五年级数列与数表

合集下载

数列与数表的规律与应用知识点总结

数列与数表的规律与应用知识点总结

数列与数表的规律与应用知识点总结数列与数表是数学中常见的重要概念,它们有着广泛的应用。

在本文中,我将总结数列与数表的规律以及它们在实际问题中的应用知识点。

一、数列的规律与性质数列是按照一定的顺序排列的一系列数,其中每个数都称为项。

数列可以用函数的形式表达,例如:an = f(n)。

在数列中,常见的规律与性质包括等差数列、等比数列以及递归关系等。

1. 等差数列等差数列是指数列中相邻两项之差都相等的数列。

它的通项公式为an = a1 + (n - 1)d,其中a1是首项,d是公差,n表示项数。

等差数列的性质包括:(1)第n项的求法:an = a1 + (n - 1)d(2)前n项和的求法:Sn = n/2 [2a1 + (n - 1)d](3)任意两项之和等于相应等距离两侧项之和:ak + am = ak+1 + am-1 (k < m)2. 等比数列等比数列是指数列中相邻两项之比都相等的数列。

它的通项公式为an = a1 * r^(n-1),其中a1是首项,r是公比,n表示项数。

等比数列的性质包括:(1)第n项的求法:an = a1 * r^(n-1)(2)前n项和的求法:Sn = a1 * (1 - r^n) / (1 - r),当0 < r < 1 或者r > 1(3)相邻两项之比相等:an/an-1 = r3. 递归关系递归关系是指数列中的每一项都依赖于前一项或多个前一项的关系,而不是通过通项公式直接计算。

递归关系的性质包括:(1)递归关系的转化:将递归关系转化为显式公式,以便求解数列中任意一项的值。

二、数表的规律与性质数表是一个由数字或数据排列形成的表格,在实际问题中经常出现。

它们可以是一维数表、二维数表或更高维度的数表。

1. 一维数表一维数表是指只有一行或一列的数表。

在一维数表中,常规的规律与性质包括:(1)累加:将数表中的数字进行累加,得到一个数值。

(2)平均值:计算数表中的数字的平均值。

五年级数学强化专题专讲-[第41讲]数列与数表综合

五年级数学强化专题专讲-[第41讲]数列与数表综合

数列与数表综合
这样一
串分数:11211232112
, 12223333344,,,,,,,,,,
那么,⑴89
98
是这一串分数中的第几个分数?
⑵第500个分数是几分之几?
昊昊从
1开始写了若干个连续自然数,并对它们列竖式求和。

因为粗心,昊昊把一个数重复加了两次,最后得到的和是2011。

请问:昊昊从1写到哪个数?重复加了哪个数?
如图所示的数表中,从左往右依次看作五列。

a.第99行右边第一个数是;
b.2006出现在第行,第列;
如图,自然数每9个一行地排列。

⑴现在用3×3的小方框围出9个数,然后算出它们的和。

若要使方框内的数总和为720,那么其
中最小的数为;
⑵若用如图所示的“大”字型覆盖出7个数并求和,且和为246,那么最大的数为;(“大”字不
能旋转或翻转)。

五年级奥数之数列与数表(二)

五年级奥数之数列与数表(二)

3. 常见数列 等差数列、斐波那契数列、间隔数列、二级等差数列. 3、4、6、9、13、18、24…… 24 【超常大挑战】(★★★★☆)数表如下,请问: ⑴ 第一行的第 第 行的第100个数是____. ⑵ 自然数207位于数表的第几行第几列? 1 2 4 7 11 …… 3 5 8 12 …… 6 9 13 …… 10 14 …… 15 …… ……
【例5】(★★★★) 如图,把从1开始的自然数排成数阵.试问:能否在数阵中放入一个 3×3的方框.使得它围住的几个数之和等于: ⑴1997;⑵2016;⑶ 2349. 如果可以,请写出方框中最大的数 1 8 15 22 29 2 9 16 23 … 3 10 17 24 … 4 11 18 25 … 5 12 19 26 6 13 20 27 7 14 21 28
基本公式
【讲题心得】 __________________________________________________________________. 【家长评价】 _________________________________________________________________. 2
【例2】(★★★☆)第十一届迎春杯试题 小明进行加法珠算练习,用 1+2+3+4……,当加到某个数时,和是 1000. 在验算时发现重复加了一个数,这个数是 .
【例3】(★★★☆) 1 1 2 1 1 2 3 2 1 1 2 有这样一串分数: , , , , , , , , , , , ⑵第500个分数是几分之几?
【课前小练习】(★) ⑴ 1, 4, 7, 10, 13,____,…… ⑵ 1, 2, 4, 7, 11,____,…… ⑶ 1, 2, 4, 8, 16,____,…… ⑷ 1, 4, 9, 16, 25,____,……

数列与数表的规律总结知识点总结

数列与数表的规律总结知识点总结

数列与数表的规律总结知识点总结数列和数表是数学中常见的概念,在数学的学习中经常会涉及到它们的应用。

数列是一组按照一定规律排列的数的集合,可以是有限的也可以是无限的;而数表是由数列组成的表格形式。

在这篇文章中,我们将总结数列与数表的规律以及相关的知识点。

一、等差数列与等差数表等差数列是一种常见的数列,其中每一项与它前一项的差值都是相等的。

等差数表是由等差数列按一定规律排列而成的表格。

1. 等差数列的通项公式设等差数列的首项为a₁,公差为d,则第n项的表达式为:aₙ = a₁ + (n - 1) × d2. 等差数列的前n项和公式设等差数列的首项为a₁,公差为d,前n项的和为Sₙ,则有:Sₙ = (n/2) × (a₁ + aₙ)3. 等差数表的规律等差数表的每一行都是一个等差数列,而每一列的数之间也存在等差关系。

可以通过观察数表中每一行或每一列的数之间的关系,推导出其等差数列的通项公式和前n项和公式。

二、等比数列与等比数表等比数列是一种常见的数列,其中每一项与它前一项的比值都是相等的。

等比数表则是由等比数列按一定规律排列而成的表格。

1. 等比数列的通项公式设等比数列的首项为a₁,公比为q,则第n项的表达式为:aₙ = a₁ × q^(n - 1)2. 等比数列的前n项和公式设等比数列的首项为a₁,公比为q,前n项的和为Sₙ,则有:Sₙ = a₁ × (q^n - 1) / (q - 1),(q ≠ 1)3. 等比数表的规律等比数表的每一行都是一个等比数列,而每一列的数之间也存在等比关系。

可以通过观察数表中每一行或每一列的数之间的关系,推导出其等比数列的通项公式和前n项和公式。

三、特殊数列与数表除了等差数列和等比数列,数列和数表还存在一些特殊的形式。

1. 斐波那契数列斐波那契数列是一种特殊的数列,其中每一项都是前两项之和。

斐波那契数列的通项公式为:fₙ = fₙ₋₁ + fₙ₋₂,(n ≥ 3)2. 杨辉三角杨辉三角是一种特殊的数表,其中的每个数都是由上面的两个数相加而来。

小学五年级奥数550数列数表(学生版)专项练习题

小学五年级奥数550数列数表(学生版)专项练习题

学科培优数学“数列数表”学生姓名授课日期教师姓名授课时长日常生活中,我们经常接触到许多按一定顺序排列的数,如:自然数:1,2,3,4,5,6,7, (1)年份:1990,1991,1992,1993,1994,1995,1996 (2)某年级各班的学生人数(按班级顺序一、二、三、四、五班排列)45,45,44,46,45 (3)像上面的这些例子,按一定次序排列的一列数就叫做数列.数列中的每一个数都叫做这个数列的项,其中第1个数称为这个数列的第1项,第2个数称为第2项,…,第n个数就称为第n项.如数列(3)中,第1项是45,第2项也是45,第3项是44,第4项是46,第5项45。

根据数列中项的个数分类,我们把项数有限的数列(即有有穷多个项的数列)称为有穷数列,把项数无限的数列(即有无穷多个项的数列)称为无穷数列,上面的几个例子中,(2)(3)是有穷数列,(1)是无穷数列。

一、数列规律等差数列,简单的等比数列,周期规律,递推规律是数列中常见的形式,在小学阶段的奥数题中,比较多的项数进行计算基本都是可以找到相应规律的。

二、数表规律通过观察数表中的已知数据,发现规律并进行补填与计算的问题.这里要注意数表结构的差异,它们通常是按行、按列、沿斜线或螺旋线逐步形成的.涉及小数的,或与其他方面知识相综合的数列问题.三、递推思想奥数学习需要的是思维的积累,其中递推归纳的思想应用十分广泛。

而在数列数表中,递推的规律体现的淋漓尽致,需要学生用心体会。

注意:1.等差数列及相对应的数学解题思想,倒序相加,递推,对应等。

2.数列求和技巧,简单等比数列求和中措项相消得思想。

3.数表中如何发现规律并转化成已知知识。

4.措项相消思想的运用5.数表与计数数论相联系6.分数数列的计算7.数表的求和例题精讲【试题来源】【题目】0,1,2,3,6,7,14,15,30,________,________,________。

上面这个数列是小明按照一定的规律写下来的,他第一次先写出0,1,然后第二次写出2,3,第三次接着写6,7,第四次又接着写14,15,依次类推。

小学五年级数学思维专题训练—数表(含答案解析)

小学五年级数学思维专题训练—数表(含答案解析)

小学五年级数学思维专题训练—数表例1 一列自然数0,1,2,3,…,2005,…,2024,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024. 现在将这列自然数排成以下数表:规定横排为行,竖排为列,则2005在数表中位于第行和第列.例2 伸出你的左手,从大拇指开始如下图所示的那样数数,1,2,3,…,问:数到1991时,你数在哪个手指上?例3 自然数按从小到大的顺序排成下图所示螺旋形,在2处拐第一个弯,在3处拐第二个弯,在5处拐第三个弯,……,问第二十个拐弯的地方是哪一个数?例4将奇数1,3,5,7,9,…,按下图的规律排列,如下表,数19排在第3行第3列,数37排在第5行第4列,那么数2011排在第行第列。

例5 将自然数按如下顺序排列:1 2 6 7 15 16 …3 5 8 14 17 ….4 9 13 …10 12 …11 …在这样的排列下,数字3排在第二行第一列,13排在第三行第三列,问:1993排在第几行第几列?例6 下面是一个由数字组成的三角形,试研究它的组成规律,从而确定其中的x数值.例7 下图是中国古代的“杨辉三角形”,问:写在图中“网点”处所有数的和是多少?例8 根据某种规律列出如下算式:321=+87654+=++1514131211109++=+++ 以上各式的计算结果是3,15,42,… 请求出含有2003的算式的计算结果.例9 25个同样大小的等边三角形拼成了下图的大等边三角形,在图中每个结点处都标上一个数,使得图中每条直线上所标的数都顺次成等差数列.已知在大等边三角形的三个顶点放置的数分别是100,200,300.求所有结点上数的总和.例10 下面是著名德国数学家莱布尼茨给出的三角形:则排在由上而下的第10行中从右边数第三个位置的数是 。

例11 观察下列正方形数表:表1中的各数之和为1,表2中的各数之和为17,表3中的各数之和为65,……,(每个正方形数表比前一个正方形数表多一层方格,增加的一层方格中所填的数比前一数表的最外层方格的数大1).如果表n 中的各数之和等于15505,那么n 等于 。

数列与数表综合

数列与数表综合
数列与数表综合
本讲知识体系 等差数列:一个数列从第二项起,每一项与它 的前一项的差都等于同一个数 等差数列的第n项=首项+(n-1)×公差 等差数列的和=(首项+末项)×项数÷2 第一关:整数数列 第 关:等差数列求和 第二关:等差数列求和 第三关:分数数列 第四关:数表
第1关:整数数列 :
【例1】(★ ★) 有一列数:2,3,6,8,8,…从第三个数起, 每个数都是前两个数乘积的个位数字,那么这 一列数中的第 列数中的第100个数是_____。
【例2】(★★) 有 列数 第 个数是3,第二个数是 有一列数,第一个数是 第 个数是4,从第 从第 三个数开始,每个数都是它前面两个数的和的 个位数 从这列数中取出连续的50个数,并求 个位数。从这列数中取出连续的 个数 并求 出它们的和,所得的和最大是多少?
第2关:等差数列求和
【例3】(★★★) 昊昊从1开始写了若干个连续自然数,并对它们 列竖式求和。因为粗心,昊昊少加了一个数, 最后得到的和是2011。请问:昊昊从1写到哪个 数?少加了哪个数?
第3关:分数数列 第3关: 数数
【例4】(★★★★)
1 1 2 1 1 2 3 2 1 1 2 有这样一串分数: 有 样 串分数 ,,,,,,,,,, , 那么, 1 2 2 2 3 3 3 3 3 4 4 89 ⑴第一次出现的 ⑴第 次出现的 是这 是这一串分数中的第几个分数? 串分数中的第几个分数? 98 ⑵第500个分数是几分之几?
答案 【例1】8 数列问题: 数列问题 所求项数越大,说明规律性越强,具有周期性 数表问题: 根据数表规律解题 要看构成 根据数表规律解题,要看构成 【例2】257 【例3】昊昊写到了63,少加了5 【例4】⑴它是第9498个分数 16 ⑵ 23 【例5】⑴第15行第2列上;

数列数表规律

数列数表规律

数列数表规律知识点精讲等差数列:逐步了解首项、末项、项数、公差与和之间的关系。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

例如:3、6、9……96,这是一个首项为3,末项为96,项数为32,公差为3的等差数列。

1,1分别为第1项、第2项,以后各项都等于前两项之和的无穷数列,就是斐波那契数列。

周期数列与周期:从某一项开始,重复出现同一段数的数列称为周期数列,其重复出现的这一段数的个数则称为此数列的周期。

例如: 8,1,2,3,8,4,5,7,6,3,8,4,5,7,6,3,8,4,5,7,6……这是一个周期数列,周期为6。

寻找数列的规律,通常有以下几种办法:1寻找各项与项数间的关系。

2考虑此项与它前一项之间的关系。

3考虑此项与它前两项之间的关系。

4数列本身要与其他数列对比才能发现其规律,这类情形稍微复杂些。

5有时可以将数列的项恰当分组以寻求规律。

(“分组”是难点)6常常需要根据题中的已知条件求出数列的若干项之后,找到周期,探求规律。

课堂例题与练习练习1)(1+4+7+10+......+100)-(2+5+8+ (98)2)6、10、14、18、……最后一项是86,问数列共有几项?3)1至100之间能被7整除的数之和?4)6、10、14、18、……第40项是几?例题1.下面是两个具有一定的规律的数列,请你按规律补填出空缺的项:(1)1,5,11,19,29,( ),55;(2)1,2,6,16,44,( ),328。

练.1 , 4 , 9 , 16 , ( ) , ( )例题2.添在图中的三个正方形内的数具有相同的规律,请你根据这个规律,确定出A= B = C= ;练.添在图中的三个五边形内的数具有相同的规律,请你根据这个规律,确定出A= B= C= D= ;例题3.在图所示的数表中,第100行左边第一个数是多少?2 3 4 第1行7 6 5 第2行8 9 10 第3行13 12 11 第4行 14 15 16 第5行┆ ┆ ┆ ┆ … … … … ‘9 1 2 3 20 2 3 4 A 3 B C1题练.在下面的数表中2008在第行?第列?第1列第2列第3列第4列第5列2 4 6 第1行14 12 10 8 第2行16 18 20 第3行28 26 24 22 第4行30 32 34 第5行42 40 38 36……………………练.将偶数2、4、6、8、…按右图中格式排列,那么2006出现在表格中第行,第列,那么第2006行第3列的数是;例题4.如图17—3所示的数阵中的数字是按一定规律排列的那么这个数阵中第100行左起第5个数字是多少?1 2 3 4 5 6 78 9 1 0 1 1 12 13 14 1 51 6 1 7 1 8 19 2 0 2 1 2 22 3 2 4 2 5 2………………例题5.1,2,3,2,3,4,3,4,5,4,5,6,…。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档