17.1-勾股定理-教学设计-教案

合集下载

人教版数学八年级下册17.1《勾股定理》教学设计

人教版数学八年级下册17.1《勾股定理》教学设计

人教版数学八年级下册17.1《勾股定理》教学设计一. 教材分析《勾股定理》是初中数学的重要内容,也是中学数学中最为基本的定理之一。

人教版数学八年级下册17.1节主要介绍了勾股定理的证明和应用。

通过本节课的学习,学生能够理解勾股定理的含义,学会运用勾股定理解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质、三角函数等知识,具备了一定的逻辑思维能力和空间想象能力。

但部分学生对理论证明的过程可能感到困惑,对实际应用的掌握程度也有所不同。

三. 教学目标1.知识与技能:让学生掌握勾股定理的证明和应用,能够运用勾股定理解决实际问题。

2.过程与方法:通过观察、操作、探究、合作等方法,培养学生的逻辑思维能力和空间想象能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

四. 教学重难点1.重难点:勾股定理的证明和应用。

2.难点:对勾股定理证明过程中的一些关键步骤的理解和运用。

五. 教学方法1.情境教学法:通过生活中的实例,激发学生的学习兴趣,引导学生主动探究。

2.问题驱动法:提出问题,引导学生思考,培养学生解决问题的能力。

3.合作学习法:分组讨论,共同完成任务,培养学生的团队合作精神。

4.实践操作法:让学生动手操作,加深对知识的理解和记忆。

六. 教学准备1.教具:多媒体课件、黑板、粉笔、三角板、直尺等。

2.学具:笔记本、文具、三角板、直尺等。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的直角三角形,如篮球架、房屋建筑等,引导学生观察并思考这些三角形中是否存在某种特殊的关系。

2.呈现(15分钟)介绍勾股定理的定义和表述,展示勾股定理的证明过程,如Pythagorean theorem的证明。

引导学生理解并掌握勾股定理。

3.操练(15分钟)分组讨论,每组选取一个实际问题,运用勾股定理进行解答。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)针对学生的解答,进行讲解和点评,强调勾股定理在实际问题中的应用。

人教版数学八年级下册17.1勾股定理教学设计

人教版数学八年级下册17.1勾股定理教学设计
(3)注重评价学生的数学思维能力、团队合作能力和解决问题的能力。
4.教学延伸:
(1)引导学生探索勾股定理在建筑、测量等领域的应用,提高学生的数学应用意识。
(2)鼓励学生开展课后研究,了解勾股定理的历史背景和证明方法,培养学生的数学素养。
(3)组织数学竞赛、讲座等活动,激发学生的学习兴趣,提高他们的数学水平。
4.教师对每个小组的表现进行点评,引导学生深入思考,提高解题能力。
(四)课堂练习
在课堂练习环节,我会设计以下类型的题目:
1.基础题:计算给定直角三角形的斜边长度,巩固勾股定理的运用。
2.提高题:解决实际问题,如测量距离、学生运用勾股定理进行数学探究,提高学生的数学思维能力。
5.结合实际例子,讲解勾股定理在解决实际问题中的应用,提高学生的数学应用意识。
(三)学生小组讨论
在学生小组讨论环节,我将组织学生进行以下活动:
1.分成若干小组,让学生相互讨论勾股定理的理解和应用。
2.每个小组选取一个实际例子,共同探讨如何运用勾股定理解决问题。
3.各小组分享讨论成果,展示解题过程,其他小组给予评价和建议。
3.设计丰富的例题和练习题,让学生在实际操作中运用勾股定理,提高解题能力;
4.引导学生运用数形结合、分类讨论等数学思想,培养解决问题的策略和方法;
5.组织学生进行勾股定理的证明,锻炼学生的逻辑思维和推理能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生主动探索勾股定理的热情;
2.使学生认识到数学与实际生活的紧密联系,增强数学应用意识;
(二)讲授新知
在讲授新知环节,我会按照以下步骤进行:
1.引导学生观察直角三角形的性质,回顾已知的勾三、股四、弦五的特殊直角三角形。

八年级数学下册人教版17.1勾股定理教学设计

八年级数学下册人教版17.1勾股定理教学设计
-让学生尝试运用勾股定理进行几何作图,提高学生的空间想象能力和动手操作能力。
4.小组讨论题:分组讨论课本练习第17.1节的第6题,共同探讨勾股定理在其他数学领域的应用。
-鼓励小组合作,培养学生的团队协作和交流沟通能力。
-引导学生从多角度思考问题,拓宽知识视野,激发学生的创新意识。
5.家庭作业:布置一道综合性的勾股定理题目,要求学生在家庭作业本上完成。
5.能够运用勾股定理及其逆定理解决一些简单的几何作图问题。
(二)过程与方法
1.通过实际操作、观察和思考,提高学生的空间想象能力和逻辑思维能力。
2.学会运用数学语言进行表达和交流,提高学生的数学表达能力和团队协作能力。
3.能够运用勾股定理解决实际问题,培养学生的实际问题解决能力和创新意识。
4.在学习过程中,引导学生总结规律,提高学生的归纳总结能力。
1.注重激发学生的学习兴趣,通过引入生动有趣的实例,使学生感受到勾股定理在实际生活中的重要性。
2.针对不同学生的学习能力,设计梯度性问题和练习,使每个学生都能在原有基础上得到提高。
3.强调几何直观,引导学生通过观察、操作、画图等方式,加深对勾股定理的理解。
4.加强对学生几何逻辑思维能力的培养,引导学生运用勾股定理进行推理和证明。
2.教学方法:独立完成、相互检查、教师辅导。
3.教学过程:
a.教师布置具有梯度性的练习题,涵盖勾股定理的基本应用和拓展应用。
b.学生独立完成练习题,教师巡回指导,解答学生的疑问。
c.学生相互检查练习结果,共同讨论解题思路和方法。
d.教师针对学生的练习情况进行点评,强调解题技巧和注意事项。
(五)总结归纳
-设计综合性题目,让学生自主整合所学知识,形成完整的知识结构。

人教版数学八年级下册17.1《勾股定理》(第1课时)教学设计

人教版数学八年级下册17.1《勾股定理》(第1课时)教学设计

人教版数学八年级下册17.1《勾股定理》(第1课时)教学设计一. 教材分析《勾股定理》是初中数学八年级下册第17.1节的内容,它是数学史上重要的定理之一。

本节内容通过引入直角三角形三边的关系,引导学生探究并证明勾股定理,进而运用该定理解决实际问题。

教材内容安排合理,由浅入深,既注重理论证明,又强调实际应用,有利于培养学生的探究能力和实践能力。

二. 学情分析学生在学习本节内容前,已经掌握了三角形的基本知识,直角三角形的相关概念,以及一些基本的证明方法。

但勾股定理的证明较为复杂,需要学生具有较强的逻辑思维能力和空间想象力。

同时,学生需要通过实例感受勾股定理在实际生活中的应用,提高学习兴趣和积极性。

三. 教学目标1.理解勾股定理的定义和意义,掌握勾股定理的表达式。

2.学会运用勾股定理解决直角三角形相关问题。

3.了解勾股定理在实际生活中的应用,提高学习的实践能力。

4.培养学生的逻辑思维能力,提高学生解决问题的能力。

四. 教学重难点1.重难点:勾股定理的证明和应用。

2.证明过程中涉及到的逻辑推理和空间想象力。

3.将勾股定理应用于解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生探究勾股定理。

2.运用多媒体辅助教学,展示勾股定理的证明过程。

3.采用案例教学法,让学生感受勾股定理在实际生活中的应用。

4.小组讨论,培养学生的团队合作能力。

六. 教学准备1.多媒体教学设备。

2.勾股定理相关教案、PPT、学习资料。

3.直角三角形模型或图片。

4.练习题及答案。

七. 教学过程1.导入(5分钟)通过展示直角三角形模型或图片,引导学生回顾直角三角形的相关知识,为新课的学习做好铺垫。

2.呈现(10分钟)介绍勾股定理的定义和表达式,让学生初步了解勾股定理。

3.操练(15分钟)分组讨论,让学生尝试证明勾股定理。

在讨论过程中,教师巡回指导,解答学生的疑问。

4.巩固(10分钟)针对学生证明过程中的共性问题,进行讲解和总结,让学生掌握勾股定理的证明方法。

人教版八年级数学下册17.1勾股定理优秀教学案例

人教版八年级数学下册17.1勾股定理优秀教学案例
1.导入:以生动有趣的故事引入勾股定理,激发学生的学习兴趣。
2.自主探究:让学生通过观察、实验、推理等方法,发现并证明勾股定理。
3.合作交流:组织学生进行小组讨论,分享学习心得,培养合作精神。
4.巩固练习:设计有针对性的练习题,让学生在实践中掌握勾股定理。
5.课堂讨论:组织学生分享自己的解题心得,丰富数学思维。
3.引导学生认识数学在生活中的应用,提高他们运用数学解决实际问题的能力。
4.培养学生团队协作、沟通交流的能力,增强他们的社会责任感。
三、教学重点与难点
1.教学重点:勾股定理的定义及其证明方法,勾股定理在实际问题中的应用。
2.教学难点:勾股定理的推导过程,运用勾股定理解决复杂直角三角形问题。
四、教学过程
2.生活实例:展示一些生活中常见的直角三角形现象,如建筑物、家具等,让学生感受数学与生活的紧密联系,提高他们运用数学解决实际问题的意识。
3.提问引导:教师提问:“你们知道什么是勾股定理吗?”“勾股定理在我国古代是如何被发现的?”引发学生的思考和讨论。
(二)讲授新知
1.勾股定理的定义:引导学生通过观察、实验、推理等方法,发现并证明勾股定理。例如,可以让学生分组讨论,每组设计一个实验来验证勾股定理。
2.自主探究,培养能力:在讲授新知环节,我引导学生通过观察、实验、推理等方法,自主发现并证明勾股定理。这种自主探究的学习方式,培养了学生的数学思维能力,提高了他们的问题解决能力。
3.小组合作,增强合作精神:在学生小组讨论环节,我将学生分成若干小组,让他们选择一个证明方法进行讨论。这种小组合作的方式,既能够提高学生的团队合作能力,又能够促进学生之间的沟通交流。
1.激发学生兴趣:通过故事、图片等素材,引发学生对勾股定理的好奇心,激发他们学习数学的兴趣。

人教版初中数学八年级下册第十七章勾股定理17.1.1勾股定理(教案)

人教版初中数学八年级下册第十七章勾股定理17.1.1勾股定理(教案)
再者,实践活动中的分组讨论和实验操作,学生们表现得积极主动,课堂氛围很好。但我也发现,有些小组在讨论过程中容易偏离主题,需要我在旁边适时引导,确保讨论内容紧扣勾股定理的应用。此外,在实验操作环节,有些学生对实验步骤不够熟悉,导致操作不够顺畅。我打算在课后整理一份实验操作指南,以方便学生在课余时间进行自主练习。
至于学生小组讨论环节,我发现学生们对于勾股定理在实际生活中的应用有很多自己的想法,这是一个很好的现象。但同时,我也注意到有些学生在讨论中过于依赖别人,缺乏独立思考的能力。针对这一点,我计划在接下来的课程中,多设计一些开放性问题,鼓励学生发表自己的观点,提高他们的独立思考能力。
最后,在总结回顾环节,我觉得学生对勾股定理的基本概念和应用的掌握程度还是不错的。但我也意识到,仅仅依靠课堂上的学习是远远不够的,还需要学生在课后进行巩固。因此,我打算在课后布置一些与勾股定理相关的练习题,让学生在实践中进一步巩固所学知识。
5.培养学生团队合作和交流表达的能力,通过小组讨论、分享证明勾股定理的方法,提升数学交流素养。
三、教学难点与重点
1.教学重点
-勾股定理的概念及其表述:使学生明确勾股定理是直角三角形三条边长度关系的表达,理解其数学表达式a²+b²=c²。
-勾股定理的证明方法:通过拼贴法和代数法,让学生掌握证明勾股定理的过程,理解其逻辑推理。
-勾股数的识别与应用:使学生能够判断并运用勾股数解决实际问题。
-实际问题的解决:培养学生将勾股定理应用于解决生活中的直角三角形问题。
举例:在讲解勾股定理的应用时,重点强调如何将实际问题抽象为直角三角形问题,并运用勾股定理求解。
2.教学难点
-勾股定理的理解:学生可能对a²+b²=c²这一表达式中的平方概念理解不深,需要通过具体实例和图形进行讲解。

17.1勾股定理(1)教学设计2022-2023学年人教版八年级下册数学

17.1勾股定理(1)教学设计2022-2023学年人教版八年级下册数学

17.1 勾股定理(1)教学设计一、教学目标1.了解勾股定理的基本概念和原理;2.掌握勾股定理的运用方法,能够解决与勾股定理相关的问题;3.培养学生分析问题和解决问题的能力。

二、教学内容本节课的教学内容主要包括以下几个方面:1.勾股定理的概念和原理;2.三角形的直角边、斜边和斜角的关系;3.勾股定理的运用方法和例题讲解。

三、教学步骤步骤一:导入1.教师通过提问的方式引出勾股定理的概念,激发学生对于勾股定理的兴趣;2.教师通过举例子的方式,让学生感受一下勾股定理的应用场景。

步骤二:学习与讨论1.教师通过讲解勾股定理的定义和原理,引导学生理解勾股定理的内涵;2.教师通过几何图形和实际问题的分析,让学生看到勾股定理的实际应用;3.学生与教师一起探讨如何应用勾股定理解决问题,并给出解决问题的步骤。

步骤三:例题讲解1.教师选择一些典型的例题进行讲解,通过解题过程演示勾股定理的运用方法;2.教师引导学生分析题目中的信息,确定解题思路,并进行逐步解题。

步骤四:练习与巩固1.学生在教师的指导下,完成相关练习题;2.学生互相交流解题思路,激发学生的合作学习能力和解决问题的能力。

步骤五:归纳总结1.教师引导学生总结勾股定理的运用方法;2.学生以小组为单位,展示他们的解题思路和方法;3.教师进行点评和总结,强调勾股定理的重要性和实际应用。

四、教学评价1.课堂练习的完成情况,包括学生的解题过程和答案的准确性;2.学生课后作业的完成情况,包括书面作业和练习题;3.学生对于勾股定理的理解程度和应用能力的评价。

五、教学反思本节课通过理论讲解和实际问题的应用,帮助学生理解和掌握勾股定理的基本概念和运用方法。

在教学过程中,学生积极参与,课堂气氛活跃。

通过解题讲解和学生的合作学习,提高了学生的解决问题的能力。

但是在练习环节中,部分学生的思维转换还不够灵活,需要加强巩固训练。

教师在今后的教学中将重点培养学生的分析问题和解决问题的能力,多进行案例分析和实践操作,提高学生的学习兴趣和实际应用能力。

人教版八年级下册17.1《勾股定理》第一课时教学设计

人教版八年级下册17.1《勾股定理》第一课时教学设计
6.注重课后反思,让学生在反思中巩固所学知识,发现自己的不足,为下一节课的学习做好准备。
四、教学内容与过程
(一)导入新课
1.教师通过展示一组图片,包括古代建筑、现代桥梁等,引导学生观察这些图形中的直角三角形,并提出问题:“这些图形有什么共同特点?它们在数学中有什么特殊性质?”
2.学生观察后,教师总结直角三角形的定义,并引导学生回顾已知的直角三角形相关知识,为新课的学习做好铺垫。
5.针对教学难点,采取以下措施:
a.对勾股定理的证明过程进行详细讲解,通过画图、举例等方式,让学生在直观感知的基础上,理解证明的严密性。
b.专门安排一节课,让学生列举并分析勾股数的特点,总结规律,以便更好地辨识和应用勾股数。
c.结合实际情境,开展数学建模活动,让学生在小组内共同探讨、解决问题,提高他们的数学建模能力。
5.掌握勾股数的特点,能够辨识和列举出一组勾股数。
(二)过程与方法
在教学过程中,学生将通过以下方式来达成目标:
1.通过观察直角三角形的特性,引导学生发现勾股定理,培养观察力和逻辑思维能力。
2.通过小组合作,探究勾股定理的证明方法,提高合作意识和解决问题的能力。
3.通过数学问题的解答,培养学生将理论知识应用于实际情境的能力。
4.利用数形结合的方法,让学生在直观的图形中理解抽象的数学公式,提高形象思维和抽象思维的能力。
5.通过分析勾股数的特点,让学生总结规律,增强数学归纳和总结的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们探究数学问题的热情。
2.使学生体会到数学知识与现实生活的紧密联系,增强学生的数学应用意识。
人教版八年级下册17.1《勾股定理》第一课时教学设计
一、教学目标
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生:(分割拼图,得到教科书 24 页图 17.1—3 图,构造了以 a、b 为直角边的直角三角 形,令斜边为 c,沿直角三角形的斜边分割从而拼得边长为 c 的正方形,完成拼图.)
师:怎样根据拼图活动的结果证明勾股定理呢?
生:图 1 两个正方形面积为
,图 3 拼成正方形面积为 ,即
师:勾股定理的证明方法据说有 400 多种,有兴趣的同学可以搜集研究一下.
(课件/板书)
勾股定理
如果直角三角形的两直角边分别为 a、b,斜边为 c,那么
.
问题 5 画一个直角三角形

,它的两直角边分别是 AC=3cm,
BC=4cm,量一量它的斜边 师:画一个直角三角形
是多少厘米?算一算,你量的结果对吗?

,它的两直角边分别是 AC=3cm,BC=4cm,
量一量它的斜边 是多少厘米?算一算,你量的结果对吗?(学生动手操作、计算,教
生:两个小正方形的面积之和等于大正方形的面积. 师:为什么? 生:……(通过直接数等腰直角三角形的个数,或者用割补的方法将小正方形 A,B 中的等腰直角三角形补成一个大正方形,得出结论:小正方形 A,B 的面积之和等于大正 方形 C 的面积.) 师:这里每个正方形的面积等于其边长的平方.于是这三个正方形的边长构成的等腰直 角三角形三条边长之间有怎样的特殊关系? 生:等腰直角三角形两条直角边的平方和等于斜边的平方. 师:等腰直角三角形是特殊的直角三角形,接下来探究问题 2. 问题 2 在网格中的一般的直角三角形,以它的三边为边长的三个正方形 A,B,C 的 面积是否也有类似的关系? 师:如图, 以直角三角形的三边为边长作三个正方形 A、B、C,并计算他们的面积. (学生动手计算,教师巡视指导)
2. 教学重点/难点
2.1 教学重点: 探索直角三角形两条直角边的平方和等于斜边的平方的结论,从而发现勾股定理. 2.2 教学难点: 以直角三角形的边为边的正方形面积的计算.
3. 教学用具 4. 标签
教学过程
1 谈话引入
我们知道,研究三角形从它的元素入手,也就是三角形的三条边和三个角。对于等腰 三角形和等边三角形的边,除满足三边关系定理外,它们还分别存在着两边相等和三边相 等的特殊关系。那么对于直角三角形的边,除满足三边关系定理外,它们之间也存在着特 殊的关系,这就是我们这一节要研究的问题:勾股定理.
教学准备
1. 教学目标
1.1 知识与技能: 通过观察、计算、猜想直角三角形两条直角边的平方和等于斜边的平方的结论. 1.2 过程与方法: 1.在充分观察、归纳、猜想、探索直角三角形两条直角边的平方和等于斜边的平方的 过程中,发展合情推理能力,体会数形结合的思想. 2.在探索上述结论的过程中,发展归纳、概括和有条理地表达活动的过程和结论. 1.3 情感态度与价值观: 1.树立积极参与、合作交流的意识. 2.在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气.
师:赵爽根据此图指出:四个全等的直角三角形(朱实)可以如图围成一个大正方形, 仿照课本中赵爽的思路,只剪两刀,将边长为 a、b 的两个连体正方形,拼成一个新的正方 形?
图1
图2
图3
情况 1,在线段 MN 上截取 MP = a,得到 NP = b,从而确定点 P;
情况 2,通过折叠,得到边长为 a - b 的正方形,它实际上是赵爽弦图的黄实,延长小 正方形的一边与线段 MN 相交于点 P.
生:直角三角形两条直角边的平方和等于斜边的平方.
师:接下来我们来看问题 3. 问题 3 以上直角三角形的边长都是具体的数值,一般情况下,如果直角三角形的两直 角边分别为 a,b,斜边长为 c,我们的猜想仍然成立吗? 师:这个结论仍然成立,中国人称它为“勾股定理”,外国人称它为“毕达哥拉斯定理”. 师:我国是最早发现勾股定理的国家之一,据《周髀算经》记载:公元前 1100 年人们 已经知道“勾广三,股修四,径隅五”. 把直角三角形中较短的直角边称为勾,较长的称为股, 斜边称为弦. 将此定理命名为勾股定理. 师:他有非常多证明方法,这里我们依然可以利用刚才的割补法. (课件/板书)
师:谁来说一说? 生:图 1:正方形 A、B、C 的面积分别为 16、9、25;图 2:正方形 A、B、C 的面积 分别为 4、9、13. 师:正方形 C 的面积你是如何计算的? 生:……(通过割、补两种方法求出其面积) (课件/板书)
图 1 SC 图 2 SC 师:这里注意正方形的面积又转化为边长的平方,于是正方形 A,B,C 所围成的直角 三角形三条边之间有怎样的关系?
师个别指导)
生:结果一样.
(课件/板书)
在 Rt△ACB 中,∠C=90°,
AC=3cm, BC=4cm.2+42=25
∴AB=5cm
师:我们可以利用勾股定理解决直角三角形中已知两边求第三边的问题.这是勾股定理 最重要的应用.
3 典例剖析
例 1 如图,在 Rt△ABC 中,∠A=90°,BD 平分∠ABC,交 AC 于点 D,且 AB=4, BD=5,则点 D 到 BC 的距离是多少?
“割”的方法:
,于是
.
“补”的方法:
,于是
.
(课件/板书) 勾股定理 直角三角形两直角边的平方和等于斜边的平方.
师:请大家把这个结论一起来读两遍.(生读)
问题 4 历史上各国对勾股定理都有研究,下面我们看看我国古代的数学家赵爽对勾股 定理的研究,并通过小组合作完成教科书拼图法证明勾股定理.
师:(展示“弦图” ,并介绍)我们刚才用割的方法证明使用的就是这个图形,这个图 案是公元 3 世纪三国时期的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”, 2002 年国际数学家大会在北京召开,其中的会徽就是这个图案.
推进新课
(板书课题:勾股定理)
2 新知探究
问题 1 相传 2500 多年前,古希腊著名的哲学家、数学家、天文学家,毕达哥拉斯有 一次在朋友家作客,发现朋友家用砖铺成的地面图案反映了直角三角形三边的某种数量关 系.观察下面图中的地面,看看你能发现什么?三个正方形 A,B,C 的面积有什么关系?
师:同学们,我们也来是否也和大哲学家有同样的发现呢?观察三个正方形之间的面 积的关系.
相关文档
最新文档