西南大学高等代数历年考研试题
2001高代西南大学数学专业考研真题资料

2001高等代数一、判断题,正确的答“对”,错误的答“错”,并对错误的命题举出反例给予说明。
(每小题5分,共30分)1.数域F 上的某n 元线性方程组有解,则其全体解向量可构成F 上线性空间n F 的一个子空间。
2.对称矩阵的伴随矩阵也是对称矩阵。
3.数域F 上一元未定元多项式)(x f 不可约的充分必要条件是对][x F 中的多项式)(x g 和)(x h ,当)()(|)(x h x g x f 时,必有)(|)(x g x f 或)(|)(x h x f 。
4.在任意非零的有限维欧式空间中,对任意的正实数r 存在无穷多其之间的距离为r 的向量对。
5.设σ和τ为数域F 上的某n 维线性空间V 的两个线性变换,若σ和τ具有相同的特征多项式,则σ和τ具有相同的最小多项式。
6.n 元二次型AX X x x x f n '=),,,(21 负定的充分必要条件是A 的顺序主子式均小于0。
二、计算题(每小题10分,共40分)1、求所有λ使01600400040001≠λλλλ2、设4321,,,αααα及4321,,,ββββ是数域F 上的4维线性空间V 的两个基,且V 中向量α在基4321,,,αααα下的坐标为()4,3,2,1,V 中向量β在基4321,,,ββββ下的坐标为()1,2,3,4。
若基4321,,,αααα到基4321,,,ββββ的过渡矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0111101111011110,试求向量βα+在基4321,,,ββββ下的坐标。
3、求-λ矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----++=00221330010102602206341032)(λλλλλλλλλλλλλλλA 的标准形。
4、通过正交线性替换求二次曲面方程054423222=+-----yz xy z y x 的标准形,并在相应新的直角坐标系中画出草图。
三、证明题(每小题10分,共30分)(注:1—3题由数学教育方向考生完成,4—6题由基础数学专业其它各方向考生完成。
高等代数考研试题及答案

高等代数考研试题及答案一、选择题(每题3分,共30分)1. 下列矩阵中,哪个不是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [1, -1; 2, 2]2. 设线性变换 \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) 由矩阵 \( A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \) 给出,那么 \( T(1, 2, 3) \) 的结果是:A. (3, 5, 3)B. (5, 3, 3)C. (1, 2, 3)D. (2, 3, 1)3. 多项式 \( p(x) = x^3 - 6x^2 + 11x - 6 \) 的根的个数是:A. 1B. 2C. 3D. 44. 设 \( V \) 是所有 \( n \) 次多项式的向量空间,\( T: V\rightarrow V \) 是一个线性变换,且 \( T(p(x)) = p'(x) \)。
如果 \( T \) 的特征值为 \( k \),那么 \( k \) 等于:A. 0B. 1C. -1D. \( n \)5. 下列哪个命题是正确的?A. 每个线性映射都可以用一个矩阵来表示。
B. 矩阵的乘积总是可交换的。
C. 两个相似矩阵必定是同阶矩阵。
D. 行列式的值总是正数或零。
6. 设 \( A \) 是一个 \( n \) 阶方阵,如果 \( A \) 的所有特征值的和等于 \( 0 \),那么 \( A \) 必定是:A. 正交矩阵B. 对角矩阵C. 零矩阵D. 反对称矩阵7. 如果一个 \( n \) 阶方阵 \( A \) 的所有元素都等于 \( 1 \),那么 \( A^n \) 的迹(trace)是:A. \( n \)B. \( n^n \)C. \( n! \)D. \( 0 \)8. 对于任意 \( n \) 阶方阵 \( A \),下列哪个选项是正确的?A. \( \det(A^2) = (\det A)^2 \)B. \( \det(A^T) = \det A \)C. \( \det(A + I) = \det A + 1 \)D. \( \det(A) = \det(A^T) \)9. 设 \( V \) 是一个向量空间,\( T: V \rightarrow V \) 是一个线性变换,如果 \( T \) 的一个特征向量 \( v \) 满足 \( T(v) = \lambda v \),那么 \( T \) 的逆变换 \( T^{-1} \)(如果存在)将 \( v \) 映射到:A. \( \lambda^{-1} v \)B. \( \frac{1}{\lambda} v \)C. \( v \)D. \( v + \lambda v \)10. 下列哪个矩阵是正交矩阵?A. \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)B. \( \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \)C. \( \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \)D. \( \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \)二、填空题(每题4分,共20分)11. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式 \( \det A \) 等于 _______。
西南大学2011年《高等代数》考研真题

5.(20分)设 ,证明 无解,这里X为三阶未知复矩阵。
6.(10分)设V是数域P上n维线性空间,是V的一个线性变换,的特征多项式为 。证明: 在P上不可约的充分必要条件是V无关于的非平凡不变子空间(通常称V的子空间0和V为V的关于的平凡不变子空间)。
1.填空题(每小题6分,共60分)
(1)设 ,在由1,2,…,n构成的n!个n级排列中,反序数等于2的排列
西南大学
2011年攻读硕士学位研究生入学考试试题
学科、专业:研究方向:
试题名称:高等代数试题编号:819
(答题一律做在答题纸上,并注明题目番号,否则答题无效)
(7)二元实二次型 的秩=。
(8)设n元非齐次线性方程组AX=B无解,其系数矩阵的秩为4,则其增广矩阵的秩
为。
(9)设矩阵 ,其中 线性无关, ,向量
,则非齐次线性方程组AX=的通解为。
(10)设D为一个三阶行列式,D的元素为1或 ,则D的最大值为。
2.(20分)设 ,且 ,其中E为三阶单位矩阵,求 。
3.(20分)设A为三阶实对称矩阵,其特征值为 , 与
分别是A的属于特征值 与 的特征向量。求矩阵A。
4.(20分)设P为数域, , ,且 。证明
共有个。
(2)设A,B为n阶方阵。若 , , ,则 =。(3)设 Nhomakorabea 。若 ,则
, 。
(4)设A为三阶方阵, 为三阶可逆阵,并且 。
若 ,则 =。
(5)设 是三阶正定矩阵,则 的取值范围是。
(6)设 为复数域上三阶方阵,则A的最小多项式为。
西南大学数学与统计学院《819高等代数》历年考研真题汇编

\ 10)设<4 =(叫/队…,】,),其中耳为实教” R不全为零,B-A A ,
是
4的转的“则8的全部特征值为, L〔2。分}设况为一复数,且是。[刈中某个非零多顼式的报,令
J = V(X)€ Q[x] |,愆)=0} a
证明;<D在/中存在唯一的最高轶项系数是1的多项式尸⑴,使p(x)整除J中每一多项
°
Fl 0 ]1
~
A⑵分)设』=0 2 0 ,且施+ E* 4田其中E为三阶单位矩阵,求研 101
3.⑵如设 X为三阶实对祢矩阵,其特征值为;I,=必
=o, %」与
L一
■2_
2
%=]分别是>1的属于精征值人与石的特征向量。求矩阵元
-2
虫门0胪设尸为教域,/(玖g⑴顷刈,以,弓如尸,且血-加#0,证明
2008年西南大学819高等代数考研真题
西南大学
澎磅年攻读用七学位研究生入学考试试题
硕
学科,专业:摒湖"也
研究方向:&诗帮网佑为向
试题名称:曷驾心妲
试题编号:811
(答题-律做在答题纸上,并注明题忸番号,否则答题无效)
泠意:报汶学衍i n’MlWI.完我I,餐3. 4. 5. 6-境1°暨报引 向的与1「尼成!,2. 3. 4, 5. 6- 7> 8题,监试时问为3小旧’-满分为顷'■
[Q 0 0 1 . (6)给定尸'中的线性变换4如下:
A -. (x)ix1,x3)h>(2xi -xz,x2 +x^2xt +Xj)
则 KeM ="
(7)令4为V的正交变换.。=(2,0厂1厂2)为4的一个特征向街 则
(Aav Aa)=.
西南大学2012年《高等代数》考研真题

(9)三元实二次型 的正惯性指数为。
(10)设 ,其中 为实数,且不全为零, ,这里 是A的转置。则B的全部特征值为。
2.(20分)设 为一复数,且是 中某个非零多项式的根,令
。
证明:(1)在J中存在唯一的最高次项系数是1的多项式 ,使 整除J中每一多项式 ;
(2) 在Q上不可约。
3.(20分)设V为n维欧几里得空间, 为V的一个正交变换,令
。
(1)证明: 是V的子空间;
(2)证明Leabharlann 。4.(20分)设A,B为n阶实矩阵,A有n个互不相同的特征值,且AB=BA。证明存在非零实系数多项式 ,使 。
5.(10分)设A,B,C为n阶方阵,满足条件BC= 0, 。证明:存在非零的n维列向量X,使AX=BX。其中 表示矩阵A的秩。
1.填空题(每小题8分,共80分)
西南大学
2012年攻读硕士学位研究生入学考试试题
学科、专业:数学各专业研究方向:所有方向
试题名称:高等代数试题编号:819
(答题一律做在答题纸上,并注明题目番号,否则答题无效)
(7)设 ,则A的Jordan(若尔当)标准形为。
(8)设V为n维欧几里得空间(欧氏空间), 为V中非零向量, 是关于 的反射变换,
(1)方程组 在复数域内的解是。
(2)行列式 的第一列元的代数余子式的和是。
(3) 。
(4) 。
(5)设A为3阶方阵,X为3维列向量,满足 ,若向量组X,AX,A2X线性无关,则 。
(6)设P为数域,f为线性空间P3的线性变换,使
。
则f的象空间Imf的维数是。