数.记b n =a 2n -1-14,n=1,2,3,….(1)求a 2,a 3;(2)判断{b n }是否为等比数列,并证明你的结论. [解析] (1)a 2=a 1+14=a +14,a 3=12a 2=12a +18.(2)∵a 4=a 3+14=12a +38.∴a 5=12a 4=14a +316. ∴b 1=a 1-14=a -14≠0, b 2=a 3-14=12⎝⎛⎭⎫a -14, b 3=a 5-14=14⎝⎛⎭⎫a -14. 猜想{b n }是公比为12的等比数列. 证明如下:∵b n +1=a 2n +1-14=12a 2n -14=12⎝⎛⎭⎫a 2n -1+14-14 =12⎝⎛⎭⎫a 2n -1-14=12b n (n ∈N *). ∴{b n }是首项为a -14,公比为12的等比数列. (理)(2010·湖南文)给出下面的数表序列:表1 表2 表3 …1 1 3 1 3 54 4 812其中表n (n =1,2,3,…)有n 行,第1行的n 个数是1,3,5,…,2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.(1)写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明);(2)每个数表中最后一行都只有一个数,它们构成数列,1,4,12,…,记此数列为{b n }.求和:b 3b 1b 2+b 4b 2b 3+…+b n +2b n b n +1(n ∈N *). [解析] (1)表4为1 3 5 74 8 1212 2032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n (n ≥3),即表n (n ≥3)各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.简证如下(对考生不作要求)首先,表n (n ≥3)的第1行1,3,5,…,2n -1是等差数列,其平均数为1+3+…+(2n -1)n=n ;其次,若表n 的第k (1≤k ≤n -1)行a 1,a 2,…,a n -k +1是等差数列,则它的第k +1行a 1+a 2,a 2+a 3,…,a n -k +a n -k +1也是等差数列.由等差数列的性质知,表n 的第k 行中的数的平均数与第k +1行中的数的平均数分别是a 1+a n -k +12,a 1+a 2+a n -k +a n -k +12=a 1+a n -k +1.由此可知,表n (n ≥3)各行中的数都成等差数列,且各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.(2)表n 的第1行是1,3,5,…,2n -1,其平均数是1+3+5+…+(2n -1)n=n . 由(1)知,它的各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列(从而它的第k 行中的数的平均数是n ·2k -1),于是,表n 中最后一行的唯一一个数为b n =n ·2n -1.因此b k +2b k b k +1=(k +2)2k +1k ·2k -1·(k +1)·2k =k +2k (k +1)·2k -2=2(k +1)-k k (k +1)·2k -2=1k ·2k -3-1(k +1)·2k -2(k =1,2,3,…,n ) 故b 3b 1b 2+b 4b 2b 3+…+b n +2b n b n +1=⎝⎛⎭⎫11×2-2-12×2-1+⎝⎛⎭⎫12×2-1-13×20+…+⎣⎡⎦⎤1n ×2n -3-1(n +1)×2n -2 =11×2-2-1(n +1)×2n -2=4-1(n +1)×2n -2. 17.(文)已知等比数列{a n }的前n 项和为S n ,若a m ,a m +2,a m +1(m ∈N *)成等差数列,试判断S m ,S m +2,S m +1是否成等差数列,并证明你的结论.[解析] 设等比数列{a n }的首项为a 1,公比为q (a 1≠0,q ≠0),若a m ,a m +2,a m +1成等差数列,则2a m +2=a m +a m +1.∴2a 1q m +1=a 1q m -1+a 1q m .∵a 1≠0,q ≠0,∴2q 2-q -1=0.解得q =1或q =-12. 当q =1时,∵S m =ma 1,S m +1=(m +1)a 1,S m +2=(m +2)a 1,∴2S m +2≠S m +S m +1.∴当q =1时,S m ,S m +2,S m +1不成等差数列.当q =-12时,S m ,S m +2,S m +1成等差数列. 证明如下:证法1:∵(S m +S m +1)-2S m +2=(S m +S m +a m +1)-2(S m +a m +1+a m +2)=-a m +1-2a m +2=-a m +1-2qa m +1=-a m +1-2a m +1⎝⎛⎭⎫-12=0, ∴2S m +2=S m +S m +1.∴当q =-12时,S m ,S m +2,S m +1成等差数列. 证法2:∵2S m +2=2a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m +21+12=43a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m +2, 又S m +S m +1=a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m 1+12+a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m +11+12=23a 1⎣⎡⎦⎤2-⎝⎛⎭⎫-12m -⎝⎛⎭⎫-12m +1 =23a 1⎣⎡⎦⎤2-4⎝⎛⎭⎫-12m +2+2⎝⎛⎭⎫-12m +2 =43a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m +2, ∴2S m +2=S m +S m +1.∴当q =-12时,S m ,S m +2,S m +1成等差数列. (理)已知函数f (x )对任意的实数x 、y 都有f (x +y )=f (x )+f (y )-1,且当x >0时,f (x )>1.(1)求证:函数f (x )在R 上是增函数;(2)若关于x 的不等式f (x 2-ax +5a )<2的解集为{x |-3<x <2},求f (2010)的值;(3)在(2)的条件下,设a n =|f (n )-14|(n ∈N *),若数列{a n }从第k 项开始的连续20项之和等于102,求k 的值.[解析] (1)证明:设x 1>x 2,则x 1-x 2>0,从而f (x 1-x 2)>1,即f (x 1-x 2)-1>0. f (x 1)=f [x 2+(x 1-x 2)]=f (x 2)+f (x 1-x 2)-1>f (x 2),故f (x )在R 上是增函数.(2)设f (b )=2,于是不等式化为f (x 2-ax +5a )<f (b ).则x 2-ax +5a <b ,即x 2-ax +5a -b <0.∵不等式f (x 2-ax +5a )<2的解集为{x |-3<x <2}.∴方程x 2-ax +5a -b =0的两根为-3和2,于是⎩⎪⎨⎪⎧ -3+2=a -3×2=5a -b ,解得⎩⎪⎨⎪⎧a =-1b =1,∴f (1)=2. 在已知等式中令x =n ,y =1得,f (n +1)-f (n )=1.所以{f (n )}是首项为2,公差为1的等差数列.f (n )=2+(n -1)×1=n +1,故f (2010)=2011.(3)a k =|f (k )-14|=|(k +1)-14|=|k -13|.设从第k 项开始的连续20项之和为T k ,则T k =a k +a k +1+…+a k +19.当k ≥13时,a k =|k -13|=k -13,T k ≥T 13=0+1+2+3+…+19=190>102.当k <13时,a k =|k -13|=13-k .T k =(13-k )+(12-k )+…+1+0+1+…+(k +6)=k 2-7k +112.令k 2-7k +112=102,解得k =2或k =5.[点评] 当k ≥13时,a k =|k -13|=k -13,令T k =20(k -13)+20×192×1=102,无正整数解,故k ≥13时,T k 不可能取值为102.。

高考数学:专题三 第三讲 推理与证明配套限时规范训练

高考数学:专题三 第三讲 推理与证明配套限时规范训练

第三讲 推理与证明(推荐时间:50分钟)一、选择题1.下列四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为( )A .a n =3n -1B .a n =3nC .a n =3n -2nD .a n =3n -1+2n -32.已知22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式的规律,得到一般性的等式为 ( )A.n n -4+8-n 8-n -4=2 B.n +1n +1-4+n +1+5n +1-4=2 C.n n -4+n +4n +1-4=2 D.n +1n +1-4+n +5n +5-4=2 3. “因为指数函数y =a x是增函数(大前提),而y =⎝⎛⎭⎫13x 是指数函数(小前提),所以函数y =⎝⎛⎭⎫13x 是增函数(结论)”,上面推理的错误在于( )A .大前提错误导致结论错B .小前提错误导致结论错C .推理形式错误导致结论错D .大前提和小前提错误导致结论错4.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”; ④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”;⑥“ac bc =a b ”类比得到“a ·c b ·c =a b ”.以上的式子中,类比得到的结论正确的个数是( )A .1B .2C .3D .45.已知定义在R 上的函数f (x ),g (x )满足f x g x =a x ,且f ′(x )g (x )<f (x )g ′(x ),f 1g 1+f -1g -1=52,若有穷数列⎩⎨⎧⎭⎬⎫f n g n (n ∈N *)的前n 项和等于3132,则n 等于( )A.4 B.5 C.6 D.76.对于不等式n2+n<n+1(n∈N*),某同学应用数学归纳法的证明过程如下:(1)当n=1时,12+1<1+1,不等式成立.(2)假设当n=k(k∈N*)时,不等式成立,即k2+k<k+1,则当n=k+1时,k+12+k+1=k2+3k+2<k2+3k+2+k+2=k+22=(k+1)+1,∴当n=k+1时,不等式成立.则上述证法( ) A.过程全部正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确7.已知a>b>0,且ab=1,若0<c<1,p=log a2+b22,q=log c(1a+b)2,则p,q的大小关系是( ) A.p>q B.p<qC.p=q D.p≥q8.已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且对任意m,n∈N*都有:①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1).给出以下三个结论:(1)f(1,5)=9;(2)f(5,1)=16;(3)f(5,6)=26.其中正确结论的个数为( ) A.3 B.2 C.1 D.0二、填空题9.已知数列{a n},a i∈{-1,0,1} (i=1,2,3,…,2 011),若a1+a2+…+a2 011=11,且(a1+1)2+(a2+1)2+…+(a2 011+1)2=2 088,则a1,a2,…,a2 011中是1的个数为________.10.给出下列不等式:1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,1+12+13+…+1 31>52,…,则按此规律可猜想第n个不等式为____________________________________.11.用数学归纳法证明-1+3-5+…+(-1)n(2n-1)=(-1)n n,当n=1时,左边应为________.12.在平面几何中,△ABC的内角平分线CE分AB所成线段的比AEEB=ACBC,把这个结论类比到空间:在三棱锥A—BCD中(如图所示),面DEC平分二面角A—CD—B且与AB相交于E,则得到的类比的结论是____________.三、解答题13.若数列{a n }的前n 项和S n 是(1+x )n 二项展开式中各项系数的和(n =1,2,3,…).(1)求{a n }的通项公式;(2)若数列{b n }满足b 1=-1,b n +1=b n +(2n -1),且c n =a n ·b nn{c n }的通项及其前n 项和T n ;(3)求证:T n ·T n +2<T n +12.14.(2012·大纲全国)函数f (x )=x 2-2x -3.定义数列{x n }如下:x 1=2,x n +1是过两点P (4,5)、Q n (x n ,f (x n ))的直线PQ n 与x 轴交点的横坐标.(1)证明:2≤x n <x n +1<3; (2)求数列{x n }的通项公式.答案1.A 2.A 3.A 4.B 5.B 6.D 7.B 8.A 9.3310.1+12+13+…+12n +1-1>n +1211.-1 12.AE EB =S △ACD S △BCD13.(1)解 由题意S n =2n,S n -1=2n -1(n ≥2),两式相减得a n =2n -2n -1=2n -1(n ≥2). 当n =1时,21-1=1≠S 1=a 1=2,∴a n =⎩⎪⎨⎪⎧2 n =12n -1n ≥2.(2)解 ∵b n +1=b n +(2n -1),∴b 2-b 1=1,b 3-b 2=3,b 4-b 3=5,…,b n -b n -1=2n -3.以上各式相加得b n -b 1=1+3+5+…+(2n -3) =n -11+2n -32=(n -1)2.∵b 1=-1,∴b n =n 2-2n .c n =⎩⎪⎨⎪⎧-2, n =1n -2×2n -1, n ≥2.∴T n =-2+0×21+1×22+2×23+…+(n -2)×2n -1,① ∴2T n =-4+0×22+1×23+2×24+…+(n -2)×2n .② ①-②得,-T n =2+22+23+…+2n -1-(n -2)×2n . =21-2n -11-2-(n -2)×2n =2n -2-(n -2)×2n=-2-(n -3)×2n. ∴T n =2+(n -3)×2n .(3)证明 T n ·T n +2-T n +12=[2+(n -3)×2n ]·[2+(n -1)×2n +2]-[2+(n -2)×2n +1]2 =4+2·(n -1)·2n +2+2×(n -3)×2n +(n -3)·(n -1)×22n +2-[4+4×(n -2)×2n +1+(n -2)2×22n +2]=2n +3+(n -3)×2n +1-22n +2 =2n +1·[(n +1)-2n +1].∵2n +1>0,∴需证明n +1<2n +1,用数学归纳法证明如下: ①当n =1时,1+1<21+1成立. ②假设n =k 时,命题成立即k +1<2k +1,那么,当n =k +1时,(k +1)+1<2k +1+1<2k +1+2k +1=2·2k +1=2(k +1)+1成立.由①、②可得,对于n ∈N *都有n +1<2n +1成立. ∴2n +1·[(n +1)-2n +1]<0.∴T n ·T n +2<T n +12. 14.(1)证明 用数学归纳法证明:2≤x n <x n +1<3.①当n =1时,x 1=2,直线PQ 1的方程为y -5=f 2-52-4(x -4),令y =0,解得x 2=114,所以2≤x 1<x 2<3.②假设当n =k (k ∈N *时,结论成立,即2≤x k <x k +1<3.直线PQ k +1的方程为y -5=f x k +1-5x k +1-4(x -4),令y =0,解得x k +2=3+4x k +12+x k +1.由归纳假设知x k +2=3+4x k +12+x k +1=4-52+x k +1<4-52+3=3;x k +2-x k +1=3-x k +11+x k +12+x k +1>0,即x k +1<x k +2.所以2≤x k +1<x k +2<3,即当n =k +1时,结论成立. 由①②知对任意的正整数n,2≤x n <x n +1<3.(2)解 由(1)及题意得x n +1=3+4x n2+x n.设b n =x n -3,则1b n +1=5b n +1,1b n +1+14=5⎝⎛⎭⎫1b n +14, 数列⎩⎨⎧⎭⎬⎫1b n +14是首项为-34,公比为5的等比数列.因此1b n +14=-34·5n -1,即b n =-43·5n -1+1,所以数列{x n }的通项公式为x n =3-43·5n -1+1.。

高考数学二轮复习:专题检测3 数列、推理与证明

高考数学二轮复习:专题检测3 数列、推理与证明

专题检测(三) 数列、推理与证明(本卷满分150分,考试用时120分钟)一、选择题(本大题共12小题,每小题5分,共计60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是A .15B .30C .31D .64解析 由等差数列的性质得a 7+a 9=a 4+a 12, 因为a 7+a 9=16,a 4=1, 所以a 12=15.故选A. 答案 A2.在数列{a n }中,a 1=-2,a n +1=1+a n1-a n,则a 2 010等于A .-2B .-13C .-12D .3解析 由条件可得:a 1=-2,a 2=-13,a 3=-12,a 4=3,a 5=-2,a 6=-13,…,所以数列{a n }是以4为周期的周期数列,所以a 2 010=a 2=-13.故选B.答案 B3.等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是A .5B .6C .7D .8解析 由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质 ,可得a 7+a 8=0,根据首项等于13可推知这个数列递减,从而得到a 7>0,a 8<0,故n =7时S n 最大.故选C.答案 C4.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于A.310 B.13 C.18D.19解析 由等差数列的求和公式,可得S 3S 6=3a 1+3d 6a 1+15d =13,可得a 1=2d 且d ≠0,所以S 6S 12=6a 1+15d 12a 1+66d =27d 90d =310,故选A.答案 A5.已知等比数列{a n }的前n 项和S n =t ·5n -2-15,则实数t 的值为A .4B .5 C. 45D. 15解析 ∵a 1=S 1=15t -15,a 2=S 2-S 1=45t ,a 3=S 3-S 2=4t ,由{a n }是等比数列,知⎝⎛⎭⎫45t 2=⎝⎛⎭⎫15t -15×4t , 显然t ≠0,解得t =5. 答案 B 6.观察下图:1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10 …………则第( )行的各数之和等于2 0092. A. 2 010B .2 009C .1 006D .1 005解析 由题设图知,第一行各数和为1; 第二行各数和为9=32; 第三行各数和为25=52; 第四行各数和为49=72;…, ∴第n 行各数和为(2n -1)2, 令2n -1=2 009,解得n =1 005. 答案 D7.已知正项等比数列{a n },a 1=2,又b n =log 2a n ,且数列{b n }的前7项和T 7最大,T 7≠T 6,且T 7≠T 8,则数列{a n }的公比q 的取值范围是A .172<q <162B .162-<q <172-C .q <162-或q >172-D .q >162或q <172解析 ∵b n =log 2a n ,而{a n }是以a 1=2为首项,q 为公比的等比数列, ∴b n =log 2a n =log 2a 1q n -1=1+(n -1)log 2q .∴b n +1-b n =log 2q .∴{b n }是等差数列, 由于前7项之和T 7最大,且T 7≠T 6,所以有⎩⎪⎨⎪⎧1+6log 2q >0,1+7log 2q <0,解得-16<log 2q <-17,即162-<q <172-.故选B.答案 B8.已知数列A :a 1,a 2,…,a n (0≤a 1<a 2<…<a n ,n ≥3)具有性质P :对任意i ,j (1≤i ≤j ≤n ),a j +a i 与a j -a i 两数中至少有一个是该数列中的一项.现给出以下四个命题:①数列0,1,3具有性质P ; ②数列0,2,4,6具有性质P ; ③若数列A 具有性质P ,则a 1=0;④若数列a 1,a 2,a 3(0≤a 1<a 2<a 3)具有性质P ,则a 1+a 3=2a 2. 其中真命题有 A .4个 B .3个 C .2个D .1个解析 3-1,3+1都不在数列0,1,3中,所以①错; 因为数列1,4,5具有性质P , 但1+5≠2×4,即a 1+a 3≠2a 2, 且a 1=1≠0,所以③④错;数列0,2,4,6中a j -a i (1≤i ≤j ≤4)在此数列, 所以②正确,所以选D. 答案 D9.设函数f (x )=x m +ax 的导函数为f ′(x )=2x +2.则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N +)的前n 项和是A.n +12(n +2)B.n +1n +2C.n (3n +5)4(n +1)(n +2)D.3n +44(n +1)解析 依题意得f ′(x )=mx m -1+a =2x +2, 则m =a =2,f (x )=x 2+2x , 1f (n )=1n 2+2n =12⎝⎛⎭⎫1n -1n +2,数列⎩⎨⎧⎭⎬⎫1f (n )的前n 项和等于12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+…+⎝⎛⎭⎫1n -1n +2 =12⎣⎡⎦⎤⎝⎛⎭⎫1+12+…+1n -⎝⎛⎭⎫13+14+…+1n +2 =12⎝⎛⎭⎫1+12-1n +1-1n +2=n (3n +5)4(n +1)(n +2),选C. 答案 C10.等差数列{a n }的前16项和为640,前16项中偶数项和与奇数项和之比为22∶18,则公差d ,a 9a 8的值分别是A .8,109B .9,109C .9,119D .8,119解析 设S 奇=a 1+a 3+…+a 15, S 偶=a 2+a 4+…+a 16,则有S 偶-S 奇=(a 2-a 1)+(a 4-a 3)+…+(a 16-a 15)=8d , S 偶S 奇=8(a 2+a 16)28(a 1+a 15)2=a 9a 8. 由⎩⎪⎨⎪⎧S 奇+S 偶=640,S 奇∶S 偶=18∶22,解得S 奇=288,S 偶=352. 因此d =S 偶-S 奇8=648=8,a 9a 8=S 偶S 奇=119.故选D. 答案 D11.数列{a n }满足a 1=32,a n +1=a 2n -a n +1(n ∈N +),则m =1a 1+1a 2+1a 3+…+1a 2 009的整数部分是A .3B .2C .1D .0解析 依题意,得a 1=32,a 2=74,a 3=3716>2,a n +1-a n =(a n -1)2>0,数列{a n }是递增数列,∴a 2 010>a 3>2,∴a 2 010-1>1,∴1<2-1a 2 010-1<2.由a n +1=a 2n -a n +1得1a n =1a n -1-1a n +1-1, 故1a 1+1a 2+…+1a 2 009=⎝⎛⎭⎫1a 1-1-1a 2-1+⎝⎛⎭⎫1a 2-1-1a 3-1+…+⎝⎛⎭⎫1a 2 009-1-1a 2 010-1 =1a 1-1-1a 2 010-1=2-1a 2 010-1∈(1,2),因此选C. 答案 C12.已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是A .(-∞,-1]B .(-∞,-1)∪(1,+∞)C .[3,+∞)D .(-∞,-1]∪[3,+∞)解析 ∵等比数列{a n }中,a 2=1, ∴S 3=a 1+a 2+a 3=a 2⎝⎛⎭⎫1q +1+q =1+q +1q . 当公比q >0时,S 3=1+q +1q ≥1+2q ·1q=3, 当公比q <0时,S 3=1-⎝⎛⎭⎫-q -1q ≤1-2(-q )·⎝⎛⎭⎫-1q =-1, ∴S 3∈(-∞,-1]∪[3,+∞). 答案 D二、填空题(本大题共4小题,每小题4分,共计16分.把答案填在题中的横线上) 13.观察下列等式:可以推测:13+23+33+…+n 3=________(n ∈N +,用含有n 的代数式表示). 解析 第二列等式右端分别是1×1,3×3,6×6,10×10,15×15,与第一列等式右端比较即可得,13+23+33+…+n 3=(1+2+3+…+n )2=14n 2(n +1)2.故填14n 2(n +1)2.答案 14n 2(n +1)214.已知{a n }是递增等比数列,a 2=2,a 4-a 3=4,则此数列的公比q =________.解析 由a 2=2,a 4-a 3=4得方程组⎩⎪⎨⎪⎧a 2=2,a 2q 2-a 2q =4⇒q 2-q -2=0,解得q =2或q =-1.又{a n }是递增等比数列,故q =2. 答案 215.在公差为d (d ≠0)的等差数列{a n }中,若S n 是数列{a n }的前n 项和,则数列S 20-S 10,S 30-S 20,S 40-S 30也成等差数列,且公差为100d .类比上述结论,相应地在公比为q (q ≠1)的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有________.答案T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为q 100 16.经计算发现下列正确不等式:2+18<210,4.5+15.5<210,3+2+17-2<210,…,根据以上不等式的规律,试写出一个对正实数a ,b 成立的条件不等式:________.解析 当a +b =20时,有a +b ≤210,a ,b ∈(0,+∞). 给出的三个式子的右边都是210,左边都是两个根式相加,两个被开方数都是正数且和为20, 又10+10=210,所以根据上述规律可以写出一个对正实数a ,b 成立的条件不等式: 当a +b =20时,有a +b ≤210,a ,b ∈(0,+∞). 答案 当a +b =20时,有a +b ≤210,a ,b ∈(0,+∞)三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)设等差数列{a n }的前n 项和为S n ,公比是正数的等比数列{b n }的前n 项和为T n .已知a 1=1,b 1=3,a 3+b 3=17,T 3-S 3=12,求{a n },{b n }的通项公式.解析 设{a n }的公差为d ,{b n }的公比为q . 由a 3+b 3=17得1+2d +3q 2=17,① 由T 3-S 3=12得q 2+q -d =4.②由①、②及q >0解得q =2,d =2.故所求的通项公式为a n =2n -1,b n =3×2n -1.18.(12分)已知等比数列{a n }的公比q >1,42是a 1和a 4的等比中项,a 2和a 3的等差中项为6,若数列{b n }满足b n =log 2a n (n ∈N +).(1)求数列{a n }的通项公式; (2)求数列{a n b n }的前n 项和S n .解析 (1)因为42是a 1和a 4的等比中项, 所以a 1·a 4=(42)2=32. 从而可知a 2·a 3=32.①因为6是a 2和a 3的等差中项,所以a 2+a 3=12.② 因为q >1,所以a 3>a 2.联立①②,解得⎩⎪⎨⎪⎧a 2=4,a 3=8.所以q =a 3a 2=2,a 1=2.故数列{a n }的通项公式为a n =2n .(2)因为b n =log 2a n (n ∈N +),所以a n b n =n ·2n . 所以S n =1·2+2·22+3·23+…+(n -1)·2n -1+n ·2n .③2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1.④③-④得,-S n =2+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1.所以S n =2-2n +1+n ·2n +1.19.(12分)已知等差数列{a n }满足:a 3=7,a 5+a 7=26.{a n }的前n 项和为S n .(1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N +),求数列{b n }的前n 项和T n .解析 (1)设等差数列{a n }的公差为d , 由于a 3=7,a 5+a 7=26, 所以a 1+2d =7,2a 1+10d =26, 解得a 1=3,d =2.由于a n =a 1+(n -1)d ,S n =n (a 1+a n )2,所以a n =2n +1,S n =n (n +2). (2)因为a n =2n +1,所以a 2n -1=4n (n +1), 因此b n =14n (n +1)=14⎝⎛⎭⎫1n -1n +1.故T n =b 1+b 2+…+b n=14⎝⎛⎭⎫1-12+12-13+…+1n -1n +1 =14⎝⎛⎭⎫1-1n +1=n 4(n +1), 所以数列{b n }的前n 项和T n =n4(n +1).20.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)具有性质:若M ,N 是椭圆上关于原点O 对称的两点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值,试写出双曲线x 2a 2-y 2b 2=1(a >0,b >0)具有类似特性的性质并加以证明.解析 可以通过类比得:若M ,N 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上关于原点O 对称的两点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明 设点M (m ,n ),则N (-m ,-n ), 又设点P 的坐标为P (x ,y ), 则k PM =y -n x -m ,k PN =y +nx +m, 注意到m 2a 2-n 2b2=1,点P (x ,y )在双曲线x 2a 2-y 2b 2=1上,故y 2=b 2⎝⎛⎭⎫x 2a 2-1,n 2=b 2⎝⎛⎭⎫m 2a 2-1, 代入k PM ·k PN =y 2-n 2x 2-m 2可得:k PM ·k PN =b 2a 2(x 2-m 2)x 2-m 2=b 2a 2(常数),即k PM ·k PN 是与点P 的位置无关的定值.21.(12分)某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式;(2)设A n =a 1+a 2+…+a nn ,若A n 大于80万元,则M 继续使用,否则须在第n 年初对M更新.证明:须在第9年初对M 更新.解析 (1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列,a n =120-10(n -1)=130-10n ;当n ≥6时,数列{a n }是以a 6为首项,34为公比的等比数列,又a 6=70,所以a n =70×⎝⎛⎭⎫34n -6.因此,第n 年初,M 的价值a n 的表达式为 a n =⎩⎪⎨⎪⎧130-10n , n ≤6,70×⎝⎛⎭⎫34n -6, n ≥7. (2)证明 设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得 当1≤n ≤6时,S n =120n -5n (n -1),A n =120-5(n -1)=125-5n ; 当n ≥7时,由于S 6=570,故S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×⎣⎡⎦⎤1-⎝⎛⎭⎫34n -6=780-210×⎝⎛⎭⎫34n -6, A n =780-210×⎝⎛⎭⎫34n -6n .易知{A n }是递减数列,又A 8=780-210×⎝⎛⎭⎫3428=824764>80,A 9=780-210×⎝⎛⎭⎫3439=767996<80,所以须在第9年初对M 更新.22.(14分)已知数列{a n }中,a 1=1,a n +1=c -1a n.(1)设c =52,b n =1a n -2,求数列{b n }的通项公式;(2)求使不等式a n <a n +1<3成立的c 的取值范围. 解析 (1)a n +1-2=52-1a n -2=a n -22a n ,1a n +1-2=2a n a n -2=4a n -2+2,即b n +1=4b n +2.b n +1+23=4⎝⎛⎭⎫b n +23, 又a 1=1,故b 1=1a 1-2=-1,所以⎩⎨⎧⎭⎬⎫b n +23是首项为-13,公比为4的等比数列,b n +23=-13×4n -1,b n =-4n -13-23.(2)a 1=1,a 2=c -1,由a 2>a 1得c >2. 用数学归纳法证明:当c >2时,a n <a n +1. (i)当n =1时,a 2=c -1a 1>a 1,命题成立;(ii)假设当n =k (k ≥1,k ∈N +)时,a k <a k +1, 则当n =k +1时,a k +2=c -1a k +1>c -1a k =a k +1.故由(i)(ii)知当c >2时,a n <a n +1. 当c >2时,令α=c +c 2-42,由a n +1a n <a n +1+1a n =c 得a n <α.当2<c ≤103时,a n <α≤3.当c >103时,α>3,且1≤a n <α,于是α-a n +1=1a n α(α-a n )≤13(α-a n ), α-a n +1≤13n (α-1).当n >log 3α-1α-3时,α-a n +1<α-3,a n +1>3.因此c >103不符合要求.所以c 的取值范围是⎝⎛⎦⎤2,103.。

2023届高考复习数学专项(复数及推理与证明)好题练习(附答案)

2023届高考复习数学专项(复数及推理与证明)好题练习(附答案)

2023届高考复习数学专项(复数及推理与证明)好题练习1.若复数:::满足(l�i)z=3+i<其中i是虚数单位),则()A.二的实部是2B.=的虚部是2iC.乞=1-2i2.已知复数z=3-4i, 则下列命题中正确的为()A.l z l= 5B.z=3+4iC. z的虚部为-4iD.z在复平而上对应点在第四象限3.下面四个命题中的真命题为()1A.若复数z满足-ER,则zERB.若复数z满足/ER,则zERC.若复数Z1,Z2满足z亿2ER,则z1=D.若复数zE R,则豆ER Z2D.lzl=✓S4.已知复数二满足i2k+1z=2+i,-(kE z), 则z在复平面内对应的点可能位于()A.第一象限B.第二象限C.第三象限D.第四象限5.设z是复数,则下列命题中的真命题是()A.若z2�o.则z是实数B.若z2<o,则z是虚数C.若z是虚数,则z2�oo.若z是纯虚数,则z2<o6.已知Z1与Z-2是共枙虚数,以下四个命题一定正确的是()2 2A. Z l <i z2B. zi z2=z Z2C.z1+z2E Rz+l.7设复数z满足——=i,则下列说法错误的是()A.z为纯虚数B.z的虚部为一-i2C.在复平而内,z对应的点位千第二象限D.z=-—ZtD .• —ERZ28.某大学进行自主招生测试,盂要对逻辑思维和阅读表达进行能力测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如图所示,下列叙述正确的是( )A .甲同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前B .乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前C .甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前D .甲同学的总成绩排名比丙同学的总成绩排名更靠前 9.在0,0a b >>的条件下,下列四个结论正确的是( ) A .22a b aba b+≥+B .2a b +≤C .22a b a b b a+≤+D .设,,a b c 都是正数,则三个数111,,a b c b c a+++至少有一个不小于2 10.如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论正确的是( )A.2018年3月至2019年3月全国居民消费价格同比均上涨B.2018年3月至2019年3月全国居民消费价格环比有涨有跌C.2019年3月全国居民消费价格同比涨幅最大D.2019年3月全国居民消费价格环比变化最快参考答案1.若复数:::满足(l�i)z=3+i<其中i是虚数单位),则()D.lzl=✓S A. 二的实部是2 B.=的虚部是2i C.乞=1-2i【参考答案】CD3 +i(3 +i)(l +i) 2 + 4i—= = = 1+2i,【答宋解析】z=l—1 2 2即二的实部是1,虚部是2'故A错误,B铅误,又亏=1—2i,121 =✓1三了-= Js'故C,D均正确故选CD2. 已知复数z=3-4i, 则下列命题中正确的为()A.l z l= 5B.z=3+4iC. z的虚部为-4iD. z在复平面上对应点在第四象限【参考答案】ABD【答案解析】:;=3-4i, 则仁l=F五二正=5.故A正确;�=3+4i, 故B正确;二的虚部为4,故C铅误;二在复平面上对应点的坐标为(3,-4), 在第四象限,故D正确.:.命题中正确的个数为3.故选ABD.3.下而四个命题中的真命题为()1A. 若复数z满足-E R,则zE RB.若复数z满足/E R,则zE RC. 若复数Z1,Z2满足z亿2R,则z=22D.若复数zE R,则�E R【参考答案】AD1【答案解析】若复数二满足-E R,则二E R,故命题A为真命题;复数z =i 满足z 2=﹣1∈R ,则z ∉R ,故命题B 为假命题; 若复数z 1=i ,z 2=2i 满足z 1z 2∈R ,但z 1≠,故命题C 为假命题;若复数z ∈R ,则=z ∈R ,故命题D 为真命题. 故选:AD .4.已知复数z 满足212k i z i +=+,()k z ∈,则z 在复平面内对应的点可能位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【参考答案】BD【答案解析】212k i z i +=+ ,212k iz i ++∴=15i i i === ,37i i i ===-当k 为奇数时 ()2122212k i ii i z i i i i i++++∴====-+--⨯ 在复平面上对应的点为()1,2-位于第二象限; 当k 为偶数时 ()2122212k i ii i z i i i i i++++∴====-⨯ 在复平面上对应的点为()1,2-位于第四象限;故复数z 在复平面内对应的点位于第二象限或第四象限. 故选BD5.设z 是复数,则下列命题中的真命题是( ) A .若z 2≥0,则z 是实数 B .若z 2<0,则z 是虚数C .若z 是虚数,则z 2≥0 D .若z 是纯虚数,则z 2<0 【参考答案】ABD【答案解析】设z =a +bi ,a ,b ∈R ,z 2=a 2﹣b 2+2abi , 对于A ,z 2≥0,则b =0,所以z 是实数,真命题;对于B ,z 2<0,则a =0,且b ≠0,⇒z 是虚数;所以B 为真命题; 对于C ,z 是虚数,则b ≠0,所以z 2≥0是假命题.对于D ,z 是纯虚数,则a =0,b ≠0,所以z 2<0是真命题;故选ABD.6.已知z1与z2是共轭虚数,以下四个命题一定正确的是( )A.z12<|z2|2B.z1z2=|z1z2| C.z1+z2∈R D.∈R【参考答案】BC【答案解析】解:z1与z2是共轭虚数,设z1=a+bi,z2=a﹣bi(a,b∈R).z12<|z2|2;=a2﹣b2+2abi,复数不能比较大小,因此A不正确;z1z2=|z1z2|=a2+b2,B正确;z1+z2=2a∈R,C正确;===+i不一定是实数,因此D不一定正确.故选:BC.7.设复数z满足,则下列说法错误的是( )A.z为纯虚数B.z的虚部为C.在复平面内,z对应的点位于第二象限D.|z|=【参考答案】ABC【答案解析】∵z+1=zi,设z=a+bi,则(a+1)+bi=﹣b+ai,∴,解得.∴z=.∴|z|=,复数z的虚部为,8.某大学进行自主招生测试,需要对逻辑思维和阅读表达进行能力测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如图所示,下列叙述正确的是()A .甲同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前B .乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前C .甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前D .甲同学的总成绩排名比丙同学的总成绩排名更靠前 【参考答案】AC【答案解析】根据图示,可得甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前, 他的阅读表达成绩排名靠后.故选AC.9.在0,0a b >>的条件下,下列四个结论正确的是( )A .22a b aba b+≥+ B .2a b +≤C .22a b a b b a +≤+D .设,,a b c 都是正数,则三个数111,,a b c b c a+++至少有一个不小于2 【参考答案】ABD 【答案解析】选项A:222()4()22022()2()220,0a b ab a b ab a b a b ab a b aba b a b a b a b a b a b++--++-==∴-≥∴≥+++>+>+ ,故本选项是正确的;选项B:因为0,0a b >>,22222222()()02244a b a b a b ab a b ++++--=-=≥,所以2a b +≤,因此本选项是正确的; 选项C:222233222()()()()()a b a b ab a b a b a b a b a b b a a b b a ab ab ab +---+-+-+-+===-,因为0,0a b >>,所以22222()()()0a b b a b a a b a b a b b a ab b a+-+-+=-≤⇒+≥+,因此本选项是不正确的;选项D:根据本选项特征,用反证法来解答.假设三个数111,,a b c b c a+++至少有一个不小于2不成立,则三个数111,,a b c b c a+++都小于2,所以这三个数的和小于6,而111111()(()6a b c a b cb c a a b c+++++=+++++≥++=(当且仅当1a b c===时取等号),显然与这三个数的和小于6矛盾,故假设不成立,即三个数111,,a b cb c a+++至少有一个不小于2,故本选项是正确的.故选:ABD10.如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论正确的是()A.2018年3月至2019年3月全国居民消费价格同比均上涨B.2018年3月至2019年3月全国居民消费价格环比有涨有跌C.2019年3月全国居民消费价格同比涨幅最大D.2019年3月全国居民消费价格环比变化最快【参考答案】ABD【答案解析】对于选项A,从图可以看出同比涨跌幅均为正数,故A正确;对于选项B,从图可以看出环比涨跌幅有正数有负数,故B正确;对于选项C,从图可以看出同比涨幅最大的是2018年9月份和2018年10月份,故C错误;对于选项D,从图可以看出2019年3月全国居民消费价格环比变化最快,故D正确.故选ABD.。

高考数学(理)三年真题专题演练—不等式、推理与证明

高考数学(理)三年真题专题演练—不等式、推理与证明
高考数学三年真题专题演练—不等式、推理与证明
1.【2021·浙江高考真题】若实数x,y满足约束条件 ,则 的最小值是()
A. B. C. D.
【答案】B
【分析】
画出满足条件的可行域,目标函数化为 ,求出过可行域点,且斜率为 的直线在 轴上截距的最大值即可.
【详解】
画出满足约束条件 的可行域,
如下图所示:
故选:B
【点睛】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.
4.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为
A. B.
C. D.
下面来说明选项A的正确性:
设集合 ,且 , ,
则 ,且 ,则 ,
同理 , , , , ,
若 ,则 ,则 ,故 即 ,
又 ,故 ,所以 ,
故 ,此时 ,故 ,矛盾,舍.
若 ,则 ,故 即 ,
又 ,故 ,所以 ,
故 ,此时 .
若 ,则 ,故 ,故 ,
即 ,故 ,
此时 即 中有7个元素.
故A正确.
故选:A.
【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.

高考数学真题 推理与证明

高考数学真题 推理与证明

12.2推理与证明考点一合情推理与演绎推理1.(2017课标Ⅱ理,7,5分)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩答案D本题主要考查逻辑推理能力.由题意可知,“甲看乙、丙的成绩,不知道自己的成绩”说明乙、丙两人是一个优秀一个良好,则乙看了丙的成绩,可以知道自己的成绩;丁看了甲的成绩,也可以知道自己的成绩.故选D.2.(2014北京理,8,5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人B.3人C.4人D.5人答案B设学生人数为n,因为成绩评定只有“优秀”“合格”“不合格”三种情况,所以当n≥4时,语文成绩至少有两人相同,若此两人数学成绩也相同,与“任意两人成绩不全相同”矛盾;若此两人数学成绩不同,则此两人有一人比另一人成绩好,也不满足条件.因此:n<4,即n≤3.当n=3时,评定结果分别为“优秀,不合格”“合格,合格”“不合格,优秀”,符合题意,故n=3,选B.3.(2012江西理,6,5分)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,……,则a10+b10=()A.28B.76C.123D.199答案C解法一:由a+b=1,a2+b2=3得ab=-1,代入后三个等式中符合,则a10+b10=(a5+b5)2-2a5b5=123,故选C. 解法二:令a n=a n+b n,则a1=1,a2=3,a3=4,a4=7,……得a n+2=a n+a n+1,从而a6=18,a7=29,a8=47,a9=76,a10=123,故选C.评析本题考查了合情推理和递推数列,考查了推理论证和运算求解能力.4.(2016北京,8,5分)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( ) A.乙盒中黑球不多于丙盒中黑球 B.乙盒中红球与丙盒中黑球一样多 C.乙盒中红球不多于丙盒中红球 D.乙盒中黑球与丙盒中红球一样多答案 B 解法一:假设袋中只有一红一黑两个球,第一次取出后,若将红球放入了甲盒,则乙盒中有一个黑球,丙盒中无球,A 错误;若将黑球放入了甲盒,则乙盒中无球,丙盒中有一个红球,D 错误;同样,假设袋中有两个红球和两个黑球,第一次取出两个红球,则乙盒中有一个红球,第二次必然拿出两个黑球,则丙盒中有一个黑球,此时乙盒中红球多于丙盒中的红球,C 错误.故选B.解法二:设袋中共有2n 个球,最终放入甲盒中k 个红球,放入乙盒中s 个红球.依题意知,甲盒中有(n-k)个黑球,乙盒中共有k 个球,其中红球有s 个,黑球有(k-s)个,丙盒中共有(n-k)个球,其中红球有(n-k-s)个,黑球有(n-k)-(n-k-s)=s 个.所以乙盒中红球与丙盒中黑球一样多.故选B.5.(2017北京文,14,5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (i)男学生人数多于女学生人数; (ii)女学生人数多于教师人数; (iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 ; ②该小组人数的最小值为 . 答案 ①6 ②12解析 设男学生人数为x,女学生人数为y,教师人数为z,由已知得{x >y,y >z,2z >x,且x,y,z 均为正整数.①当z=4时,8>x>y>4,∴x 的最大值为7,y 的最大值为6, 故女学生人数的最大值为6.②x>y>z>x 2,当x=3时,条件不成立,当x=4时,条件不成立,当x=5时,5>y>z>52,此时z=3,y=4. ∴该小组人数的最小值为12.6.(2016山东文,12,5分)观察下列等式: (sin π3)-2+(sin2π3)-2=43×1×2;(sin π5)-2+(sin 2π5)-2+(sin 3π5)-2+(sin 4π5)-2=43×2×3; (sin π7)-2+(sin2π7)-2+(sin 3π7)-2+…+(sin 6π7)-2=43×3×4; (sin π9)-2+(sin 2π9)-2+(sin 3π9)-2+…+(sin 8π9)-2=43×4×5;…… 照此规律,(sin π2n+1)-2+(sin 2π2n+1)-2+(sin 3π2n+1)-2+…+(sin 2nπ2n+1)-2= .答案4n(n+1)3解析 观察前4个等式,由归纳推理可知(sinπ2n+1)-2+(sin 2π2n+1)-2+…+(sin 2nπ2n+1)-2=43×n×(n+1)=4n(n+1)3. 评析 本题主要考查了归纳推理,认真观察题中给出的4个等式即可得出结论.7.(2015福建理,15,4分)一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N *),其中x k (k=1,2,…,n)称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x 1x 2…x 7的码元满足如下校验方程组:{x 4⊕x 5⊕x 6⊕x 7=0,x 2⊕x 3⊕x 6⊕x 7=0,x 1⊕x 3⊕x 5⊕x 7=0,其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于 . 答案 5解析 设a,b,c,d ∈{0,1},在规定运算法则下满足:a ⊕b ⊕c ⊕d=0,可分为下列三类情形:①4个1:1⊕1⊕1⊕1=0,②2个1:1⊕1⊕0⊕0=0,③0个1:0⊕0⊕0⊕0=0,因此,错码1101101通过校验方程组可得: 由x 4⊕x 5⊕x 6⊕x 7=0,∴1⊕1⊕0⊕1≠0; 由x 2⊕x 3⊕x 6⊕x 7=0,∴1⊕0⊕0⊕1=0; 由x 1⊕x 3⊕x 5⊕x 7=0,∴1⊕0⊕1⊕1≠0, ∴错码可能出现在x 5,x 7上,若x 5=0,则检验方程组都成立,故k=5.若x 7=0,此时x 2⊕x 3⊕x 6⊕x 7≠0,故k ≠7. 综上分析,x 5为错码,故k=5.评析 本题主要考查推理,考查学生分析、解决问题的能力,属中等难度题. 8.(2015陕西文,16,5分)观察下列等式 1-12=121-12+13-14=13+14 1-12+13-14+15-16=14+15+16 ……据此规律,第n 个等式可为 . 答案 1-12+13-14+…+12n -1-12n =1n+1+1n+2+ (12)解析 规律为等式左边共有2n 项且等式左边分母分别为1,2,…,2n,分子为1,奇数项为正、偶数项为负,即为1-12+13-14+…+12n -1-12n ;等式右边共有n 项且分母分别为n+1,n+2,...,2n,分子为1,即为1n+1+1n+2+ (12).所以第n 个等式可为1-12+13-14+…+12n -1-12n =1n+1+1n+2+ (12). 9.(2014课标Ⅰ,理14,文14,5分)甲、乙、丙三位同学被问到是否去过A,B,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市.由此可判断乙去过的城市为 . 答案 A解析 由于甲、乙、丙三人去过同一城市,而甲没有去过B 城市,乙没有去过C 城市,因此三人去过的同一城市应为A,而甲去过的城市比乙多,但没去过B 城市,所以甲去过的城市数应为2,乙去过的城市应为A. 10.(2014陕西理,14,5分)观察分析下表中的数据:多面体 面数(F) 顶点数(V)棱数(E) 三棱柱 5 6 9 五棱锥 6 6 10 立方体6812猜想一般凸多面体中F,V,E 所满足的等式是 . 答案 F+V-E=2解析 观察表中数据,并计算F+V 分别为11,12,14,又其对应E 分别为9,10,12,容易观察并猜想F+V-E=2. 11.(2014北京文,14,5分)顾客请一位工艺师把A,B 两件玉石原料各制成一件工艺品.工艺师带一位徒弟完成这项任务.每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客.两件原料每道工序所需时间(单位:工作日)如下:原料时间工序粗加工 精加工 原料A 9 15 原料B621则最短交货期为 个工作日. 答案 42解析 工序流程图如图所示:则最短交货期为6+21+15=42个工作日.12.(2014安徽文,12,5分)如图,在等腰直角三角形ABC 中,斜边BC=2√2.过点A 作BC 的垂线,垂足为A 1;过点A 1作AC 的垂线,垂足为A 2;过点A 2作A 1C 的垂线,垂足为A 3;…,依此类推.设BA=a 1,AA 1=a 2,A 1A 2=a 3,…,A 5A 6=a 7,则a 7= .答案14解析 由BC=2√2得AB=a 1=2⇒AA 1=a 2=√2⇒A 1A 2=a 3=√2×√22=1,由此可归纳出{a n }是以a 1=2为首项,√22为公比的等比数列,因此a 7=a 1×q 6=2×(√22)6=14.13.(2013安徽理,14,5分)如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n+1A n+1的面积均相等.设OA n =a n .若a 1=1,a 2=2,则数列{a n }的通项公式是 .答案 a n =√3n -2解析 记△OA 1B 1的面积为S,则△OA 2B 2的面积为4S. 从而四边形A n B n B n+1A n+1的面积均为3S. 即得△OA n B n 的面积为S+3(n-1)S=(3n-2)S.∴a n 2=3n-2,即a n =√3n -2.评析 △OA n B n 的面积构成一个等差数列,而△OA n B n 与△OA 1B 1的面积比为a n 2,从而得到{a n}的通项公式.本题综合考查了平面几何、数列的知识.考点二 直接证明与间接证明1.(2014山东理,4,5分)用反证法证明命题“设a,b 为实数,则方程x 3+ax+b=0至少有一个实根”时,要做的假设是( )A.方程x 3+ax+b=0没有实根 B.方程x 3+ax+b=0至多有一个实根 C.方程x 3+ax+b=0至多有两个实根 D.方程x 3+ax+b=0恰好有两个实根答案 A 因为“方程x 3+ax+b=0至少有一个实根”等价于“方程x 3+ax+b=0的实根的个数大于或等于1”,因此,要做的假设是方程x 3+ax+b=0没有实根.2.(2015北京理,20,13分)已知数列{a n }满足:a 1∈N *,a 1≤36,且a n+1={2a n ,a n ≤18,2a n -36,a n >18(n=1,2,…).记集合M={a n |n ∈N *}.(1)若a 1=6,写出集合M 的所有元素;(2)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (3)求集合M 的元素个数的最大值. 解析 (1)6,12,24.(2)证明:因为集合M 存在一个元素是3的倍数,所以不妨设a k 是3的倍数. 由a n+1={2a n ,a n ≤18,2a n -36,a n >18可归纳证明对任意n ≥k,a n 是3的倍数.如果k=1,则M 的所有元素都是3的倍数.如果k>1,因为a k =2a k-1或a k =2a k-1-36, 所以2a k-1是3的倍数,于是a k-1是3的倍数. 类似可得,a k-2,…,a 1都是3的倍数.从而对任意n ≥1,a n 是3的倍数,因此M 的所有元素都是3的倍数. 综上,若集合M 存在一个元素是3的倍数,则M 的所有元素都是3的倍数. (3)由a 1≤36,a n ={2a n -1,a n -1≤18,2a n -1-36,a n -1>18可归纳证明a n ≤36(n=2,3,…).因为a 1是正整数,a 2={2a 1,a 1≤18,2a 1-36,a 1>18,所以a 2是2的倍数,从而当n ≥3时,a n 是4的倍数.如果a 1是3的倍数,由(2)知对所有正整数n,a n 是3的倍数, 因此当n ≥3时,a n ∈{12,24,36}, 这时M 的元素个数不超过5.如果a 1不是3的倍数,由(2)知对所有正整数n,a n 不是3的倍数, 因此当n ≥3时,a n ∈{4,8,16,20,28,32}, 这时M 的元素个数不超过8.当a 1=1时,M={1,2,4,8,16,20,28,32}有8个元素. 综上可知,集合M 的元素个数的最大值为8.考点三 数学归纳法1.(2017浙江,22,15分)已知数列{x n }满足:x 1=1,x n =x n+1+ln(1+x n+1)(n ∈N *). 证明:当n ∈N *时,(1)0<x n+1<x n ; (2)2x n+1-x n ≤x n x n+12; (3)12n -1≤x n ≤12n -2.证明 本题主要考查数列的概念、递推关系与单调性基础知识,不等式及其应用,同时考查推理论证能力、分析问题和解决问题的能力. (1)用数学归纳法证明:x n >0. 当n=1时,x 1=1>0.假设n=k 时,x k >0,那么n=k+1时,若x k+1≤0,则0<x k =x k+1+ln(1+x k+1)≤0,矛盾,故x k+1>0. 因此x n >0(n ∈N *).所以x n =x n+1+ln(1+x n+1)>x n+1.因此0<x n+1<x n (n ∈N *).(2)由x n =x n+1+ln(1+x n+1)得,x n x n+1-4x n+1+2x n =x n+12-2x n+1+(x n+1+2)ln(1+x n+1).记函数f(x)=x 2-2x+(x+2)ln(1+x)(x ≥0),f '(x)=2x 2+xx+1+ln(1+x)>0(x>0). 函数f(x)在[0,+∞)上单调递增,所以f(x)≥f(0)=0,因此x n+12-2x n+1+(x n+1+2)ln(1+x n+1)=f(x n+1)≥0,故2x n+1-x n ≤x n x n+12(n ∈N *). (3)因为x n =x n+1+ln(1+x n+1)≤x n+1+x n+1=2x n+1,所以x n ≥12n -1.由x n x n+12≥2x n+1-x n 得1x n+1-12≥2(1x n -12)>0, 所以1x n -12≥2(1x n -1-12)≥…≥2n-1(1x 1-12)=2n-2, 故x n ≤12n -2.综上,12n -1≤x n ≤12n -2(n ∈N*).方法总结 1.证明数列单调性的方法.①差比法:作差a n+1-a n ,然后分解因式,判断符号,或构造函数,利用导数求函数的值域,从而判断其符号. ②商比法:作商a n+1a n ,判断an+1a n与1的大小,同时注意a n 的正负. ③数学归纳法.④反证法:例如求证:n ∈N *,a n+1<a n ,可反设存在k ∈N *,有a k+1≥a k ,从而导出矛盾. 2.证明数列的有界性的方法.①构造法:构造函数,求函数的值域,得数列有界. ②反证法. ③数学归纳法. 3.数列放缩的方法.①裂项法:利用不等式性质,把数列的第k 项分裂成某数列的相邻两项差的形式,再求和,达到放缩的目的. ②累加法:先把a n+1-a n 进行放缩.例:a n+1-a n ≤q n,则有n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)≤a 1+q+q 2+…+q n-1.③累乘法:先把a n+1a n 进行放缩.例:an+1a n≤q(q>0), 则有n ≥2时,a n =a 1·a2a 1·a 3a 2·…·a n a n -1≤a 1q n-1(其中a 1>0).④放缩为等比数列:利用不等式性质,把非等比数列{a n}放缩成等比数列{b n},求和后,再进行适当放缩.2.(2014重庆理,22,12分)设a1=1,a n+1=√a n2-2a n+2+b(n∈N*).(1)若b=1,求a2,a3及数列{a n}的通项公式;(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.解析(1)解法一:a2=2,a3=√2+1.由题设条件知(a n+1-1)2=(a n-1)2+1.从而{(a n-1)2}是首项为0,公差为1的等差数列,故(a n-1)2=n-1,即a n=√n-1+1(n∈N*).解法二:a2=2,a3=√2+1,可写为a1=√1-1+1,a2=√2-1+1,a3=√3-1+1.因此猜想a n=√n-1+1.下用数学归纳法证明上式:当n=1时结论显然成立.假设n=k时结论成立,即a k=√k-1+1,则a k+1=√(a k-1)2+1+1=√(k-1)+1+1=√(k+1)-1+1.这就是说,当n=k+1时结论成立.所以a n=√n-1+1(n∈N*).(2)解法一:设f(x)=√(x-1)2+1-1,则a n+1=f(a n).令c=f(c),即c=√(c-1)2+1-1,解得c=14.下用数学归纳法证明加强命题a2n<c<a2n+1<1.当n=1时,a2=f(1)=0,a3=f(0)=√2-1,所以a2<14<a3<1,结论成立.假设n=k时结论成立,即a2k<c<a2k+1<1.易知f(x)在(-∞,1]上为减函数,从而c=f(c)>f(a2k+1)>f(1)=a2,即1>c>a2k+2>a2.再由f(x)在(-∞,1]上为减函数得c=f(c)<f(a2k+2)<f(a2)=a3<1.故c<a2k+3<1,因此a2(k+1)<c<a2(k+1)+1<1.这就是说,当n=k+1时结论成立.综上,符合条件的c存在,其中一个值为c=14.解法二:设f(x)=√(x -1)2+1-1,则a n+1=f(a n ). 先证:0≤a n ≤1(n ∈N *).①当n=1时,结论明显成立. 假设n=k 时结论成立,即0≤a k ≤1. 易知f(x)在(-∞,1]上为减函数, 从而0=f(1)≤f(a k )≤f(0)=√2-1<1.即0≤a k+1≤1.这就是说,当n=k+1时结论成立.故①成立. 再证:a 2n <a 2n+1(n ∈N *).②当n=1时,a 2=f(1)=0,a 3=f(a 2)=f(0)=√2-1,有a 2<a 3,即n=1时②成立. 假设n=k 时,结论成立,即a 2k <a 2k+1. 由①及f(x)在(-∞,1]上为减函数,得 a 2k+1=f(a 2k )>f(a 2k+1)=a 2k+2, a 2(k+1)=f(a 2k+1)<f(a 2k+2)=a 2(k+1)+1.这就是说,当n=k+1时②成立.所以②对一切n ∈N *成立.由②得a 2n <√a 2n 2-2a 2n +2-1, 即(a 2n +1)2<a 2n 2-2a 2n +2,因此a 2n <14.③又由①、②及f(x)在(-∞,1]上为减函数得f(a 2n )>f(a 2n+1), 即a 2n+1>a 2n+2,所以a 2n+1>√a 2n+12-2a 2n+1+2-1,解得a 2n+1>14.④综上,由②、③、④知存在c=14使a 2n <c<a 2n+1对一切n ∈N *成立.评析 本题考查由递推公式求数列的通项公式,数学归纳法,等差数列等内容.用函数的观点解决数列问题是处理本题的关键.。

高考数学压轴专题(易错题)备战高考《推理与证明》技巧及练习题附答案解析

高考数学压轴专题(易错题)备战高考《推理与证明》技巧及练习题附答案解析

【高中数学】数学《推理与证明》试卷含答案一、选择题1.已知2a b c ++=,则ab bc ca ++的值( )A .大于2B .小于2C .不小于2D .不大于2【答案】B 【解析】 【分析】把已知变形得到a b c +=-,a c b +=-,b c a +=-,把2()ab bc ac ++拆开后提取公因式代入a b c +=-,a c b +=-,b c a +=-,则可判断2()ab bc ac ++的符号,从而得到ab bc ac ++的值的符号. 【详解】解:2a b c ++=Q ,2a b c ∴+=-,2a c b +=-,2b c a +=-.则2()ab bc ac ++222ab ac bc =++ ab ac bc ac ab bc =+++++()()()a b c c b a b a c =+++++ (2)(2)(2)b b a a c c =-+-+- 222222b b a a c c =-+-+-()()2222a b c a b c =-+++++ ()2224a b c =-+++,2a b c ++=Q ,()2220a b c ∴++>,即()2220a b c -++<,2()4ab bc ac ++<Q ,()2ab bc ac ∴++<即ab bc ac ++的值小于2. 故选:B . 【点睛】本题考查不等式的应用,考查了学生的灵活处理问题和解决问题的能力.2.我国南宋数学家杨家辉所著的《详解九章算法》一书中记录了一个由正整数构成的三角形数表,我们通常称之为杨辉三角.以下数表的构造思路就来源于杨辉三角.( )从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数a ,则a 的值为( )A .100820182⨯B .100920182⨯C .100820202⨯D .100920202⨯【答案】C 【解析】 【分析】根据每一行的第一个数的变化规律即可得到结果. 【详解】解:第一行第一个数为:0112=⨯; 第二行第一个数为:1422=⨯; 第三行第一个数为:21232=⨯; 第四行第一个数为:33242=⨯;L L ,第n 行第一个数为:1n 2n n a -=⨯;一共有1010行,∴第1010行仅有一个数:10091008a 1010220202=⨯=⨯; 故选C . 【点睛】本题考查了由数表探究数列规律的问题,考查学生分析解决问题的能力,属于中档题.3.已知点(10,3)P 在椭圆222:199x y C a +=上.若点()00,N x y 在圆222:M x y r +=上,则圆M 过点N 的切线方程为200x x y y r +=.由此类比得椭圆C 在点P 处的切线方程为( )A .13311x y +=B .111099x y += C .11133x y += D .199110x y += 【答案】C【解析】 【分析】先根据点在椭圆上,求得2a ,再类比可得切线方程. 【详解】因为点(10,3)P 在椭圆222:199x y C a +=上,故可得21009199a +=,解得2110a =; 由类比可得椭圆C 在点P 处的切线方程为:103111099x y +=,整理可得11133x y+=. 故选:C. 【点睛】本题考查由椭圆上一点的坐标求椭圆方程,以及类比法的应用,属综合基础题.4.已知函数()f x 的导函数为()f x ',记()()1f x f x '=,()()21f x f x '=,…,()()1n n f x f x +'=(n ∈N *). 若()sin f x x x =,则()()20192021f x f x += ( )A .2cos x -B .2sin x -C .2cos xD .2sin x【答案】D 【解析】 【分析】通过计算()()()()()12345,,,,f x f x f x f x f x ,可得()()()()4342414,,,k k k k f x f x f x f x ---,最后计算可得结果.【详解】由题可知:()sin f x x x =所以()()12sin cos ,2cos sin f x x x x f x x x x =+=-()()343sin cos ,4cos sin f x x x x f x x x x =--=-+()55sin cos ,f x x x x =+⋅⋅⋅所以猜想可知:()()4343sin cos k f x k x x x -=-+()()4242cos sin k f x k x x x -=-- ()()4141sin cos k f x k x x x -=--- ()44cos sin k f x k x x x =-+由201945051,202145063=⨯-=⨯- 所以()20192019sin cos f x x x x =--()20212021sin cos f x x x x =+所以()()201920212sin f x f x x += 故选:D【点睛】本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题.5.观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -= A .()f x B .()f x -C .()g xD .()g x -【答案】D 【解析】由归纳推理可知偶函数的导数是奇函数,因为()f x 是偶函数,则()()g x f x '=是奇函数,所以()()g x g x -=-,应选答案D .6.平面上有n 个圆,其中每两个都相交于两点,每三个都无公共点,它们将平面分成()f n 块区域,有(1)2f =,(2)4f =,(3)8f =,则() f n =( ).A .2nB .22n n -+C .2(1)(2)(3)n n n n ----D .325104n n n -+-【答案】B 【解析】 【分析】分析可得平面内有n 个圆时, 它们将平面分成()f n 块,再添加第1n +个圆时,因为每两个都相交于两点,每三个都无公共点,故会增加2n 个圆.再求和即可. 【详解】由题, 添加第1n +个圆时,因为每两个都相交于两点,每三个都无公共点,故会增加2n 个圆. 又(1)2f =,故()()12f n f n n +-=.即()()()()()()212,32 4...122f f f f f n f n n -=-=--=-. 累加可得()()()21222224 (2222)2n n n n f n n -+-=++++-=-++=.故选:B 【点睛】本题主要考查了根据数列的递推关系求解通项公式的方法,需要画图分析进行理解.或直接计算(4),(5) f f 等利用排除法判断.属于中档题.7.在《中华好诗词大学季》的决赛赛场上,由南京师范大学郦波老师、中南大学杨雨老师、著名历史学者纪连海和知名电视节目主持人赵忠祥四位大学士分别带领的四支大学生团队进行了角逐.将这四支大学生团队分别记作甲、乙、丙、丁,且比赛结果只有一支队伍获得冠军,现有小张、小王、小李、小赵四位同学对这四支参赛团队的获奖结果预测如下:小张说:“甲或乙团队获得冠军”;小王说:“丁团队获得冠军”;小李说“乙、丙两个团队均未获得冠军”;小赵说:“甲团队获得冠军”.若这四位同学中只有两位预测结果是对的,则获得冠军的团队是( ) A .甲 B .乙C .丙D .丁【答案】D 【解析】 【分析】对甲、乙、丙、丁分别获得冠军进行分类讨论,结合四人的说法进行推理,进而可得出结论. 【详解】若甲获得冠军,则小张、小李、小赵的预测都正确,与题意不符; 若乙获得冠军,则小王、小李、小赵的预测不正确,与题意不符; 若丙获得冠军,则四个人的预测都不正确,与题意不符;若丁获得冠军,则小王、小李的预测都正确,小张和小赵预测的都不正确,与题意相符. 故选:D . 【点睛】本题考查合情推理,考查分类讨论思想的应用,属于中等题.8.甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“值”字的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到."已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是( ) A .甲 B .乙C .丙D .丁【答案】A 【解析】 【分析】可采用假设法进行讨论推理,即可得到结论. 【详解】由题意,假设甲:我没有抓到是真的,乙:丙抓到了,则丙:丁抓到了是假的, 丁:我没有抓到就是真的,与他们四人中只有一个人抓到是矛盾的; 假设甲:我没有抓到是假的,那么丁:我没有抓到就是真的, 乙:丙抓到了,丙:丁抓到了是假的,成立, 所以可以断定值班人是甲. 故选:A. 【点睛】本题主要考查了合情推理及其应用,其中解答中合理采用假设法进行讨论推理是解答的关键,着重考查了推理与分析判断能力,属于基础题.9.二维空间中圆的一维测度(周长)2lr π=,二维测度(面积)2S r π=;三维空间中球的二维测度(表面积)24S r π=,三维测度(体积)343V r π=.若四维空间中“超球”的三维测度38V r π=,猜想其四维测度W =( )A .42r πB .43r πC .44r πD .46r π【答案】A 【解析】分析:由题意结合所给的性质进行类比推理即可确定四维测度W .详解:结合所给的测度定义可得:在同维空间中,1n +维测度关于r 求导可得n 维测度, 结合“超球”的三维测度38V r π=,可得其四维测度42W r π=. 本题选择A 选项.点睛:本题主要考查类比推理,导数的简单应用等知识,意在考查学生的转化能力和计算求解能力.10.在等差数列{}n a 中,若0n a >,公差0d ≠,则有4637a a a a >.类比上述性质,在等比数列{}n b 中,若0n b >,公比1q ≠,则关于5b ,7b ,4b ,8b 的一个不等关系正确的是( ) A .5748b b b b > B .7845b b b b > C .5748b b b b +<+ D .7845b b b b ++<【答案】C 【解析】 【分析】类比等差数列{}n a 与等比数列{}n b 各项均为正数,等差数列中的“和”运算类比到等比数列变为“积”运算,即可得到答案. 【详解】在等差数列{}n a 中,由4637+=+时,有4637a a a a >, 类比到等比数列{}n b 中,由5748+=+时,有4857b b b b +>+,因为4334857444444()(1)(1)b b b b b b q b q b q b q b q q +-+=+--=-+-32244(1)(1)(1)(1)0b q q b q q q =--=-++>,所以4857b b b b +>+成立. 故选:C 【点睛】本题主要考查类比推理,同时考查观察、分析、类比能力及推理论证能力,属于中档题.11.用数学归纳法证明“l+2+3+…+n 3=632n n+,n ∈N*”,则当n=k+1时,应当在n=k 时对应的等式左边加上( ) A .k 3+1B .(k 3+1)+(k 3+2)+…+(k+1)3C .(k+1)3D .63(1)(1)2k k +++【答案】B 【解析】分析:当项数从n k =到1n k =+时,等式左边变化的项可利用两个式子相减得到。

高三第一轮复习03----不等式、推理与证明训练题

高三第一轮复习03----不等式、推理与证明训练题

不等式、推理与证明训练题一、选择题:1.若直线bya x +=1与图122=+y x 有公共点,则 (A)122≤+b a (B) 122≥+b a (C)11122≤+ba(D)11122≥+b a 2.若122+x ≤()142x -,则函数2x y =的值域是( )A .1[,2)8B .1[,2]8C .1(,]8-∞ D .[2,)+∞3.已知函数2,0()2,x x f x x x +⎧=⎨-+>≤⎩,则不等式2()f x x ≥的解集是 (A )[1,1]- (B )[2,2]- (C )[2,1]- (D )[1,2]- 4.如果实数,x y 满足221x y +=,则(1)(1)xy xy +-有 ( )A .最小值21和最大值1 B .最大值1和最小值43 C .最小值43而无最大值 D .最大值1而无最小值5.如果221x y +=,则34x y -的最大值是 ( )A .3B .51C .4D .5 6.在十进制中01232004410010010210=⨯+⨯+⨯+⨯,那么在5进制中数码2004折合成十进制为( ) A.29 B. 254 C. 602 D. 2004 7.设集合等于则B A x x B x x A ,31|,21|⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧<=( ) A .⎪⎭⎫⎝⎛2131, B .⎪⎭⎫ ⎝⎛∞+,21C .⎪⎭⎫ ⎝⎛∞+⎪⎭⎫ ⎝⎛-∞-,,3131 D .⎪⎭⎫ ⎝⎛∞+⎪⎭⎫ ⎝⎛-∞-,,21318.下列表述正确的是( )。

①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理。

A .①②③;B .②③④;C .②④⑤;D .①③⑤。

9.黑白两种颜色的正六边形地面砖按如图 的规律拼成若干个图案:则第n 个图案中 有白色地面砖( )块.A.4n+2B.3n+2C.4n+1D.3n+110.关于x 的不等式22155(2)(2)22x x k k k k --+<-+的解集是 ( )A .12x >B .12x < C .2x > D .2x <11.已知函数2(0)y ax bx c a =++≠的图象经过点(1,3)-和(1,1)两点, 若01c <<,则a 的取值范围是 ( )A .(1,3)B .(1,2)C .[)2,3D .[]1,312.若方程05)2(2=++++m x m x 只有正根,则m 的取值范围是( ).A .4-≤m 或4≥mB . 45-≤<-mC .45-≤≤-mD . 25-<<-m 13.不等式112x x ->+的解集是 . 14.不等式22lg lg x x <的解集是 ( )A .1(,1)100 B .(100,)+∞ C .1(,1)100(100,)+∞ D .(0,1)(100,)+∞ 15.若不等式2log 0a x x -<在1(0,)2内恒成立,则a 的取值范围是 ( )A .1116a ≤<B .1116a <<C .1016a <≤D .1016a << 16.若不等式201x ax a ≤-+≤有唯一解,则a 的取值为( ) A .0 B .2 C .4 D .6 17.不等式组131y x y x ≥-⎧⎪⎨≤-+⎪⎩的区域面积是( )A .12 B .32C .52D .1 18.可行域(如图)为四边形ABCD 的内部(包括边界),其中 A (2,1),B (4,1),C (3,3),D (0,3),目标函数y ax z +=取最大值的最优解是无穷多个时,实数a 的值为( ) A. 0 B. 2C. 1或2D. 0或2二、填空题:19.设函数23()lg()4f x x x =--,则()f x 的单调递减区间是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考推理与证明专项训练题1.“对数函数是非奇非偶函数,f(x)=log2|x|是对数函数,因此f(x)=log2|x|是非奇非偶函数”,以上推理()A.结论正确B.大前提错误C.小前提错误D.推理形式错误答案C解析本命题的小前提是f(x)=log2|x|是对数函数,但是这个小前提是错误的,因为f(x)=log2|x|不是对数函数,它是一个复合函数,只有形如y=log a x的函数才是对数函数.故选C.2.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是()A.10日和12日B.2日和7日C.4日和5日D.6日和11日答案D解析这12天的日期之和,S12=12×(12+1)=78,甲、乙、丙2各自的值班日期之和是26,对于甲,剩余2天的值班日期之和是22,因此这两天是10日和12日,故甲在1日,3日,10日,12日值班;对于乙,剩余2天的值班日期之和是9,故乙可能在2日,7日,或者是4日,5日值班,因此丙必定值班的日期是6日和11日.故选D.3.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙答案 A解析 由于三人成绩互不相同且只有一个人预测正确.若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,又假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,不符合题意;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.故选A.4.已知a ,b ,c 是△ABC 的内角A ,B ,C 对应的三边,若满足a 2+b 2=c 2,即⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2=1,则△ABC 为直角三角形,类比此结论可知,若满足a n +b n =c n (n ∈N ,n ≥3),则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .以上都有可能答案 A解析 由题意,知角C 最大,a n +b n =c n (n ∈N ,n ≥3)即⎝ ⎛⎭⎪⎫a c n +⎝ ⎛⎭⎪⎫b c n=1(n ∈N ,n ≥3),又c >a ,c >b ,所以⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2>⎝ ⎛⎭⎪⎫a c n +⎝ ⎛⎭⎪⎫b c n =1,即a 2+b 2>c 2,所以cos C =a 2+b 2-c 22ab >0,所以0<C <π2,故△ABC 为锐角三角形.5.自然界中具有两种稳定状态的组件普遍存在,如开关的开和关、电路的通和断等,非常适合表示计算机中的数,所以现在使用的计算机设计为二进制计算机.二进制以2为基数,只用0和1两个数表示数,逢2进1,二进制数同十进制数遵循一样的运算规则,它们可以相互转化,如(521)10=1×29+0×28+0×27+0×26+0×25+0×24+1×23+0×22+0×21+1×20=(1000001001)2.我国数学史上,对数制研究不乏其人,清代汪莱的《参两算经》是较早系统论述非十进制数的文献,总结出了八进制乘法口决:7×7=61,7×6=52,7×5=43,…,请类比二进制与十进制转化的运算,数(1010011100)2对应八进制数为( )A .(446)8B .(1134)8C .(1234)8D .(4321)8答案C解析数(1010011100)2=1×29+0×28+1×27+0×26+0×25+1×24+1×23+1×22+0×21+0×20=668,A项中,(446)8=4×82+4×81+6×80=294,B项中,(1134)8=1×83+1×82+3×81+4×80=604,C项中,(1234)8=1×83+2×82+3×81+4×80=668,D项中,(4321)8=4×83+3×82+2×81+1×80=2257,故选C.6.有一段“三段论”,推理是这样的:对于可导函数f(x),如果f′(x0)=0,那么x=x0是函数f(x)的极值点.因为f(x)=x3在x=0处的导数值f′(0)=0,所以x=0是函数f(x)=x3的极值点.以上推理中() A.大前提错误B.小前提错误C.推理形式错误D.结论正确答案A解析对于可导函数f(x),如果f′(x0)=0,那么x=x0不一定是函数f(x)的极值点,大前提错误,故选A.7.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是()A.甲B.乙C.丙D.丁答案B解析由题可知,乙、丁两人的观点一致,即同真同假,假设乙、丁说的是真话,那么甲、丙两人说的是假话,由乙说的是真话,推出丙是罪犯,由甲说的是假话,推出乙、丙、丁三人不是罪犯,显然两个结论相互矛盾,所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙供述可得,乙是罪犯.8.观察下列等式:1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第n个等式结果为()A.(2n)2B.(2n+1)2C.(2n-1)2D.(n-1)2答案C解析由题中的数字规律很容易得出第n个等式为n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.9.将自然数0,1,2,…,按照如下形式进行摆列:根据以上规律判定,从2020到2022的箭头方向是( )答案 A解析 从所给的图形中观察得到规律:每隔四个单位,箭头的走向是一样的,比如说,0→1,箭头垂直指下,4→5,箭头也是垂直指下,8→9也是如此,而2020=4×505,所以2020→2021也是箭头垂直指下,之后2021→2022的箭头是水平向右.故选A.10.如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝⎛⎭⎪⎫x 1+x 2+…+x n n .若y =sin x 在区间(0,π)上是凸函数,那么在△ABC 中,sin A +sin B +sin C 的最大值是( )A .332 B .33 C .13 D .23答案 A解析 由题意,知凸函数满足f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝⎛⎭⎪⎫x 1+x 2+…+x n n .因为y =sin x 在区间(0,π)上是凸函数,所以sin A +sin B +sin C ≤3sin A +B +C 3=3sin π3=332.故选A.11.如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作…,根据以上操作,若要得到100个小三角形,则需要操作( )A .31次B .32次C .33次D .34次答案 C解析 由题意可知,第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个,…,由此可得第n 次操作后,三角形共有4+3(n -1)=3n +1个.当3n +1=100时,解得n =33.故共需要操作33次.12.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b+c=0,求证:b2-ac<3a”,“索”的“因”应是() A.a-b>0 B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0答案C解析b2-ac<3a⇔b2-ac<3a2⇔(a+c)2-ac<3a2⇔a2+2ac+c2-ac-3a2<0⇔-2a2+ac+c2<0⇔2a2-ac-c2>0⇔(a-c)(2a+c)>0⇔(a-c)(a-b)>0.13.用反证法证明命题“已知a,b∈N*,如果ab可被5整除,那么a,b中至少有一个能被5整除”时,假设的内容应为() A.a,b都能被5整除B.a,b都不能被5整除C.a,b不都能被5整除D.a不能被5整除答案B解析由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.由题意知其否定是“a,b都不能被5整除”.14.设[x]表示不大于x的最大整数,则对任意实数x,y有() A.[-x]=-[x] B.[2x]=2[x]C.[x+y]≤[x]+[y] D.[x-y]≤[x]-[y]答案D解析 取x =1.6,y =2.7,则[x ]=[1.6]=1,[y ]=[2.7]=2,[-x ]=[-1.6]=-2,故A 错误;[2x ]=[3.2]=3,故B 错误;[x +y ]=[1.6+2.7]=4,故C 错误.故选D.15.若a >0,b >0,a +b =1,则下列不等式不成立的是( )A .a 2+b 2≥12 B .ab ≤14 C .1a +1b ≥4 D .a +b ≤1答案 D解析 a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2·⎝ ⎛⎭⎪⎫a +b 22=12,∴A 成立;ab ≤⎝ ⎛⎭⎪⎫a +b 22=14,∴B 成立.又1a +1b =a +b a +a +b b =2+b a +a b ≥2+2b a ·ab =4,∴C 成立,∴应选D.16.实数a ,b ,c 满足a +b +c =0,abc >0,则1a +1b +1c 的值( )A .一定是正数B .一定是负数C .可能是0D .正、负不确定答案 B解析 由a +b +c =0,abc >0得a ,b ,c 中必有两负一正,不妨设a <0,b <0,c >0,且|a |<c ,则1|a |>1c ,从而-1a >1c ,又1b <0,所以1a +1b +1c <0.17.若a >b >c ,则使1a -b +1b -c ≥ka -c 恒成立的最大的正整数k 为( )A .2B .3C .4D .5答案 C解析 ∵a >b >c ,∴a -b >0,b -c >0,a -c >0,且a -c =a -b +b -c .又a -c a -b +a -c b -c =a -b +b -c a -b +a -b +b -c b -c =2+b -c a -b +a -bb -c ≥2+2=4,k ≤a -c a -b +a -cb -c ,∴k ≤4,故k 的最大整数为4.故选C.18.若△ABC 内切圆半径为r ,三边长为a ,b ,c ,则△ABC 的面积S =12r (a +b +c ),类比空间中,若四面体的内切球的半径为R ,四个面的面积为S 1,S 2,S 3,S 4,则四面体的体积为________.答案 13R (S 1+S 2+S 3+S 4)解析 设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和,即V =13R (S 1+S 2+S 3+S 4).19.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:①男学生人数多于女学生人数;②女学生人数多于教师人数;③教师人数的两倍多于男学生人数.(1)若教师人数为4,则女学生人数的最大值为________;(2)该小组人数的最小值为________.答案(1)6(2)12解析(1)若教师人数为4,则男学生人数小于8,最大值为7,女学生人数最大时应比男学生人数少1人,所以女学生人数的最大值为7-1=6.(2)设男学生人数为x(x∈N+),要求该小组人数的最小值,则女学生人数为x-1,教师人数为x-2.又2(x-2)>x,解得x>4,即x=5,该小组人数的最小值为5+4+3=12.20.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.答案1∶8解析因为两个正三角形是相似的三角形,所以它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方.所以它们的体积比为1∶8.21.下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第n个图形中小正方形的个数是________.答案 n (n +1)2解析 由图知第1个图形的小正方形的个数为1,第2个图形的小正方形的个数为1+2,第3个图形的小正方形的个数为1+2+3,第4个图形的小正方形的个数为1+2+3+4,…,则第n 个图形的小正方形的个数为1+2+3+…+n =n (n +1)2.22.已知2+23=223,3+38=338,4+415=4415,…,若 6+a t =6at (a ,t 均为正实数),类比以上等式,可推测a ,t的值,则a +t =________.答案 41解析 根据题中所列的前几项的规律可知其通项应为n +n n 2-1=n n n 2-1,所以当n =6时,a =6,t =35,a +t =41.。

相关文档
最新文档