因式分解方法的拓展
因式分解数学教案优秀5篇

因式分解数学教案优秀5篇更多因式分解数学教案资料,在搜索框搜索因式分解数学教案(篇1)教学目标1.学问与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,把握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探究因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养乐观的进取意识,体会数学学问的内在含义与价值.重、难点与关键:1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法:采用“激趣导学”的教学方法.教学过程:一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探究:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,老师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业。
因式分解数学教案(篇2)【教学目标】1、了解因式分解的概念和意义;2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
因式分解的思维拓展题与解题方法

因式分解的思维拓展题与解题方法因式分解作为数学中的一个重要知识点,不仅在初中阶段频繁出现,也在高中、大学甚至更高级的数学学习中扮演着重要的角色。
因式分解的思维拓展题和解题方法是我们在学习这一知识点时需要重点关注和掌握的内容。
本文将从扩展思维题的角度入手,结合具体的解题方法进行讲解,帮助读者更好地理解和掌握因式分解的相关知识。
思维拓展题一1. 已知多项式$f(x)=x^4-5x^3+8x^2-4x+4$,求$f(x)$的一个因式。
解析:首先我们观察到$f(x)$的常数项为4,根据因式分解的性质可知,如果$f(x)$可以被$x-a$整除,则$a$为$f(x)$的一个因式。
因此,我们可以尝试将$f(x)$化简为$(x-a)g(x)$的形式,其中$g(x)$为另一个多项式。
通过分部展开或者试商法,我们可以求得$f(x)$除以$(x-a)$的商式$g(x)$为$x^3+(a-5)x^2+(5a-8)x+(8a-4)$。
由于$f(x)$除以$(x-a)$的余式为0,所以我们得到方程组:\[\begin{cases}a-5=0,\\5a-8=0,\\8a-4=0。
\end{cases}\]解得$a=5$,因此$x-5$是$f(x)$的一个因式。
思维拓展题二2. 若$f(x)=x^3-3x^2+3x-1$,求$f(x)$的所有因式并分解。
解析:首先我们将$f(x)$每一项的系数逐次相加,得到$1+3+3-1=6$,根据因式分解的性质可知,如果$f(x)$可以被$x-a$整除,则$a$为$f(x)$的一个因式。
所以我们可以得到$f(x)=(x-1)(x^2-2x+1)=(x-1)(x-1)^2=(x-1)^3$,因此$f(x)$的所有因式为$x-1$。
通过因式分解将$f(x)$展开就可以得到对应的结果。
综上所述,因式分解的思维拓展题可以锻炼我们的逻辑思维和代数运算能力,通过化简、分解等方法找到多项式的因式。
同时,在解题过程中需要注意细节和方法的灵活运用,结合已有知识进行求解。
(完整版)因式分解拓展题及解答(必考题型)

因式分解拓展题解板块一:换元法例1分解因式:2222(48)3(48)2x x x x x x ++++++【解析】 将248x x u ++=看成一个字母,可利用十字相乘得原式2232()(2)u xu x u x u x =++=++22(48)(482)x x x x x x =++++++22(58)(68)x x x x =++++2(2)(4)(58)x x x x =++++例2分解因式:22(52)(53)12x x x x ++++-【解析】 方法1:将25x x +看作一个整体,设25x x t +=,则原式=22(2)(3)1256(1)(6)(2)(3)(51)t t t t t t x x x x ++-=+-=-+=+++- 方法2:将252x x ++看作一个整体,设252x x t ++=,则原式=22(1)1212(3)(4)(2)(3)(51)t t t t t t x x x x +-=+-=-+=+++- 方法3:将253x x ++看作一个整体,过程略.如果学生的能力到一定的程度,甚至连换元都不用,直接把25x x +看作一个整体,将原式展开,分组分解即可,则原式22222(5)5(5)6(51)(56)(2)(3)x x x x x x x x x x =+++-=+-++=++2(51)x x +-.【巩固】 分解因式:(1)(3)(5)(7)15x x x x +++++【解析】2(2)(6)(810)x x x x ++++【巩固】 分解因式:22(1)(2)12x x x x ++++-【解析】2(1)(2)(5)x x x x -+++例3证明:四个连续整数的乘积加1是整数的平方.【解析】 设这四个连续整数为:1x +、2x +、3x +、4x +(1)(2)(3)(4)1x x x x +++++[(1)(4)][(2)(3)]1x x x x =+++++22(54)(56)1x x x x =+++++24652u x x +=++ 原式22[(55)1][(55)1]1x x x x =++-++++22(55)11x x =++-+22(55)x x =++【巩固】 若x ,y 是整数,求证:()()()()4234x y x y x y x y y +++++是一个完全平方数.【解析】 ()()()()4234x y x y x y x y y +++++()()()()4423x y x y x y x y y =+++++⎡⎤⎡⎤⎣⎦⎣⎦22224(54)(56)x xy y x xy y y =+++++令2254x xy y u ++=∴上式2422222(2)()(55)u u y y u y x xy y ++=+=++即()()()()4222234(55)x y x y x y x y y x xy y +++++=++例4分解因式2(25)(9)(27)91a a a +---【解析】 原式22[(25)(3)][(3)(27)]91(215)(221)91a a a a a a a a =+-+--=-----设2215a a x --=,原式2(6)91691(13)(7)x x x x x x =--=--=-+22(228)(28)a a a a =----2(4)(27)(28)a a a a =-+--【巩固】 分解因式22(32)(384)90x x x x ++++-【解析】 原式22(1)(2)(21)(23)90(253)(252)90x x x x x x x x =++++-=++++-225y x x =+原式22(3)(2)90584(12)(7)(2512)(27)(1)y y y y y y x x x x =++-=+-=+-=+++-例5分解因式:22224(31)(23)(44)x x x x x x --+--+-【解析】 咋一看,很不好下手,仔细观察发现:222(31)(23)44x x x x x x --++-=+-, 故可设2231,23x x A x x B --=+-=,则244x x A B +-=+.故原式=24()AB A B -+2A =-222()B AB A B -+=--22222(31)(23)(232)x x x x x x ⎡⎤=----+-=--+⎣⎦.【巩固】 分解因式:2(2)(2)(1)a b ab a b ab +-+-+- 【解析】 由于题中以整体形式出现的式子有两个,共4个地方,故采取换元法后会大大简化计算过程,不妨设,a b x ab y +==,【解析】 则原式=222(2)(2)(1)222x y x y x xy y y x --+-=-++-222221()2()1(1)(1)(1)(1)x y x y x y a b ab a b +=---+=--=+--=--例6分解因式:272)3()1(44-+++x x【解析】 设1322x x y x +++==+,则原式=4442(1)(1)2722(61)272y y y y -++-=++- 422222(6135)2(9)(15)2(3)(3)(15)y y y y y y y =+-=-+=+-+22(5)(1)(419)x x x x =+-++ 【巩固】 分解因式:4444(4)a a ++-【解析】 为方便运算,更加对称起见,我们令2x a =-4444(4)a a ++-444(2)(2)4x x =++-+22224(44)(44)4x x x x =+++-++422(2416)256x x =+++422(24144)x x =++222(12)x =+222[(2)12]a =-+222(416)a a =-+ 板块二:因式定理因式定理:如果x a =时,多项式1110...n n n n a x a x a x a --++++的值为0,那么x a -是该多项式的一个因式.有理根:有理根p c q=的分子p 是常数项0a 的因数,分母q 是首项系数n a 的因数. 例7分解因式:32252x x x --- 【巩固】 02a =-的因数是1±,2±,2n a =的因数是1±,2±. 因此,原式的有理根只可能是1±,2±(分母为1),12±. 因为(1)21526f =---=-,(1)21520f -=--+-=, 2323222232125222 35 33 22x x x x x x x x x xx xx --+---+------于是1-是()f x 的一个根,从而1x +是()f x 的因式,这里我们可以利用竖式除法,此时一般将被除式按未知数的降幂排列,没有的补0:可得原式2(232)(1)x x x =--+(2)(21)(1)x x x =-++点评:观察,如果多项式()f x 的奇数次项与偶数次项的系数和互为相反数,则说明(1)0f =;如果多项式的奇数次项与偶数次项的系数和相等,则说明(1)0f -=.【巩固】 分解因式:65432234321x x x x x x ++++++解析:本题有理根只可能为1±.1+当然不可能为根(因为多项式的系数全是正的),经检验1-是根,所以原式有因式1x +,原式5432(1)(221)x x x x x x =++++++容易验证1-也是5432221x x x x x +++++的根,5432221x x x x x +++++42(1)(21)x x x =+++22(1)(1)x x =++,所以65432234321x x x x x x ++++++222(1)(1)x x =++【巩固】 分解因式:322392624x x y xy y -+-解析:322392624x x y xy y -+-(2)(3)(4)x y x y x y =---例8分解因式:32()()x a b c x ab bc ca x abc -+++++-【解析】 常数项abc -的因数为a ±,b ±,c ±,ab ±,bc ±,ca ±,abc ±把x a =代入原式,得32()()a a b c a ab bc ca a abc -+++++-332222a a ba ca a b abc a c abc =---+++-0=所以a 是原式的根,x a -是原式的因式,并且32()()x a b c x ab bc ca x abc -+++++-322()[()()]()x ax b c x a b c x bcx abc =--+-++-2()[()]x a x b c x bc =--++()()().x a x b x c =---【巩固】 分解因式:32()(32)(23)2()l m x l m n x l m n x m n +++-+---+【解析】 如果多项式的系数的和等于0,那么1一定是它的根;如果多项式的偶次项系数的和减去奇次项系数的和等于0,那么1-一定是它的根.现在正是这样:()(32)(23)2()0l n l m n l m n m n -+++-----+=所以1x +是原式的因式,并且32()(32)(23)2()l m x l m n x l m n x m n +++-+---+322[()()][(2)(2)][2()2()]l m x l m x l m n x l m n x m n x m n =+++++-++--+++2(1)[()(2)2()]x l m x l m n x m n =++++--+(1)(2)()x x lx mx m n =+++--板块三:待定系数法如果两个多项式恒等,则左右两边同类项的系数相等.即,如果 12112112101210n n n n n n n n n n n n a x a x a x a x a b x b x b x b x b --------+++++=+++++ 那么n n a b =,11n n a b --=,…,11a b =,00a b =.例9用待定系数法分解因式:51x x ++【解析】 原式的有理根只可能为1±,但是这2个数都不能使原式的值为0,所以原式没有有理根,因而也没有(有理系数的)一次因式.故52321(1)(1)x x x ax x bx cx ++=+++++或52321(1)(1)x x x ax x bx cx ++=+-++-523254321(1)(1)()(1)(1)()1x x x ax x bx cx x a b x ab c x ac b x a c x ++=+++++=+++++++++++故010101a b c ab ac b a c +=⎧⎪++=⎪⎨++=⎪⎪+=⎩,解得110a b c =⎧⎪=-⎨⎪=⎩,所以52321(1)(1)x x x x x x ++=++-+事实上,分解式是惟一的,所以不用再考虑其它情况.【巩固】 421x x -+是否能分解成两个整系数的二次因式的乘积?解析:我们知道42221(1)(1)x x x x x x ++=++-+.421x x -+不能分解成两个整系数的二次因式的乘积.如果421x x -+能够分解,那么一定分解为22(1)(1)x ax x bx ++++或22(1)(1)x ax x bx +-+-比较3x 与2x 的系数可得:021a b ab += ⎧⎨±=-⎩(1)(2) 由(1)得b a =-,代入(2)得221a =±+,即23a =或21a =-,没有整数a 能满足这两个方程.所以,421x x -+不能分解成两个整系数的二次因式的积(从而也不能分解成两个有理系数的二次因式的积).【巩固】 631x x +-能否分解为两个整系数的三次因式的积?解析:设6332321(1)(1)x x x ax bx x cx dx +-=+++++-,比较5x ,3x 及x 的系数,得010a c ad bc b d +=⎧⎪+=+⎨⎪-=⎩由第一个方程与第三个方程可得c a =-,d b =,再把它们代入第二个方程中,得1ab ab -=矛盾!所以,631x x +-不可能分解为两个整系数的三次因式的积.例10分解因式:43223x x x x ++-+【解析】 原式的有理根只可能为1±,3±,但是这四个数都不能使原式的值为0,所以原式没有有理根,因而也没有(有理系数的)一次因式.我们设想43223x x x x ++-+可以分为两个整系数的二次因式的乘积.由于原式是首1的(首项系数为1),两个二次因式也应当是首1的.于是,设43223x x x x ++-+22()()x ax b x cx d =++++ ⑴其中整系数a b c d 、、、有待我们去确定.比较⑴式两边3x ,2x ,x 的系数及常数项,得1213a c b d ac bc ad bd += ⎧⎪++= ⎪⎨+=- ⎪⎪= ⎩ (2)(3)(4)(5)这样的方程组,一般说来是不容易解的.不过,别忘了b d 、是整数!根据这一点,从(5)可以得出13b d =⎧⎨=⎩或13b d =-⎧⎨=-⎩,当然也可能是31b d =⎧⎨=⎩或31b d =-⎧⎨=-⎩ 在这个例子中由于因式的次序无关紧要,我们可以认为只有13b d =⎧⎨=⎩或13b d =-⎧⎨=-⎩这两种情况.将1b =,3d =,代入(4),得31c a +=- ⑹将⑹与⑵相减得22a =-,于是1a =-,再由⑵得2c =这一组数(1a =-,1b =,2c =,3d =)不仅适合⑵、⑷、⑸,而且适合⑶.因此43223x x x x ++-+22(1)(23)x x x x =-+++ ⑺将1b =-,3d =-,代人⑷,得31c a --=- ⑻将⑻与 ⑵相加得20a -=.于是0a =,再由 ⑵得1c =.这一组数(0a =,1b =-,1c =,3d =-),虽然适合⑵、⑷、⑸,却不适合⑶,因而4322223(1)(3)x x x x x x x ++-+=-+-/.事实上,分解式是惟一的,找出一组满足方程组的数,就可以写出分解式⑺,考虑有没有其他的解纯属多余,毫无必要.板块四:轮换式与对称式对称式:x y 、的多项式x y +,xy ,22x y +,33x y +,22x y xy +,…在字母x 与y 互换时,保持不变.这样的多项式称为x y 、的对称式.类似地,关于x y z 、、的多项式x y z ++,222x y z ++,xy yz zx ++,333x y z ++,222222x y x z y z y x z x z y +++++,xyz ,…在字母x y z 、、中任意两字互换时,保持不变.这样的多项式称为x y z 、的对称式.轮换式:关于x y z 、、的多项式x y z ++,222x y z ++,xy yz zx ++,333x y z ++,222x y y z z x ++,222xy yz zx ++,xyz …在将字母x y z 、、轮换(即将x 换成y ,y 换成z ,z 换成x )时,保持不变.这样的多项式称为x y z 、、的轮换式.显然,关于x y z 、、的对称式一定是x y z 、、的轮换式. 但是,关于x y 、,z 的轮换式不一定是对称式.例如,222x y y z z x ++就不是对称式.次数低于3的轮换式同时也是对称式.两个轮换式(对称式)的和、差、积、商(假定被除式能被除式整除)仍然是轮换式(对称式). 例11:分解因式:222()()()x y z y z x z x y -+-+-解析:222()()()x y z y z x z x y -+-+-是关于x y z 、、的轮换式.如果把222()()()x y z y z x z x y -+-+-看作关于x 的多项式,那么在x y =时,它的值为222()()()0y y z y z y z y y -+-+-=.因此,x y -是222()()()x y z y z x z x y -+-+-的因式.由于222()()()x y z y z x z x y -+-+-是x y z 、、的轮换式,可知y z -与z x -也是它的因式.从而它们的积()()()x y y z z x --- ⑴是222()()()x y z y z x z x y -+-+- ⑵的因式.由于⑴ 、⑵都是x y z 、、的三次多项式,所以两者至多相差一个常数因数k ,即有222()(.)()()()()x y z y z x z x y k x y y z z x -+-+-=--- ⑶现在我们来确定常数k 的值.为此,比较⑶的两边2x y 的系数:左边系数为1,右边系数为k -.因此,1k =-.于是222()()()x y z y z x z x y -+-+-()()()x y y z z x =----思路2:利用y -z =(y -x)-(z -x).例12分解因式:222222()()()xy x y yz y z zx z x -+-+-【解析】 此式是关于x ,y ,z 的四次齐次轮换式,注意到x y =时,原式0=,故x y -是原式的一个因式.同理,y z -,z x -均是原式的因式,而()()()x y y z z x ---是三次轮换式,故还应有一个一次轮换式,设其为()k x y z ++,故原式()()()()k x y z x y y z z x =++---,展开并比较系数可知,1k =-,故原式()()()()x y z x y y z z x =-++---.思路2:利用x 2-y 2=(x 2-z 2)+(z 2-y 2).家庭作业练习 1. 分解因式:24(5)(6)(10)(12)3x x x x x ++++-原式2224(1760)(1660)3x x x x x =++++-2224(1660)(1660)3x x x x x x ⎡⎤=+++++-⎣⎦22224(1660)4(1660)3x x x x x x =+++++-22[2(1660)][2(1660)3]x x x x x x =++-+++22(231120)(235120)x x x x =++++2(215)(8)(235120)x x x x =++++练习 2. 要使()()()()1348x x x x m -+--+为完全平方式,则常数m 的值为________【解析】 ()()()()1348x x x x m-+--+22222(54)(524)(5)20(5)96x x x x m x x x x m =-+--+=----+,则196m =练习 3. 分解因式:22(68)(1448)12x x x x +++++【解析】 原式22(2)(4)(6)(8)12(1016)(1024)12x x x x x x x x =+++++=+++++设21016t x x =++,则原式(8)12(2)(6)t t t t =++=++22(1018)(1022)x x x x =++++练习 4. 分解因式:22222()4()x xy y xy x y ++-+【解析】 设22x y a +=,xy b =,则原式22222()4()()a b ab a b x y xy =+-=-=+-.练习 5. 分解因式:32252x x x ---【解析】32252(2)(21)(1)x x x x x x ---=-++ 练习 6. 分解因式:326116x x x +++【解析】3226116(1)(56)(1)(2)(3)x x x x x x x x x +++=+++=+++ 练习 7. 用待定系数法分解:541x x ++【解析】 原式的有理根只可能为1±,但是这2个数都不能使原式的值为0,所以原式没有有理根,因而也没有(有理系数的)一次因式.故542321(1)(1)x x x ax x bx cx ++=+++++或542321(1)(1)x x x ax x bx cx ++=+-++-5423254321(1)(1)()(1)(1)()1x x x ax x bx cx x a b x ab c x ac b x a c x ++=+++++=+++++++++++故110100a b c ab ac b a c +=⎧⎪++=⎪⎨++=⎪⎪+=⎩,解得101a b c =⎧⎪=⎨⎪=-⎩,所以54231(1)(1)x x x x x x ++=++-+事实上,分解式是惟一的,所以不用再考虑其它情况.练习 8. 分解因式:333()()()a b c b c a c a b -+-+-【巩固】 333()()()a b c b c a c a b -+-+-是关于a b c 、、的轮换式.它有三次因式()()()a b b c c a ---.由于原式是a b c 、、的四次式,所以还应当有一个一次因式.原式是a b c 、、的四次齐次式,所以这个一次因式也是a b c 、、的一次齐次式,即它的常数项是0(否则,它的常数项与三次式()()()a b b c c a ---相乘得到一个三次式).这个一次齐次式是a b c 、、的轮换式,形状应当是()k a b c ++k 是常数. 即有333()()()a b c b c a c a b -+-+-()()()()k a b c a b b c c a =++--- ⑴ 比较两边3a b 的系数,得1k =-于是333()()()a b c b c a c a b -+-+-()()()()a b c a b b c c a =-++--- 上面求k 的方法是比较系数,也可以改用另一种方法,即适当选一组使()()()()0a b c a b b c c a ++---=/的数代替a b c 、、从而定出k , 例如,令2a =,1b =,0c =,把它代入⑴,得8203(2)k -+=⋅⋅-,即1k =-, 以上两种确定系数的方法可以结合起来使用.补充题【备选1】分解因式:(1)(2)(3)(4)24a a a a -----【解析】2(5)(510)a a a a --+ 【备选2】分解因式:21(1)(3)2()(1)2xy xy xy x y x y +++-++-+- 【解析】 设xy u =,x y v +=,原式=(u+v+1)(u -v+1)=(x+1)(y+1)(x -1)(y -1).【备选3】分解因式:43265332x x x x ++--【解析】 原式的有理数根只可能为:1±,2±,12±,13±,23±,16± 经检验12-是一个根,所以21x +是原式的因式,进而可得: 43232265332(21)(32)(21)(32)(1)x x x x x x x x x x x x ++--=+++-=+-++。
因式分解拓展题及解答(必考题型)

因式分解拓展题解板块一:换元法例1分解因式:(X?亠4x亠8)2亠3x(x2亠4x亠8)亠2x2【解析】将x2 4x ^u看成一个字母,可利用十字相乘得原式=u2 3xu 2x2 =(u x)(u 2x) = (x2 4x 8 x)(x2 4x 8 2x)=(x2 5x 8)(x2 6x 8) = (x 2)(x 4)(x2 5x 8)例 2 分解因式:(x2 5x - 2)( x2 5x -3)-12【解析】方法1:将x2 5x看作一个整体,设x2,5x=t,则2 2原式=(t 2)(t 3) -12 =t 5t _6 =(t -1)(t 6) =(x 2)(x 3)(x 5x -1) 方法2 :将x2亠5x亠2看作一个整体,设x2亠5x亠2 = t,贝U原式= t(t 1) —12 =t2 t —12 =(t —3)(t 4) =(x 2)(x 3)(x2 5x—1)方法3 :将x2 5x 3看作一个整体,过程略•如果学生的能力到一定的程度,甚至连换元都不用,直接把x2 5x看作一个整体,将原式展开,分组分解即可,2 2 2 2 2 2则原式=(x 5x) 5(x 5x)-6=(x 5x-1)(x 5x 6) =(x 2)(x 3) (x 5x-1).【巩固】分解因式:(x 1)(x 3)(x 5)(x 7) 15【解析】(x 2)(x 6)( x2 8x 10)【巩固】分解因式:(x2 x 1)(x2 x 2) -12【解析】(x -1)(x 2)(x2 x 5)例3证明:四个连续整数的乘积加1是整数的平方.【解析】设这四个连续整数为:x 1、x 2、x 3、x 42 2(x 1)(x 2)(x 3)(x 4) 1 =[(x 1)(x 4)][( x 2)(x 3)] 1 =(x 5x 4)(x 5x 6) 14 6u =x 5x ------------22 2 2 2 2 2原式4( x 5x 5) -1][(x 5x 5) 1] 1 =(x 5x 5) -1 1 =(x 5x 5)【巩固】若x, y是整数,求证:x y x 2y x 3y x 4y y4是一个完全平方数.【解析】x y x 2y x 3y x 4y i亠y4二x y x 4y ]_ [x 2y x 3y :y4= (x2 5xy 4y2)(x2 5xy 6y2) y4令x2 5xy 4y2 =u•••上式u(u ' 2y2) y4 =(u y2)2 =(x25xy ■ 5y2)2即x y x 2y x 3y x 4y 厂y4 = (x2 5xy 5y2)21例 4 分解因式(2a 5)(a 2 _9)(2a _7) _91【解析】 原式 二[(2 a 5)(a —3)][(a 3)(2a —7)] —91 =(2a 2 —a —15)(2a 2 —a —21) — 91 设 2a 2「a _15 = x ,原式=x(x —6) —91 =x 2 —6x —91 =(x —13)(x 7) =(2a 2 —a —28)(2a 2 —a —8)2=(a _4)(2a 7)(2a -a -8)【巩固】分解因式(x 2 3x 2)(3 8x 4x 2) -90【解析】 原式=(x 1)(x 2)(2 x 1)(2x 3)-90 =(2x 2 5x 3)(2 x 2 5x 2^902y =2x 25x原式=(y 3)(y 2) —90 =y 2 5y _84=(y 12)(y _7)=(2x 2 5x 12)(2 x 7)(x -1)例 5 分解因式:4(3x 2 —x -1)(x 2 - 2x -3) -(4x 2 x -4)22 2 2【解析】 咋一看,很不好下手,仔细观察发现:(3x -x -1) - (x ・2x_3)=4x ,x-4 ,222故可设 3x -x -1 =A, x 2x - 3 = B ,则 4x x -4 二 A B .2 2 2 2故原式=4AB -(A B) - -A -B2AB = -(A - B)-2 222 2二—(3x -x —1) —(x 2x —3)二-(2x -3x 2).【巩固】 分解因式:(a b -2ab)(a b -2) ( -ab)2 【解析】由于题中以整体形式出现的式子有两个,共4个地方,故采取换元法后会大大简化计算过程,不妨设 a ■ b = x,ab = y ,【解析】 则原式=(x-2y)(x-2) • (1-y)2 =x 2 -2xy • y 2 • 2y -2x1 =(x -y)2 -2(x -y) 1 =(x —y -1)2 =(a 亠b —ab —1)2 = (1 —a)2(1 -b)2例 6 分解因式:(x 1)4 (x 3)4 -272 【解析】 设 yJ 1x 3*2,则原式=(y -1)4(y 1)4-272 =2(y 46y 21) -272 24 2 2 2 2= 2(y 6y -135) =2(y -9)( y 15) =2( y 3)( y -3)(y 15)= 2(x 5)(x -1)(x 2 4x 19)【巩固】分解因式:a 444 (a-4)4【解析】为方便运算,更加对称起见,我们令 x 二a-2a 4 44 (a -4)4 =(x 2)4 (x -2)4 44 =(x 2 4x 4)2 (x 2 -4x 4)2 444 2 4 2 2 2 2 2 2 2=2(x24x 16) 256 =2(x24x144) =2(x12) =2[(a -2) 12] =2(a -4a 16)板块二:因式定理因式定理:如果x =a 时,多项式a n x n - a n 」x n 」•... ■ a 1x a °的值为0 ,那么x —a 是该多项 式的一个因式. 有理根:有理根c 二P 的分子p 是常数项a °的因数,分母q 是首项系数a n 的因数.q 例 7 分解因式:2x 3 —x 2 —5x —2 2x 2_3x -2【巩固】a ° = -2的因数是_1, _2, a . =2的因数是二1,二2 .1因此,原式的有理根只可能是 _1, -2(分母为1),一丄.2因为 f (1)=2 —1 —5 —2 = —6 , f (―1) =「2 —1 5 — 2 =0 ,—2x —2 —2x — 2 x 1 2x 3 -x 2 -5x-2八 3丄八2 2x 2x2—3x — 5x-3x 2 - 3x。
因式分解教案(优秀4篇)

因式分解教案(优秀4篇)初二数学因式分解教案篇一1、lie动词,意为“躺”,过去式和过去分词分别为lay和lain,现在分词为lying。
I found he was lying on the ground.我发现他躺在地上。
【拓展】(1)lie有“位于”的意思。
A temple lies on the top of the mountain.一座寺庙位于山顶之上。
(2)lie作动词时,也可意为“撒谎”,过去式和过去分词是规则的,均为lied。
lie也可用作名词,意为“谎言”。
Don’t lie to me.不要向我撒谎。
The boy told a lie to me.这个男孩向我撒了谎。
(3)英语中,部分以-ie结尾的动词的-ing形式必须改ie为y再加-ing。
die → dying tie → tying lie → lying2、hopehope意为“希望”,用于表示有可能实现的愿望,其后可接不定式或宾语从句,但表达“希望别人做某事”时,则需用hope that从句。
I hope you can pass the exam.我希望你能通过考试。
【拓展】hope与wish的辨析:so hope+ to do sth.注意:没有hope sb. to do sth.的用法that从句表示很有可能实现的主观愿望for sth.sb. to do sth.能接sb.的复合结构wish+ sb. sth.能接双宾语to do sth.可与hope互换that从句用虚拟语气表示不太可能实现的愿望My mother wishes/hopes to find her lost watch swh..我妈妈希望在什么地方找到她丢失的手表。
I wish you to finish the work in time.我希望你及时完成这项工作。
3、adviceadvice是不可数名词,意为“意见、建议、劝告、忠告”,不能与不定冠词a连用。
因式分解的八个注意事项及课本未拓展的五个的方法

因式分解的“八个注意”事项及"课本未拓展的五个的方法”一、“八个注意”事项(一)首项有负常提负例1把一a'—b'+2ab+4分解因式。
解:一a'—b'+2ab + 4= — (a:—2ab+b‘一4) =— (a—b+2) (a-b —2)这里的“负”,指“负号” °如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
防止出现诸如一a' —b'= ( —a+b) ( —a—b)的错误。
(二)各项有公先提公例2因式分解8a:-2a=解:8a'—2a:=2a: (4a:—l)=2a:(2a+l) (2a—1)这里的“公”指“公因式” °如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式。
防止出现诸如4a'a- (2a:+a) (2a=a)而乂不进一步分解的错误.(三)某项提出莫漏1例3因式分解a'~2a:+a解:a:_2a:+a=a (a:-2a+l) =a (a~l):这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。
防止学生出现诸如a'-2a:+a二a(a=2a)的错误。
(四)括号里面分到“底”。
例4因式分解x;-3x:-4解:x*+3x s-4= (x3+4) (X3-1) = (x=+4) (x+l) (x-1)这里的“底”,指分解因式,必须进行到每一个多项式因式都不能再分解为止。
即分解到底,不能半途而废的意思。
其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。
如上例中许多同学易犯分解到x,+3X2-4= (x=+4) (x c-l)而不进一步分解的错误。
因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤是一脉相承的。
(五)各式之间必须是连乘积的形式例5 分解因式x:-9+8x=解:x:-9+8x=x:+8x-9=(x-l) (X+9)这里的“连乘积”,是指因式分解的结果必须是儿个整式的连乘积的形式,否则不是因式分解。
人教版数学八年级上册《整式的乘法与因式的分解》 能力拓展训练

八年级上册第14章能力拓展训练一.选择题1.下列各选项中,因式分解正确的是()A.(a2+b2)=(a+b)2B.x2﹣4=(x﹣2)2C.m2﹣4m+4=(m﹣2)2D.﹣2y2+6y=﹣2y(y+3)2.下列运算正确的是()A.a•a5=a4B.2(a﹣b)=2a﹣bC.(a3)2=a5D.a2﹣2a2=﹣a23.下列多项式能用完全平方公式分解因式的是()A.x2﹣2x﹣1B.(a+b)(a﹣b)﹣4abC.a2+ab+b2D.y2+2y﹣14.已知a﹣b=1,ab=12,则a+b等于()A.7B.5C.±7D.±55.下列各式中,计算结果为a6的是()A.a2+a4B.a7÷a C.a8﹣a2D.a2•a36.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成一个长方形,(如图②)则这个长方形的面积为()A.(a+2b)(a﹣2b)B.(a+b)(a﹣b)C.(a+2b)(a﹣b)D.(a+b)(a﹣2b)7.计算(x﹣2)(2x+3)﹣(3x+1)2的结果中,x项的系数为()A.5B.﹣5C.7D.﹣7 8.计算(﹣0.25)2019•42020的结果为()A.4B.﹣4C.D.﹣9.下列各式中,能用平方差公式进行计算的是()A.(﹣2x﹣y)(2x﹣y)B.(﹣2x﹣y)(2x+y)C.(2x﹣y)(y﹣2x)D.(2x﹣y)(2x﹣y)10.42020×(﹣0.25)2019的值为()A.4B.﹣4C.0.25D.﹣0.25二.填空题11.计算a(a﹣b)+b(a﹣b)的结果是.12.不等式2x+15>﹣x的解集是;分解因式:2x2﹣2=.13.以下四个结论正确的是.(填序号)①若(x﹣1)x+1=1,则x只能是2②若(x﹣1)(x2+ax+1)的运算结果中不含x2项,则a=﹣1③若a+b=10,ab=24,则a﹣b=2或a﹣b=﹣2④若4x=a,8y=b,则22x﹣3y可表示为14.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为.15.若m+n=2,mn=1,则m3n+mn3+2m2n2=.三.解答题16.因式分解(1)x2﹣9;(2)8m2﹣8mn+2n2.17.已知a+b=2,ab=﹣24,(1)求a2+b2的值;(2)求(a+1)(b+1)的值;(3)求(a﹣b)2的值.18.如图,有一块长为(3a+b)米,宽为(2a+b)米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.19.某学生化简a(a+1)﹣(a﹣2)2出现了错误,解答过程如下:解:原式=a2+a﹣(a2﹣4a+4)(第一步)=a2+a﹣a2﹣4a+4(第二步)=﹣3a+4(第三步)(1)该学生解答过程是从第步开始出错,其错误原因是;(2)请你帮助他写出正确的简化过程.20.小亮在课余时间写了三个算式:32﹣12=8×1,52﹣32=8×2,72﹣52=8×3,通过认真观察,发现任意两个连续奇数的平方差是8的倍数.验证:(1)92﹣72的结果是8的几倍?(2)设两个连续奇数为2n+1,2n﹣1(其中n为正整数),写出它们的平方差,并说明结果是8的倍数;延伸:直接写出两个连续偶数的平方差是几的倍数.参考答案一.选择题1.解:A、原式不能分解,不符合题意;B、原式=(x+2)(x﹣2),不符合题意;C、原式=(m﹣2)2,符合题意;D、原式=﹣2y(y﹣3),不符合题意.故选:C.2.解:A.a•a5=a6,故本选项不合题意;B.2(a﹣b)=2a﹣2b,故本选项不合题意;C.(a3)2=a6,故本选项不合题意;D.a2﹣2a2=﹣a2,故本选项符合题意.故选:D.3.解:a2+ab+b2=(a+b)2.故选:C.4.解:∵a﹣b=1,ab=12,∴(a+b)2=a2+2ab+b2=(a﹣b)2+4ab=1+48=49,∴a+b=±7,故选:C.5.解:(A)a2与a4不是同类项,故A不选.(B)原式=a6,故选B.(C)a8与a2,故C不选.(D)原式=a5,故D不选.故选:B.6.解:图②长方形的长为(a+2b),宽为(a﹣2b),因此阴影部分的面积为(a+2b)(a﹣2b),故选:A.7.解:(x﹣2)(2x+3)﹣(3x+1)2=2x2+3x﹣4x﹣6﹣9x2﹣6x﹣1=﹣7x2﹣7x﹣7,故选:D.8.解:(﹣0.25)2019•42020=(﹣0.25)2019×42019×4=(﹣0.25×4)2019×4=(﹣1)2019×4=(﹣1)×4=﹣4.故选:B.9.解:(﹣2x﹣y)(2x﹣y)=﹣(2x+y)(2x﹣y),能用平方差公式进行计算;(﹣2x﹣y)(2x+y)=﹣(2x+y)2,不能用平方差公式进行计算;(2x﹣y)(y﹣2x)不能用平方差公式进行计算;(2x﹣y)(2x﹣y)=(2x﹣y)2,不能用平方差公式进行计算.故选:A.10.解:42020×(﹣0.25)2019=42019×=[4×]2019×4=﹣1×4=﹣4,故选:B.二.填空题11.解:a(a﹣b)+b(a﹣b)=a2﹣ab+ab﹣b2=a2﹣b2.故答案为:a2﹣b2.12.解:移项,得3x>﹣15,∴x>﹣5.2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1).故答案为:x>﹣5,2(x+1)(x﹣1).13.解:当(x﹣1)x+1=1时,x=﹣1时也成立,故①错误;(x﹣1)(x2+ax+1)=x3+ax2+x﹣x2﹣ax﹣1=x3+(a﹣1)x2+(1﹣a)x﹣1,∵(x﹣1)(x2+ax+1)的运算结果中不含x2项,∴a﹣1=0,解得:a=1,故②错误;∵a+b=10,ab=24,∴(a﹣b)2=(a+b)2﹣4ab=102﹣4×24=4,∴a﹣b=2或a﹣b=﹣2,故③正确;∵4x=a,8y=b,∴22x=a,23y=b,∴22x﹣3y==,故④正确;故答案为:③④.14.解:根据题意得:(x+m)(2﹣x)=2x﹣x2+2m﹣mx,∵x+m与2﹣x的乘积中不含x的一次项,∴m=2;故答案为:2.15.解:∵m+n=2,mn=1,∴m3n+mn3+2m2n2=mn(m2+2mn+n2)=mn(m+n)2=1×22=4.故答案为:4.三.解答题16.解:(1)原式=(x+3)(x﹣3);(2)原式=2(4m2﹣4mn+n2)=2(2m﹣n)2.17.解:(1)因为a+b=2,ab=﹣24,所以a2+b2=(a+b)2﹣2ab=4+2×24=52;(2)因为a+b=2,ab=﹣24,所以(a+1)(b+1)=ab+a+b+1=﹣24+2+1=﹣21;(3)因为a+b=2,ab=﹣24,所以(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab=4+4×24=100.18.解:根据题意得:(3a+b﹣a)(2a+b﹣a)=(2a+b)(a+b)=2a2+3ab+b2(平方米),则绿化的面积是(2a2+3ab+b2)平方米;当a=3,b=2时,绿化面积是:2×32+3×3×2+22=40(平方米).19.解:(1)第二步在去括号时,﹣4a+4应变为4a﹣4.故错误原因为去括号时没有变号.(2)原式=a2+a﹣(a2﹣4a+4)=a2+a﹣a2+4a﹣4=5a﹣4.20.解:(1)92﹣72=81﹣49=32,32是8的4倍;(2)设两个连续奇数为2n+1,2n﹣1(其中n为正整数),则它们的平方差是8的倍数;(2n+1)2﹣(2n﹣1)2=(2n+1﹣2n+1)(2n+1+2n﹣1)=2×4n=8n,故两个连续奇数的平方差是8的倍数.延伸:82﹣62=64﹣36=28,两个连续偶数的平方差是4的倍数.。
因式分解的八个注意事项及课本未拓展的五个的方法

因式分解的“八个注意”事项及“课本未拓展的五个的方法”在因式分解这一章中,教材总结了因式分解的四个步骤,可概括为四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”然而在初学因式分解时,许多同学在解题中还是会出现一些这样或那样的错误,或者都学透了,但是试卷上给出的题目却还是不会分解,本文提出以下“八个注意”事项及“五大课本未总结的方法”,以供同学们学习时参考。
一、“八个注意”事项(一)首项有负常提负例1把-a2-b2+2ab+4分解因式。
解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2)这里的“负”,指“负号”。
如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
防止出现诸如-a2-b2=(-a+b)(-a-b)的错误。
(二)各项有公先提公例2因式分解8a4-2a2解:8a4-2a2=2a2(4a2-1)=2a2(2a+1)(2a-1)这里的“公”指“公因式”。
如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式。
防止出现诸如4a4-a2=(2a2+a)(2a2-a)而又不进一步分解的错误.(三)某项提出莫漏1例3因式分解a3-2a2+a解:a3-2a2+a=a(a2-2a+1)=a(a-1)2这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。
防止学生出现诸如a3-2a 2+a=a(a 2-2a)的错误。
(四)括号里面分到“底”。
例4 因式分解x 4-3x 2-4解:x 4+3x 2-4=(x 2+4)(x 2-1)=(x 2+4)(x +1)(x -1)这里的“底”,指分解因式,必须进行到每一个多项式因式都不能再分解为止。
即分解到底,不能半途而废的意思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 分解方法的拓展
一、换元法和主元法
【例1】 分解因式:10)3)(4(2424+++-+x x x x = .
思路点拨 视24x x +为一个整体.用一个新字母代替,从而能简化式子的结构.
【例2】 多项式xyz y z x y z x x z z y y x 2222222-++-+-因式分解后的结果是( ).
A .(y -z)(x+y)(x -z)
B .(y -z)(x -y)(x +z)
C . (y+z)(x 一y)(x+z)
D .(y 十z)(x+y)(x 一z)
思路点拨 原式是一个复杂的三元三次多项式,直接分解有一定困难,把原式整理成关于某个字母按降幂排列的多项式,改变其结构,寻找分解的突破口.
【例3】把下列各式分解因式:
(1)(x+1)(x +2)(x+3)(x+6)+ x 2; (2)1999x 2一(19992一1)x 一1999;
(3)(x+y -2xy)(x+y -2)+(xy -1)2; (4)(2x -3y)3十(3x -2y)3-125(x -y)3.
【例4】把下列各式分解因式:
(1)a 2(b 一c)+b 2(c -a)+c 2 (a 一b); (2)x 2+xy -2y 2-x+7y -6.
练习
1.分解因式:(x 2+3x)2-2(x 2+3x)-8= .
2.分解因式:(x 2+x+1)(x 2+x+2)-12= .
3.分解因式:x 2-xy -2y 2-x -y= .
4.已知二次三项式82--mx x 在整数范围内可以分解为两个一次因式的积,则整数m 的可能取值为 .
5.将多项式3224--x x 分解因式,结果正确的是( ).
A .)1)(3(22-+x x
B .)3)(1(22-+x x
C .)1)(1)(3(2+-+x x x
D .)3)(3)(1(2+-+x x x
6.下列5个多项式:
①12222---b a b a ;②322327279a xa ax x -+-;③b d c c b d y d c b x 222)()(-+-----+;④
)(6)(3m n n n m m -+- ;⑤x x 4)2(2+-
其中在有理数范围内可以进行因式分解的有( ).
A .①、②、③
B .②、③ 、④
C .①③ 、④、⑤
D .①、②、④
7.下列各式分解因式后,可表示为一次因式乘积的是( ).
A .2727923-+-x x x
B .272723-+-x x x
C .272734-+-x x x
D .279323-+-x x x
8.若51
-=+b a ,13=+b a ,则53
912322+++b ab a 的值为( ).
A .92
B .32
C .54
D .0
9.分解因式
(1)(x 2+4x+8)2+3x(x 2+4x+8)+2x 2; (2)(2x 2-3x+1)2一22x 2+33x -1;
(3)x 4+2001x 2+2000x+2001; (4)(6x -1)(2 x -1)(3 x -1)( x -1)+x 2;
(5)bc ac ab c b a 54332222+++++; (6)613622-++-+y x y xy x .
10.分解因式:12)5)(3)(1(2+++-x x x = .
11.分解因式:22635y y x xy x ++++= .
12.分解因式:333)()2()2(y x y x -----= .
14.613223+-+x x x 的因式是( )
A .12-x
B .2+x
C .3-x
D .12+x
E .12+x
15.已知c b a >>,M=a c c b b a 222++,N=222ca bc ab ++,则M 与N 的大小关系是( )
A .M<N
B .M> N
C .M =N
D .不能确定
16.把下列各式分解因式:
(1)22212)16)(1(a a a a a ++-++; (2)91)72)(9)(52(2---+a a a ;
(3)2)1()21
(2)3()1(-+-++-+++y x y x xy xy xy ;
(4)4242410)13)(14(x x x x x ++++-; (5)z y xy xyz y x z x x 222232242-++--.
17.已知在ΔABC 中,010616222=++--bc ab c b a (a 、b 、c 是三角形三边的长). 求证:b c a 2=+
二、配方法与待定系数法
【例1】分解因式:344422-+--y y x x = .
【例2】如果823+++bx ax x 有两个因式x+1和x+2,则a+b =( ).
A .7
B .8
C .15
D .2l
【例3】把下列各式分解因式:
(1)1724+-x x ; (2)22412a ax x x -+++;
(3)24222)1()1(2)1(y x y x y -++-+; (4)1232234++++x x x x
【例4】k 为何值时,多项式253222+-++-y x ky xy x 能分解成两个一次因式的积?
1.44+a d 分解因式的结果是( )
A .)22)(22(22+--+a a a a
B .)22)(22(22---+a a a a
C .)22)(22(22--++a a a a
D .)22)(22(22+-++a a a a
2.把下列各式分解因式:
(1)4416b a +; (2)4224y y x x ++;
(3)2222)()1(x x x x ++++ (4)))((4)(2b a c b a c ----;
(5)893+-x x ; (6)65223--+x x x
3.已知522++x x 是b ax x ++24的一个因式,求b a +的值.
4.已知62-+x x 是多项式12234-+++-+b a bx ax x x 的因式,则a = .
5.一个二次三项式的完全平方式是b ax x x x +++-23476,那么这个二次三项式是 . 6、(1)求证:8l 7一279—913能被45整除;
(2)证明:当n 为自然数时,2(2n+1)形式的数不能表示为两个整数的平方差;
(3)计算:)
41
9)(417)(415)(41
3)(411()
41
10)(418)(416)(414)(412(4444444444++++++++++。