2002-11四川大学高等代数考研试题
(完整)09川大高等代数及答案

四川大学2009年攻读硕士学位研究生入学考试题一、解答下列各题.1.(5分)设)(x f 是数域F 上次数为2008的多项式,证明:20092不可能是)(x f 的根.F 为有理数域该命题成立如题:设)(x f 是有理数域Q 上一个m 次多项式(0≥m ),n 是大于m 的正整数,证明:n2不可能是)(x f 的根.证明:反证法:假设n2是)(x f 的根,有)2()2(--n nx x 对于2-nx ,存在素数2=p110,,,-n a a a p Λ、p 不能整除n a 、2p 不能整除0a由艾森斯坦判别法,有2-nx 在有理数域不可约,则有)()2(x f x n -则n x f ≥∂))((与题设矛盾,故假设不成立,即n 2不可能是)(x f 的根.2.(10分)用代数基本定理证明,实数域R 上的任意不可约多项式只能是一次多项式或满足042<-ac b 的二次多项式:c bx ax ++2.证明:由代数基本定理,任意多项式在复数域都可以分解为一次多项式的乘积 则令多项式为)())(()(21n a x a x a x k x f ---=Λ (C a i ∈,R k ∈且0≠k ) 当R a i ∈时,则i a x -是实数域R 上的一次不可约多项式当R a i ∉时,有i a 也是)(x f 的根,有i i i i i i a a x a a x a x a x ++-=--)())((2i i i i a a x a a x ++-)(2满足042<-ac b由)(i i a a +-,R a a i i ∈,则i i i i a a x a a x ++-)(2是实数域R 上的二次不可约多项式故实数域R 上的任意不可约多项式只能是一次多项式或满足042<-ac b 的二次多项式:c bx ax ++2.3.(5分)设A 是数域F 上的n 阶方阵.要求不用Hamilton-Caylay 定理,证明:存在F 上的多项式)(x f 使得O A f =)(. 证明:取A 的特征多项式A E g -=λλ)(设)(λB 为A E -λ的伴随矩阵,有E g E A E A E B )())((λλλλ=-=- 由)(λB 的元素是A E -λ各个代数余子式,则1))((-≤∂n B λ 有11201)(---+++=n n n B B B B Λλλλ令n n n a a g +++=-Λ11)(λλλ,得E a E a E E g n n n +++=-Λ11)(λλλ ①A B A B B A B B A B B B A E B n n n n n n 1211220110)()()())((-------++-+-+=-λλλλλλΛ ②比较①、②,有⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-=-=-=----E a A B Ea A B B E a A B B E a A B B EB n n n n n 11212121010ΛΛΛ,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-=-=-=---------Ea A B A a A B A B A a A B A B A a A B A B A A B n n n n n n n n n nn n n 11221221122110110ΛΛΛ左边和右边全部相加,有O E g =)(λ,即0)(=λg 任取)()()(x g x q x f =,则有O A f =)(4.(10分)设1α、2α、3α是多项式123)(3++=x x x f 的全部根.求下式的值 ))()((212331223221ααααααααα+++解:由根与系数的关系得0321=++ααα、32323121=++αααααα、31321-=ααα)31)(31)(31())()((323222121212331223221ααααααααααααααα---=+++]1)()([91)1)(1)(1(271333231333233313231333231333231321-+++++--=---=αααααααααααααααααα)(91)(9124328333231333233313231ααααααααα++-++-=① )(91)111(243124328333231333231αααααα++-++-=)(91243124328333231333231333233313231αααααααααααα++-++-= ② 由①、②得,0333233313231=++αααααα,则原式)(9124328333231ααα++-=由13))((3)(3213231213213321333231-=+++++-++=++αααααααααααααααααα得原式24355=二、解答下列各题.1(10分)叙述并证明线性方程组的克莱默(Cramer )法则.2(5分)设F ,K 都是数域且K F ⊆,设β=AX 是数域F 上的线性方程组. 证明:β=AX 在F 上有解当且仅当β=AX 在K 上有解. 证明:令A 为n m ⨯矩阵 必要性:令X 为β=AX 在F 上的解,有n F X ∈,由K F ⊆,得nK X ∈X 也为β=AX 在K 上的解充分性:β=AX 在K 上有解, 有)()(A r A r =由A ,)(F M A n m ⨯∈,则在F 上,也有)()(A r A r =,故β=AX 在F 上有解3.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=142412222A (1)(5分)在任意数域F 上,A 能否相似于一个对角阵?说明理由. (2)(5分)求A 的极小多项式.(3)(5分)设AX X X f ')(=,其中)',,(321x x x X =是列向量.求)(X f 的一个标准型.解:(1))6()3(1424122222+-=+---+--=-λλλλλλA EA 的特征值为3,3,6-当3=λ时,000002214424422213-=----=-A E基础解系由2)3(=--A E r n 个线性无关的向量构成)'1,1,4(-、)'1,1,0(当6-=λ时,0009904525424522286--→-------=--A E 基础解系由1)6(=---A E r n 个向量构成)'2,2,1(- 故A 对应3个线性无关的特征向量,A 可对角化取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211211104P ,则有)6,3,3(1-=-diag AP P 由)(,3Q M C A ∈、又Q ∈-6,3,则A 在有理数域可以对角化由任何数域都包含有理数域,故在任意数域F 上,A 都能相似于一个对角阵(2)A 的特征多项式为O E A E A A f =+-=)6()3()(2由O E A E A =+-)6)(3(,有A 的极小多项式为)6)(3()(+-=λλλm(3)把P 的列向量单位化,得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=32212313221231310234C ,C 为正交矩阵 令CY X =,有232221633''')(y y y ACY C Y AX X X f -+===4.(10分)证明:在任意数域F 上矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=111001012A 与⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110011001B 都不相似. 证明:3)1(11101012-=----=-λλλλλA E 有A 的特征值为1,1,1 1=λ时,00000001101101111-=---=-A E基础解系有2)(=--A E r n 个线性无关的向量构成 ①3)1(11011001-=-----=-λλλλλB E 有B 的特征值为1,1,1 1=λ时,01000100--=-B E 基础解系有1)(=--B E r n 个向量构成 ②由①、②,得在任意数域F 上矩阵A 与B 都不相似5.(5分)设A 是n 阶实对称矩阵.证明:A 是正定矩阵的充分必要条件是,对任意整数k ,k A 也是正定的.证明:必要性:令A 的特征值为i λ(n i ,,2,1Λ=),则k A 的特征值为k i λ A 是正定矩阵,0>i λ,则0>ki λ,有k A 为正定矩阵充分性:k A 的特征值为k i λ,有0>ki λ,由k 的任意性,有0>i λ,故A 是正定矩阵三、(15分)设)(F M n 是数域F 上的全体n 阶方阵组成的集合.对任意可逆矩阵)(F M A n ∈,定义集合})({1X XA A F M X n A =∈=T -. 设A A F M A n V T =≠∈0):(I,即V 是所有可能的A T 的交集(A 可逆).求V dim 和V 的一个基.解: 取)(F M n 的一个基nn E E E Λ,,1211,令n n ij a A ⨯=)(、n n ij x X ⨯=)( 有nn nn E a E a E a A +++=Λ12121111由X XA A =-1,有AX XA =,则X E XE ij ij =有行第列第i 111j 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=j j j ijnii i ij x x x X E x x x XE ΛM 得0=ij x (j i ≠)且nn x x x ===Λ2211,故kE X =为数量矩阵 有)(E L A =T ,则V 由数量矩阵和全体对角元素为零的矩阵构成令V B ∈,有∑=+=nj i ij ij E k kE B 1,(j i ≠),有1dim 2+-=n n VE 与全体ij E (j i ≠)构成V 的一个基.四、设)(12F M r +是数域F 上的全体12+r 阶方阵组成的集合.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=O E O E O O O OM r r 2是分块矩阵,其中r E 是r 阶单位阵.设}')({12O MX M X F M X B r =+∈=+,其中'X 表示X 的转置矩阵.进一步B X ∈,设∑∞==0!1k kXX k e .已知:)(12F M e r X+∈.1.(15分)求B dim 和B 的一个基.2.(15分)证明:对任意B X ∈都有行列式1)det(=Xe3.(10分)设列向量空间12+r F上的一个双线性函数),(--在它的基)'0,,0,1(1Λ=ε,)'0,,1,0(2Λ=ε,……,)'1,,0,0(12Λ=+r ε下的度量矩阵为上述M .证明:对任意B X ∈和列向量12,+∈r Fβα都有),(),(βαβα=XX e e .1.解:令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211X X X X X X X X x X (12X 、13X 为r 维行向量,21X 、31X 为r 维列向量,22X 、23X 、32X 、33X 为r 阶方阵)有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=232221333231131211222X X X X X X X X x MX ,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡='''2'''2''2)'(233313223212213111X X X X X X X X x MX 由O MX M X =+',又M 为对称矩阵,有O MX MX =+)'(则O X X X X X X X X X X XX X X X X x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++++2323223321133322323231121321123111'''2'''22'2'4,有011=x 自由变量有12X 、13X 、22X 、23X 、32X 且23X 、32X 为反对称矩阵有r r r r r r r r r B +=-+-+++=2222222dim2.证明:根据矩阵指数的性质,有)()det(X tr X e e =)'()()'()()()()(3322332233223322X X tr X tr X tr X tr X tr X X tr X tr e e e e e ++++====由O X X =+3322',有10)'(3322==+e e X X tr ,则1)det(=X e注:关于)()det(X tr X e e =的证明由存在可逆矩阵P ,使得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-n XP P λλλ******211O有121******-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=P P X k n kk k λλλO11020100******!1***!1***!1!121--∞=∞=∞=∞=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑P e e e P P k k k P X k n k nk kk k k k kλλλλλλOO有)(2121)det(X tr Xe e e e e e n n ===+++λλλλλλΛΛ3.证明:五、(20分)证明:在数域F 上的任意n 元多项式都是线性多项式(即:一次齐次多项式)的幂的线性组合.证明:由任何一个m 次n 元多项式f 都可以唯一的表示成∑==mi i f f 0,其中i f 是n 元i 次齐次多项式由i f 是i 次齐次多项式,那么n x x x ,,,21Λ有ii n C k 1-+=种组合方式令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=+++=--k i n i i i n k i i i b b b x x x x x b x x b x b f M ΛΛ212111211211),,,(取k 个一次齐次多项式k g g g ,,,21Λ,它们的i 次方为ik i i g g g ,,,21Λ令ij g 的k 个系数为kj j j a a a ,,,21Λ(k j ,,2,1Λ=)⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=+++=--kj j j i n i i i n kj i j i j i j a a a x x x x x a x x a x a g M ΛΛ212111211211),,,( 得到系数方程⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k k kk k k k k b b b y y y a a a a a aa a a M MΛM MM ΛΛ2121212222111211 只要k g g g ,,,21Λ选取得当,则此方程有解则有∑==+++=kl i ll i kki ii g y g y g y g y f 12211Λ,故∑∑===m i kl il l g y f 01,即证.。
高等代数考研真题第一章多项式

且f(x)在有理数域上不可约。
第一章多项式1 (清华2 000— 20分)试求7次多项式f(X ),使f(M 1能被(X -1)4整除,而f(X )-1能被(X 1)4整除。
2、 (南航 2001 — 20 分)(1) 设 x —2px+2 I x +3x +px+q ,求 p,q 之值。
(2) 设f(x) , g(x), h(x) € R[x],而满足以下等式2(x +1)h(x)+(x -1) f(x)+ (x -2) g(x)=02(x +1)h(x)+(x+1) f(x)+ (x+2) g(x)=02 2证明:x +1 I f(x) , x +1 I g(x)3、 (北邮2002 —12分)证明:x d - 1 I x "- 1的充分必要条件是d I n (这里里记号 d I n 表示正整数d 整除正整数n )。
4、 、(北邮 2003 —15分)设在数域 P 上的多项式 g 1(x), g 2(x) , g 3(x) , f(x),已知 g 1(x) I f(x),g 2(x) I f(x) , g 3(x) I f(x),试问下列命题是否成立,并说明理由:(〔)如果 g 1(x) ,g 2(x) , g 3(x)两两互素,则一定有 g 1(x) , g 2(x) , g 3(x) I f(X )(2)如果g1(x) , g 2(x) , g 3(x)互素,则一定有 g 1(x)g 2(x)g 3(x)I f(X )5、 (北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a ,b 若p I ab 则p I a 或p I b 。
6、 (大连理工2003 —12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幕主充分必要条件是,对任意的多项式g(x) , h(x),由f(x) I g(x) h(x)可以推出f(x) I g(x),或者对某一正整数 m , f(x) I h m(x)。
川大数学考研真题答案

川大数学考研真题答案(一)解析1. 解析题目要求川大数学考研真题一直以来都是备受关注的,本文将针对其中一道数学考研题目进行解析和答案讲解。
细致深入的解析每一个步骤是本文的主要目标,以便于读者更好地理解解题过程和方法。
2. 题目分析题目:已知函数 f(x) 在区间 [0,1] 上连续,下列说法是否正确?(1)若 f(x) 在 (0,1) 内可导,且 f'(x)>0,则 f(x) 在 (0,1) 内严格单调增加。
(2)若 f(x) 在 (0,1) 内可导,且 f''(x)>0,则 f(x) 在 (0,1) 内严格单调增加。
3. 解答过程(1)一阶导数与函数单调性的关系首先,根据函数 f(x) 在 (0,1) 内可导,且 f'(x)>0,我们来判断 f(x) 在 (0,1) 内是否严格单调增加。
根据导函数定义可知,若 f'(x)>0,那么 f(x) 在 (0,1) 内是单调增加的。
因此,对于说法(1),我们可以得出结论:正确。
(2)二阶导数与函数单调性的关系接下来,我们对于说法(2),也就是若 f(x) 在 (0,1) 内可导,且f''(x)>0,判断 f(x) 在 (0,1) 内是否严格单调增加。
由于 f''(x)>0,根据函数的二阶导数与函数单调性之间的关系,我们可以得出结论:f(x) 在 (0,1) 内是严格单调增加的。
因此,对于说法(2),我们也可以得出结论:正确。
4. 结论综上所述,根据题目给出的信息,我们得出以下结论:(1)若 f(x) 在 (0,1) 内可导,且 f'(x)>0,则 f(x) 在 (0,1) 内严格单调增加。
该说法为正确。
(2)若 f(x) 在 (0,1) 内可导,且 f''(x)>0,则 f(x) 在 (0,1) 内严格单调增加。
高等代数考研真题 第一章 多项式

第一章 多项式1、(清华2000—20分)试求7次多项式()f x ,使()1f x +能被4(1)X -整除,而()1f x -能被4(1)X +整除。
2、(南航2001—20分)(1)设x 2-2px+2∣x 4+3x 2+px+q ,求p,q 之值。
(2)设f(x),g(x),h(x)∈R[x],而满足以下等式 (x 2+1)h(x)+(x -1) f(x)+ (x -2) g(x)=0 (x 2+1)h(x)+(x+1) f(x)+ (x+2) g(x)=0 证明:x 2+1∣f(x),x 2+1∣g(x) 3、(北邮2002—12分)证明:x d -1∣x n -1的充分必要条件是d ∣n (这里里记号d ∣n 表示正整数d 整除正整数n )。
4、、(北邮2003—15分)设在数域P 上的多项式g 1(x),g 2(x ),g 3(x ),f(x),已知g 1(x)∣f(x),g 2(x)∣f(x), g 3(x)∣f(x),试问下列命题是否成立,并说明理由:(1)如果g 1(x),g 2(x), g 3(x)两两互素,则一定有g 1(x),g 2(x),g 3(x)∣f(x) (2)如果g 1(x),g 2(x), g 3(x)互素,则一定有g 1(x)g 2(x)g 3(x)∣f(x) 5、(北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a ,b 若p ∣ab 则p ∣a 或p ∣b 。
6、(大连理工2003—12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幂主充分必要条件是,对任意的多项式g(x),h(x) ,由f(x)∣g(x) h(x)可以推出f(x)∣g(x),或者对某一正整数m ,f(x)∣h m (x)。
7、(厦门2004—16分)设f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约。
高等代数第四版考研题库

高等代数第四版考研题库高等代数作为数学学科中的核心课程之一,其考研题库的构建对于学生掌握和深化理论知识至关重要。
以下是针对高等代数第四版教材的考研题库内容概要:一、线性代数基础1. 向量空间的定义及其性质2. 基和维数的概念3. 线性变换及其矩阵表示4. 特征值和特征向量5. 内积空间和正交性二、行列式1. 行列式的定义和性质2. 行列式的展开定理3. 克莱姆法则及其应用4. 行列式与线性变换的关系三、矩阵理论1. 矩阵的运算和性质2. 逆矩阵和伴随矩阵3. 矩阵的秩和零空间4. 矩阵分解方法(如LU分解、QR分解)四、线性方程组1. 线性方程组的解的存在性与唯一性2. 高斯消元法和高斯-约当消元法3. 线性方程组的几何解释五、特征值问题1. 特征值和特征向量的求解方法2. 特征多项式及其应用3. 矩阵的对角化问题六、二次型1. 二次型的定义和性质2. 正定二次型和半正定二次型3. 配方法和正交变换七、线性空间和线性变换1. 线性空间的公理化定义2. 线性变换的映射性质3. 线性变换的不变子空间八、欧几里得空间1. 欧几里得空间的定义和性质2. 正交投影和最小二乘法3. 傅里叶级数和傅里叶变换九、张量分析1. 张量的概念和性质2. 张量的运算规则3. 张量在物理和工程中的应用十、群论基础1. 群的定义和性质2. 子群和陪集3. 群的表示理论结语高等代数的考研题库不仅涵盖了基础理论,也包括了实际应用和高级概念。
通过系统地学习和练习这些题目,学生可以更好地准备研究生入学考试,并为未来的学术和职业生涯打下坚实的数学基础。
希望这份题库能够成为学生们学习高等代数的有力助手。
2002川大高等代数及答案

2002川大高等代数及答案四川大学2002年攻读硕士学位研究生入学考试题一、(本题满分24分,每小题8分) 解答下列各题.51. 证明多项式f (x ) =x -5x +1在有理数域Q 上不可约.证明:由s a n =1、r a 0=1,又(s , r ) =1r有的可能值为±1,带入验证有f (1) =-3、f (-1) =5s故f (x ) 不含有理根,则f (x ) 只能分解为二次多项式和三次多项式的乘积232232有f (x ) =(x +a 1x +1)(x +b 1x +c 1x +1) 或f (x ) =(x +a 2x -1)(x +b 2x +c 2x -1)⎧a 1+b 1=0⎧a 2+b 2=0⎪a b +c +1=0⎪a b +c -1=0⎪111⎪222 得方程⎨a 1c 1+b 1+1=0和⎨a 2c 2-b 2-1=0,两方程无解⎪⎪⎪⎩a 1+c 1+5=0⎪⎩a 2+c 2-5=05故f (x ) =x -5x +1在有理数域Q 上不可约22. 设A 为n 阶方阵且A +A =2E . 其中E 为n 阶单位矩阵. 证明:r (A -E ) +r (A +2E ) =n ,其中r (A ) 表示矩阵A 的秩.证明:r (A -E ) +r (A +2E ) =r (E -A ) +r (A +2E ) ≥r [(E -A ) +(A +2E )]=r (3E ) =n 即r (A -E ) +r (A +2E ) ≥n ①2由A +A =2E ,得(A -E )(A +2E ) =O有A +2E 的列向量全部是方程(A -E ) X =θ的解,有r (A +2E ) ≤n -r (A -E ) 即r (A -E ) +r (A +2E ) ≤n ②由①、②,得r (A -E ) +r (A +2E ) =n23. 设n 维线性空间V 上的线性变换T满足:T=T. 证明:T+E可逆,其中E为恒等变换.证明:取V 的一组基ε1, ε2, , εn令T在这组基下的矩阵为T ,有T+E在这组基下的矩阵为T +E2由T =T ,得T 的特征值为1、0,有T +E 的特征值为2、1,则T +E ≠0故T +E 可逆,则T+E可逆⎡-13-10⎤2002A 二(本题满分12分)设A =⎢,求. ⎥2116⎣⎦λ+1310=(λ-1)(λ-2) =0 ,有A 的特征值为1、2 解:λE -A =-21λ-1410=当λ=1时,有E -A =-21-00基础解系有n -r (E -A ) =1个向量构成,α1=(5, -7)’151010=当λ=2时,有2E -A =-21-00基础解系有n -r (2E -A ) =1个向量构成,α2=(2, -3)’-12002-1=P -1A 2002P =Λ2002 令可逆矩阵P =(α1, α2) ,有P AP =Λ,有(P AP )2002A 有200352132⎡15-7⋅2⎡⎤⎡⎤⎡⎤=P Λ2002P -1=⎢=⎢⎥⎢⎥2002⎥⎢2002-7-32-7-5-21+21⋅2⎣⎦⎣⎦⎣⎦⎣10-5⋅22003⎤⎥-14+15⋅22002⎦三、(本题满分12分)设V 是数域F 上的三维线性空间. 证明:不存在V 的线性变换T使⎡01-2⎤⎡110⎤⎢-12-2⎥B =⎢011⎥A =得T在V 的两组基下的矩阵分别为:⎢⎥和⎢⎥⎢⎢⎣001⎥⎦⎣001⎥⎦证明:反证法,设存在这样的矩阵A 、B .由A 、B 为同一线性变换T在V 的两组基下的矩阵,则有A ≅Bλ-1022=(λ-1) 3,有A 的特征值为1、1、1 λ-11-121-12000 0λE -A =1λ-2当λ=1时,有E -A =1-12=00000故特征值1对应n -r (E -A ) =2个线性无关的特征值向量①λ-1λE -B =0-10-1=(λ-1) 3,有B 的特征值为1、1、1 λ-0-10-1 0λ-1当λ=1时,有E -B =0000故特征值1对应n -r (E -B ) =1个特征向量②由①、②与A ≅B 矛盾,则假设矛盾故不存在V 的线性变换T使得T在V 的两组基下的矩阵分别A 、B4443四(本题满分12分) 设α, β, γ是三次方程x +3x -1=0的根,求α+β+γ的值.4444解:令x 1=α、x 2=β、x 3=γ,x 1+x 2+x 3的首项为x 1,有x 14322x 20121x 300010-00-00-0→σ14-0σ2σ3σ4=σ141-00-00-0→σ13-1σ2σ3σ4=σ12σ2σσσσ=σ→σσσσ=σ1σ3→2-22-00-00-012342-11-11-00-0123422444422有x 1+x 2+x 3=σ1+a σ1σ2+b σ2+c σ1σ3取x 1=1、x 2=1、x 3=0,有σ1=2,σ2=1,σ3=0 有4a +b =-14 ①取x 1=1、x 2=2、x 3=0,有σ1=3,σ2=2,σ3=0 有18a +4b =-64 ②取x x ,有σ121=2=x 3=11=C 3=3,σ2=C 3=3,有9a +3b +c =-26 ③由①、②、③,得a =-4、b =2、c =4有x 4444221+x 2+x 3=σ1-4σ1σ2+2σ2+4σ1σ3由方程x 3+3x -1=0根与系数的关系得,σ1=0、得α4+β4+γ4 =18五、(本题满分16分)利用正交变换将实二次型f (x 1, x 2, x 3) =x 1x 2+x 1x 3+x 2x 3化为标准形. 并写出相应的正交变换和标准形. ⎡⎢011⎤⎢22⎥解:二次型矩阵为A =⎢1⎢201⎥2⎥⎢11⎥⎢⎣220⎥⎥⎦σC 33=3=1σ2=3、σ3=1λλE -A =-121-2-1212λ-1λ-12111-=-λ-222-λ001211-=(λ+) 2(λ-1)221λ+2-11A 的特征值为-、-、122111--22211-E -A =000当λ=-时,有22000-1n -r (-E -A ) =2个线性无关的向量构成,α1=(1, -1, 0)’ 、α2=(1, 0, -1)’ 基础解系由21当λ=1时,有-E -A =-121-212121-111-2213-=024001-123-4 0-基础解系由n -r (E -A ) =1个向量构成,α3=(1, 1, 1)’ 把α1、α2、α3正交化β1=α1=(1, -1, 0)’ β2=α2-(α2, β1) 111β1=α2-β1=(, , -1)’(β1, β1) 222(α3, β1) (α3, β2)β3=α3-β1-β2=α3=(1, 1, 1)’(β1, β1) (β2, β2)γ1=β12β3β6113=(1, -1, 0)’ 、γ2=2=(, , -1)’ 、γ3==(1, 1, 1)’ β12β2222β3312122f (x , x , x ) =-y -y +y C =(γ, γ, γ) 令正交矩阵123123 123,有X =CY ,即有22-1六、(本题满分12分,每小题6分)设A 、B 是n 阶实正交矩阵,t 为矩阵A B 的特征根-1的重数. 证明:(1)det(AB ) =1的充要条件是t 为偶数. (2)A +B 的秩r (A +B ) =n -t .证明:(1)由A 、B 是n 阶实正交矩阵,有AB (AB )’ =ABB ‘ A ‘ =E ,则AB 为实正交矩阵-1-1由AA ‘ =E ,得A =A ‘ ,即A B =A ‘ B由A 与A ‘ 对应相同的特征值,则AB 与A ‘ B 对应相同的特征值-1有det(AB ) =det(A ‘ B ) =det(A B )实正交矩阵的特征值只能是1和-1 故det(AB ) =1n -t⋅(-1) t =(-1) t ,则有det(AB ) =1的充要条件是t 为偶数-1-1(2)由A 可逆,有r (A +B ) =r [A (A +B )]=r (E +A B ) =n -t七、(本题满分12分)设α1, α2, , αm 为欧氏空间V 的一组线性无关向量,而β1, β2, , βm 和γ1, γ2, , γm 为V 的两组正交向量组. 假设对每个1≤i ≤m ,βi 和γi 均可以由α1, α2, , αi 线性表出. 证明:存在m 个实数a 1, a 2, , a m 使得βi =a i γi 1≤i ≤m .证明:令W =L (α1, α2, , αm ) ⊆V取W 两组标准正交基ε1, ε2, , εm 、e 1, e 2, , e m有(ε1, ε2, , εm ) =(β1, β2, , βm ) Λ1、(e 1, e 2, , e m ) =(γ1, γ2, , γm ) Λ2 则Λ1、Λ2为对角矩阵,有Λ1、Λ2为对角矩阵-1-11(ε1, ε2, , εm ) =(e 1, e 2, , e m ) A ,有(β1, β2, , βm ) =(γ1, γ2, , γm ) Λ2A Λ-1 ①则A 为正交矩阵由βi 和γi 均可以由α1, α2, , αi 线性表出,有(β1, β2, , βm ) =(α1, α2, , αm ) B 、(γ1, γ2, , γm ) =(α1, α2, , αm ) C-1则B 、C 为上三角矩阵,有C B 为上三角矩阵有(β1, β2, , βm ) =(γ1, γ2, , γm ) C B ②-1-1-1-1由①、②,得Λ2A Λ1=C B ,则A =Λ2C B Λ1有A 为上三角矩阵,则A 为上三角矩阵③-1-1-1-1-1-1由A ‘ =A =(Λ2C B Λ1)’ =Λ1’ B ‘ (C )’ (Λ2)’ ,有A 为下三角矩阵④-1由③、④,得A 为对角矩阵,则A 为对角矩阵-1有(β1, β2, , βm ) =(γ1, γ2, , γm ) Λ2A Λ1=(γ1, γ2, , γm ) Λ-1令Λ=diag (a 1, a 2, , a m ) ,即证βi =a i γi 1≤i ≤m。
各大学高等代数考研真题

各大学高等代数考研真题高等代数是数学中的一门重要学科,它在各个领域都有广泛的应用。
对于数学专业的学生来说,高等代数是一个重要的考试科目。
而对于那些准备考研的学生来说,高等代数更是必考的科目之一。
在考研中,高等代数的考试题目往往涉及到各个领域的知识,考察学生对于高等代数的理解和应用能力。
下面我们就来看一些高等代数考研真题。
首先,我们来看一道典型的高等代数考研题目。
题目如下:设V是数域K上的n维线性空间,f是V到V的线性变换。
如果对于任意的v∈V,存在非零多项式g(t),使得g(f)(v)=0,则f一定有特征值。
对于这道题目,我们需要运用到高等代数中的一些基本概念和定理。
首先,我们需要知道什么是特征值和特征多项式。
特征值是指线性变换在某个向量上的作用结果与该向量平行的现象,而特征多项式则是用来求解特征值的一种方法。
在这道题目中,我们需要运用到特征多项式的性质,通过特征多项式来证明f一定有特征值。
接下来,我们来看一道关于线性空间的题目。
题目如下:设V是数域K上的线性空间,f是V到V的线性变换。
如果对于任意的v∈V,存在正整数m,使得f^m(v)=0,则f一定有特征值。
这道题目考察了线性变换的零化幂的概念。
零化幂是指对于线性变换f,存在一个正整数m,使得f^m(v)=0。
而这道题目要求我们证明,如果对于任意的v∈V,存在正整数m,使得f^m(v)=0,则f一定有特征值。
这个题目的证明过程比较复杂,需要运用到线性变换的一些性质和定理,以及线性空间的相关知识。
最后,我们来看一道关于矩阵的题目。
题目如下:设A是n阶方阵,如果存在非零矩阵B,使得AB=0,则A一定不可逆。
这道题目考察了矩阵的可逆性和零子式的概念。
可逆矩阵是指存在逆矩阵的矩阵,而零子式是指矩阵中的某个子矩阵的行列式为0。
这道题目要求我们证明,如果存在非零矩阵B,使得AB=0,则A一定不可逆。
证明过程中,我们需要运用到矩阵的一些性质和定理,以及矩阵的相关知识。
高等代数考研试题精选

《高等代数》试题库一、选择题1.在[]F x 里能整除任意多项式的多项式是( )。
A .零多项式B .零次多项式C .本原多项式D .不可约多项式2.设()1g x x =+是6242()44f x x k x kx x =-++-的一个因式,则=k ( )。
A .1 B .2 C .3 D .43.以下命题不正确的是 ( )。
A . 若()|(),()|()f x g x f x g x 则;B .集合{|,}F a bi a b Q =+∈是数域;C .若((),'())1,()f x f x f x =则没有重因式;D .设()'()1p x f x k -是的重因式,则()()p x f x k 是的重因式4.整系数多项式()f x 在Z 不可约是()f x 在Q 上不可约的( ) 条件。
A . 充分 B . 充分必要 C .必要 D .既不充分也不必要5.下列对于多项式的结论不正确的是( )。
A .如果)()(,)()(x f x g x g x f ,那么)()(x g x f =B .如果)()(,)()(x h x f x g x f ,那么))()(()(x h x g x f ±C .如果)()(x g x f ,那么][)(x F x h ∈∀,有)()()(x h x g x fD .如果)()(,)()(x h x g x g x f ,那么)()(x h x f6. 对于“命题甲:将(1)n >级行列式D 的主对角线上元素反号, 则行列式变为D -;命题乙:对换行列式中两行的位置, 则行列式反号”有( ) 。
A .甲成立, 乙不成立;B . 甲不成立, 乙成立;C .甲, 乙均成立;D .甲, 乙均不成立7.下面论述中, 错误的是( ) 。
A . 奇数次实系数多项式必有实根;B . 代数基本定理适用于复数域;C .任一数域包含Q ;D . 在[]P x 中, ()()()()()()f x g x f x h x g x h x =⇒=8.设ij D a =,ij A 为ij a 的代数余子式, 则112111222212.....................n n n n nn A A A A A A A A A =( ) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川大学2003高等代数考研
09
川大高代
一、1.()2008()f x F f x 是数域上的次多项式,证明的根
2.用代数基本定理证明R 上的不可约多项式只有一次多项式或者满足
2240:b ac ax bx c −<++的二次多项式
3.不用hamilton-calay 定理证明对数域F 上的n 阶矩阵A ,存在F 上的多项式
()()0f x f A =使得
4.设
212322
2
1
23213312()321,())))
f x x x f x αααααααααααα=+++++,,是的三个根,求值
(((
二、1.叙述并证明线性方程组的Grammer 法则 2.F,K 是数域且
,F K A F F ββ⊆是中矩阵,是中向量,证明A x =在F 中有解当且仅当它在K 中有解
3.222214241A −
=− −−
大概数字是这样吧,具体忘了
1(X)=X AX,(X)A F f f ′()在上是否相似与对角矩阵,说明理由(2)求A 的最小多项式
(3)
求的一个标准形
4.好像是前几年的一个类似题吧,说明A 与B 在任何数域上都不相似,另一问忘记了,这些忘记的题一般都不难,掌握方法都很简单的。
呵呵 三、设1():0
{()},n A n A A M F A T X M F A XA X V T −∈≠=∈==∩
,即V 是所有可逆矩阵构造出来
的A T 的交,求dimV 和V 的一组基。
四
、
21210
20000
,{()0},(),,!00k X
r r r k r X M E B X M F X M MX X M F e k E
∞
++=
′==∈+=∀∈=
∑
X X X (1)det(e )1
(3)(,)(0,...,1,...0),1,2,..,2 1.(e ,e )(,)
i
B i r M εαβαβαβ===+=i 求的维数和一组基(2)证明设是F 上的一个双线性型,是这个双线性型在上述基下的一个度量矩阵,证明对任意的,有
五、证明数域F 上的任意一个n 元多项式都可以表示成一次齐次多项式幂的线性组合。
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
四川大学2011年硕士研究生考试——高等代数
一、
1、设V 是数域上的维空间,F n (1)i V i s α∈≤≤,1i i i
i s W k k α≤≤⎧
⎫
=∈⎨
⎬⎩⎭
∑F ,证明:W 是的子空间;
V 2、设是数域上的2阶方阵组成的线性空间,V 是由如下四个矩阵生成的的子空间:,,()2M F 1A F 1420()2M F −⎛⎞=⎜
⎟⎝⎠25103A ⎛⎞=⎜⎟⎝⎠3A 3214−⎛⎞
=⎜⎟
−⎝⎠
, 42945A −⎛⎞=⎜⎟−⎝⎠(1)求和V 的一个基;
()dim V (2)映射为::f V →F ()()f A tr A =(其中()tr A 是矩阵的迹),
A {}ker ()0f A V f A =∈=,求()dim ker f 并写出ker f 的一个基。
二、设数域满足
,F S ⊂F S 1、设是上n 维列向量,则()1i i s α≤≤F ()1i i s α≤≤在上线性相关的充要条件是
F (1i i s α≤≤)在S 上线性相关;
2、设,则在上相似的充要条件是在相似;
,n n
A B ×∈F
,A B F ,A B S 3、设()f x 为上的n 次多项式,F ()f x 在S 上有n 个根()1i x i n ≤≤,则
()
2
1i
j
i j n
x x ≤<≤−∈∏F ;
4、证明:S 关于数的加法、乘法是在数域上的线性空间。
F
三、设为任意可逆矩阵,列举至少四种求A 1
A −的方法。
四、设()1
21p p f x x
x x −−=++++L ,其中p 为素数
1、证明:()f x 在数域上不可约;
2、令(){}
()0n M A M f A =∈= ,其中()n M 是复数域上的阶方阵组成的集合,如下将n M 中元素分类:若存在中可逆矩阵使()n M D 1
A DBD −=,则同类,问:,A
B M 中
矩阵可以分成几类?
五、设V 是数域上的n 维线性空间,F ()End V 是上的全体线性变换组成的线性空间 V 1、求()dim End V 及()End V 的一个基; 2、设()A End V ∈且的特征多项式为A ()f x
(1)证明:如果V 可分解为非平凡的-不变子空间的直和,则A ()f x 在可约; F (2)上述命题的逆命题成立与否,说明理由。
六、设V 是维欧氏空间,内积为n (
),
1、若是V 中一个线性无关组,证明:V 中存在两两正交的使 (1i i s α≤≤)()1i i s β≤≤对任意1,有与k s ≤≤()1i i k α≤≤()1i i k β≤≤等价;
2、设,证明:(1i V i t γ∈≤≤))(1i i t γ≤≤线性无关的充要条件是()(()()1111
,,,,t t t )t γγγγγγγ⎛⎞
⎜
⎟⎜⎟⎜⎟⎝⎠L M L
M
L γ是正定矩阵。
七、设()2,A B M ∈ (二阶实方阵)
,0AB BA +=且2
2
A B E ==(单位矩阵),证明: 存在可逆矩阵使()
2T M ∈
1
1001T AT −⎛⎞=⎜
⎟−⎝⎠(可能是)且。
1
1001TAT −⎛⎞=⎜−⎝⎠
⎟10110T BT −⎛⎞
=⎜⎟⎝⎠
八、求矩阵X 使。
4
300031000X ⎛⎞
⎜⎟=⎜⎟⎜⎟⎝⎠。