圆的切线的判定方法练习题
苏科版九年级数学上圆的切线的性质及其判定习题含答案

圆的切线的性质及其判定一、选择题1.下列四个选项中的表述,正确的是()A.经过半径上一点且垂直于这条半径的直线是圆的切线B.经过半径的端点且垂直于这条半径的直线是圆的切线C.经过半径的外端且垂直于这条半径的直线是圆的切线D.经过一条弦的外端且垂直于这条弦的直线是圆的切线2.如图1,P为☉O外一点,PA为☉O的切线,A为切点,PO交☉O于点B,若∠P=30°,OB=3,则线段BP的长为()图1A.3B.3√3C.6D.93.[2020·徐州]如图2,AB是☉O的弦,点C在过点B的切线上,OC⊥OA,OC交AB于点P.若∠BPC=70°,则∠ABC的度数等于()图2A.75°B.70°C.65°D.60°4.[2019·宁波鄞州区一模]如图3,AB是半圆O的直径,点C在半圆上(不与点A,B重合),DE⊥AB于点D,交BC于点F,下列条件中能判定CE是切线的是()图3A.∠E=∠CFEB.∠E=∠ECFC.∠ECF=∠EFCD.∠ECF=60°5.如图4,☉O的半径为2,点O到直线l的距离为3,P是直线l上的一个动点,PQ切☉O于点Q,则PQ的最小值为()图4A.√13B.√5C.3D.5二、填空题6.如图5,以点O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆的半径为10 cm,小圆的半径为6 cm,则弦AB的长为.图57.[2020·苏州]如图6,已知AB是☉O的直径,AC是☉O的切线,连接OC交☉O于点D,连接BD.若∠C=40°,则∠B的度数是.图6⏜)上, 8.[2019·温州]如图7,☉O分别切∠BAC的两边AB,AC于点E,F,点P在优弧(EDF若∠BAC=66°,则∠EPF等于°.图79.[2019·鄂州]如图8,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A,B在x轴上,且OA=OB,P为☉C上的动点,∠APB=90°,则AB长度的最大值为.图810.阅读下面材料:在数学课上,老师提出如下问题:尺规作图,过圆外一点作圆的切线.已知:如图9,☉O和☉O外一点P.求作:过点P的☉O的切线.小涵的主要作法如下:如图10,(1)连接OP,作线段OP的中点A;(2)以点A为圆心,OA为半径作圆,交☉O于点B,C;(3)作直线PB和PC.则PB和PC就是所求作的切线.老师说:“小涵的作法是正确的.”请回答:小涵的作图依据是.图9图10三、解答题11.[2019·南通模拟]如图11,Rt△ABC中,∠C=90°,BC=3,点O在AB上,OB=2,以O为圆心,OB为半径的☉O与AC相切于点D,交BC于点E,求弦BE的长.图1112.如图12,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作☉O,与AC,BC 分别交于点M,N,与AB的另一个交点为E,过点N作NF⊥AB,垂足为F.(1)求证:NF是☉O的切线;(2)若NF=2,DF=1,求弦ED的长.图1213.已知:在△ABC中,AC=6,BC=8,AB=10,D是边AB上的一点,过C,D两点的☉O分别与边AC,BC交于点E,F.(1)如图13(a)(b),若D是AB的中点:①在(a)中用尺规作出一个符合条件的图形(保留作图痕迹,不写作法);②如图(b),连接EF,若EF∥AB,求线段EF的长;③请写出求线段EF长度最小值的思路.(2)如图(c),当点D在边AB上运动时,线段EF长度的最小值是.图13答案1.[解析] C由切线的判定定理可知:经过半径的外端且与这条半径垂直的直线是圆的切线,故A,B,D选项不正确,C选项正确.故选C.2.[解析] A如图,连接OA.∵PA为☉O的切线,A为切点,∴∠OAP=90°.∵OB=3,∴OA=3.∵∠P=30°,∴OP=6,∴BP=6-3=3.故选A.3.[解析] B∵OC⊥OA,∴∠AOC=90°.∵∠APO=∠BPC=70°,∴∠A=90°-70°=20°.∵OA=OB,∴∠OBA=∠A=20°.∵BC为☉O的切线,∴OB⊥BC,∴∠OBC=90°,∴∠ABC=90°-20°=70°.故选B.4.[解析] C如图,连接OC.∵OC=OB,∴∠OCB=∠B.∵DE⊥AB,∴∠BDF=90°,∴∠B+∠DFB=90°.∵∠EFC=∠BFD,∴∠B+∠EFC=90°.若∠ECF=∠EFC,则∠OCB+∠ECF=90°,∴CE是☉O的切线.故选C.5.B6.[答案] 16 cm[解析] 连接OA,OC.∵AB是小圆的切线,∴OC⊥AB.∵OA=10 cm,OC=6 cm,∴AC=√OA2-OC2=8 cm.∵AB是大圆的弦,OC过圆心,OC⊥AB,∴AB=2AC=2×8=16(cm).7.[答案] 25°[解析] ∵AC是☉O的切线,∴OA⊥AC,∴∠OAC=90°,∴∠AOC=90°-∠C=90°-40°=50°.∴∠B=1∠AOD=25°,2即∠B的度数为25°.8.[答案] 57[解析] 连接OE,OF.∵☉O分别切∠BAC的两边AB,AC于点E,F,∴OE⊥AB,OF⊥AC.∵∠BAC=66°,∴∠EOF=114°.∵∠EOF=2∠EPF,∴∠EPF=57°.故答案为57.9.[答案] 16[解析] 连接OC并延长,交☉C上一点P,以O为圆心,以OP的长为半径作☉O,交x轴于点A,B,此时∠APB=90°,且AB的长度最大.∵C(3,4),∴OC=√32+42=5.∵以点C为圆心的圆与y轴相切,∴☉C的半径为3,∴OP=OA=OB=8,∴AB=OA+OB=16.故答案为16.10.[答案] 直径所对的圆周角是直角[解析] 连接OB,OC.∵OP是☉A的直径,∴∠PBO=∠PCO=90°,∴OB⊥PB,OC⊥PC.∵OB,OC是☉O的半径,∴PB,PC是☉O的切线.则小涵的作图依据是直径所对的圆周角是直角.11.解:如图,连接OD,过点O作OF⊥BE于点F,BE.∴BF=12∵AC是☉O的切线,∴OD⊥AC,∴∠ODC=∠C=∠OFC=90°,∴四边形ODCF是矩形,∴OB=OD=FC=2.∵BC=3,∴BF=BC-FC=3-2=1,∴BE=2BF=2.12.解:(1)证明:连接ON,如图所示.∵在Rt△ABC中,CD是斜边AB上的中线, ∴CD=BD,∴∠DCB=∠B.∵OC=ON,∴∠ONC=∠DCB,∴∠ONC=∠B,∴ON∥AB.∵NF⊥AB,∴∠NFB=90°,∴∠ONF=∠NFB=90°,∴ON⊥NF.又∵NF过半径ON的外端,∴NF是☉O的切线.(2)过点O作OH⊥ED,垂足为H,如图所示. 设☉O的半径为r.∵OH⊥ED,NF⊥AB,ON⊥NF,∴∠OHD=∠NFH=∠ONF=90°,∴四边形ONFH为矩形,∴HF=ON=r,OH=NF=2,∴HD=HF-DF=r-1.在Rt△OHD中,∠OHD=90°,∴OH2+HD2=OD2,即22+(r-1)2=r2,解得r=5,2.∴HD=32∵OH⊥ED,且OH过圆心O,∴HE=HD,∴ED=2HD=3.13.解:(1)①答案不唯一,如图(a)所示.②如图(b),连接CD,FD.∵AC=6,BC=8,AB=10,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,∴EF是☉O的直径.∵D是AB的中点,∴AD=BD=CD=5,∴∠B=∠DCB.∵EF∥AB,∴∠A=∠CEF.又∵∠CDF=∠CEF,∴∠A=∠CDF.∵∠A+∠B=90°,∴∠CDF+∠DCB=90°,∴∠CFD=90°,∴CD是☉O的直径,∴EF=CD=5.③由AC2+BC2=AB2可得∠ACB=90°,∴EF是☉O的直径.∵CD 是☉O 的弦, ∴EF ≥CD ,∴当CD 是☉O 的直径时,EF 的长度最小.(2)如图(c),由(1)③知,当CD 是☉O 的直径时,EF 的长度最小,最小值为CD 的长.当点D 在边AB 上运动时,只有当CD ⊥AB 时,CD 的长最小. 由(1)②知,△ABC 是直角三角形, ∴S △ABC =12AC ·BC=12AB ·CD , ∴AC ·BC=AB ·CD , ∴CD=AC ·BC AB=6×810=245, ∴线段EF 长度的最小值为245.故答案为245.。
圆的切线的判定

有切点, 连半径, 证垂直。
如图,在△ABC中,∠A=∠C=30°,AB是⊙O的弦,
AC过圆心O。
求证:BC是⊙O的切线。
有切点,
连半径,
证垂直。
如图,OA是∠CAD的平分线,AC与⊙O相切于B。
求证:AD与⊙点, 作垂直,证半径。
AC是⊙O的直径,点D在⊙O上,过点D的直线BD与AC 的延长线交于点B,AE⊥BD,垂足为点E, AD平分∠BAE。 求证:BD是⊙O的切线。
有切点, 连半径,证垂直。
如图,AB是⊙O的直径,⊙O过BC的中点D,DE⊥AC。 求证:DE是⊙O的切线。
切线的判定
切线的判定
1、与圆只有一个交点。
2、圆心到直线的距离等于半径。
3、经过半径的外端且垂直于 这条半径的直线为圆的切线。
判断
× ×
×
利用判定定理时,要注意直线需具备以下两个条件, 缺一不可。
(1)直线经过半径的外端。 (2)直线与半径垂直。
例:已知,直线AB经过⊙O上的点C, 并且OA=OB,CA=CB。
圆的切线的性质和判定-练习题-含答案.doc

D.不能确定的切线的性质与判定副标题 题号 * 总分 得分一、选择题(本大题共2小题,共6.0分)1.己知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为() A.相离 B.相切 C.相交 D.无法确定【答案】C 【解析】解:半径r = 5,圆心到直线的距离d=3,v 5 > 3, BPr > d,二直线和圆相交,故选C.由直线和圆的位置关系:r>d,可知:直线和圆相交.本题考查了直线和圆的位置关系,判断的依据是半径和直线到圆心的距离的大小关系: 设。
的半径为厂,圆心。
到直线/的距离为丈 ①直线/和0。
相交②直线 /和。
相切od=r ;③直线/和。
0相离^d>r.2. 在中,zC= 90°, BC=3cm, AC=4cm,以点 C 为圆心,以2.5cm 为半径画圆,则。
C 与直线AB 的位置关系是() A,相交 B.相切 C.相离 【答案】A 【解析】解:过C 作CD LAB 于。
,如图所示: A ABC 中,L.C — 90, AC= 4, BC = 3, ・・・AB =、泌=5,7 A ABC^Jm=^-ACxBC=预8x CD, 2 2・•. 3 X 4 = 5 CD ,CD= 2.4<2.5, 即』< r, .••以2.5为半径的。
C 与直线AB 的关系是相交; 故选A.过C 作CD LAB 于C,根据勾股定理求出AB,根据三角形的面积公式求出CD,得出 d<r,根据直线和圆的位置关系即可得出结论.本题考查了直线和圆的位置关系,用到的知识点是勾股定理,三角形的面积公式;解此 题的关键是能正确作出辅助线,并进一步求出CO 的长,注意:直线和圆的位置关系有: 相离,相切,相交.二、填空题(本大题共3小题,共9.0分)3, 如图,已知。
是MBC 的内切圆,切点为。
、E 、 尸,如果AE=2, CD= 1, BF= 3,则内切圆的半 径『= .BD【答案】1【解析】解:・.・。
(完整版)切线的性质与判定练习题

1 切线的性质与判定练习题 1。
(2011无锡市)已知⊙O 的半径为2,直线l 上有一点P 满足PO=2,则直线l 与⊙O 的位置关系是( )A .相切 B.相离 C.相离或相切 D.相切或相交2.如图,AB 与⊙O 切于点B ,AO=6cm,AB=4cm,则⊙O 的半径为( )A .45cmB .25cmC .213cmD .13m3.如图,已知∠AOB=30°,M 为OB 边上任意一点,以M 为圆心,2cm 为半径作⊙M,当OM=______cm 时,⊙M 与OA 相切.4.如图,AB 是⊙O 的直径,C .D 是⊙O 上一点,∠CDB=20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 等于( )A . 40°B .50°C . 60°D 。
70° 5。
如图,圆周角∠BAC=55°,分别过B 、C 两点作⊙O 的切线,两切线相交于点P ,则∠BPC= °.6.(2013•株洲)已知AB 是⊙O 的直径,直线BC 与⊙O 相切于点B ,∠ABC 的平分线BD 交⊙O 于点D ,AD 的延长线交BC 于点C .(1)求∠BAC 的度数;(2)求证:AD=CD .7.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 的过C 点的直线互相垂直,垂足为D,且AC 平分∠DAB.(1)求证:DC 为⊙O 的切线;(2)若⊙O 的半径为3,AD=4,求AC 的长.8.如图,AB 是半圆O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点C ,BD⊥PD,垂足为D ,连接BC .求证:BC 平分∠PDB;O P BACC O BA D9.如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C,∠DAB=∠B=30°.(1)直线BD是否与⊙O相切?为什么?(2)连接CD,若CD=5,求AB的长。
10。
圆的切线综合练习题与答案完整版

圆的切线综合练习题与答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】切线的判定与性质练习题一、选择题(答案唯一,每小题3分)1.下列说法中,正确的是( )A.与圆有公共点的直线是圆的切线 B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线 D.圆心到直线的距离等于半径的直线是圆的切线2. 如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为( )A.70° B.35° C.20° D.40°第2题第3题第4题第5题3. 如图,线段AB是⊙O的直径,点C,D为⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠CDB等于( )A.20° B.25° C.30° D.40°4.如图,等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分别为D,E,则⊙O的半径为( )A.8 B.6 C.5 D.45.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是( )A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠ADC二.填空题(每小题3分)6.如图,在⊙O中,弦AB=OA,P是半径OB的延长线上一点,且PB=OB,则PA与⊙O的位置关系是_________.第6题第7题第8题7.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为________________.8.如图,AB是⊙O的直径,O是圆心,BC与⊙O切于点B,CO交⊙O于点D,且BC=8,CD=4,那么⊙O的半径是______.9. 如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=_______度.第9题第10题第11题10. 如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC,BE.若AE=6,OA=5,则线段DC的长为______.11.如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠MAB=30°,则∠B=________度.三、解答题(写出详细解答或论证过程)12.(7分)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.求证:AC是⊙O的切线.第12题第13题第14题13.(7分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.求证:∠BDC=∠A.14.(7分)如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D,求证:AC与⊙D相切.15.(10分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.第15题第16题16.(12分)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):__________________________或者_______________________;(2)如图②,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.17.(12分)如图,已知直线PA交⊙O于A,B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长.答案:DDADC 6. 相切 7. ∠ABC=90°不排除等效答案 8. 6 9. 45 10. 4 11. 6012. 解:连接OD,∵BD为∠ABC平分线,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠CBD=∠ODB,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为⊙O的切线13. 解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠ODB+∠BDC=90°,∵AB是⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A14. 解:过D作DH⊥AC于H,由角平分线的性质可证DB=DH,∴AC与⊙D相切15. 解:(1)∵∠COD=2∠CAD,∠D=2∠CAD,∴∠D=∠COD.∵PD与⊙O相切于点C,∴OC⊥PD,即∠OCD=90°,∴∠D=45°(2)由(1)可知△OCD是等腰直角三角形,∴OC=CD=2,由勾股定理,得OD=22+22=22,∴BD=OD-OB=22-216. (1) ∠BAE=90°∠EAC=∠ABC(2) (2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线17. 解:(1)连接OC,证∠DAC=∠CAO=∠ACO,∴PA∥CO,又∵CD⊥PA,∴CO⊥CD,∴CD为⊙O 的切线(2)过O作OF⊥AB,垂足为F,∴四边形OCDF为矩形.∵DC+DA=6,设AD=x,则OF=CD=6-x,AF=5-x,在Rt△AOF中,有AF2+OF2=OA2,即(5-x)2+(6-x)2=25,解得x1=2,x2=9,由AD<DF知0<x<5,故x=2,从而AD=2,AF=5-2=3,由垂径定理得AB=2AF=6。
中考数学专项练习圆的切线长定理(含解析)

中考数学专项练习圆的切线长定理(含解析)一、单选题1.如图,△ABC是一张周长为17cm的三角形的纸片,BC=5cm,⊙O 是它的内切圆,小明预备用剪刀在⊙O的右侧沿着与⊙O相切的任意一条直线MN剪下△AMN,则剪下的三角形的周长为()A.12cm B.7cm C.6cm D.随直线MN的变化而变化2.下列说法正确的是()A.过任意一点总能够作圆的两条切线 B.圆的切线长确实是圆的切线的长度C.过圆外一点所画的圆的两条切线长相等 D.过圆外一点所画的圆的切线长一定大于圆的半径3.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB 于C,D.若⊙O的半径为1,△PCD的周长等于2 ,则线段AB的长是()A.B.3C. 2D. 34.如图,圆和四边形ABCD的四条边都相切,且AB=16,CD=10,则四边形ABCD的周长为()A.5B.52C.54D.565.如图,PA,PB,CD与⊙O相切于点为A,B,E,若PA=7,则△P CD的周长为()A.7B.14C.10.5D.106.如图,PA,PB切⊙O于点A,B,PA=8,CD切⊙O于点E,交PA,PB 于C,D两点,则△PCD的周长是()A.8B.18C.16D.147.如图,四边形ABCD中,AD平行BC,∠ABC=90°,AD=2,AB= 6,以AB为直径的半⊙O 切CD于点E,F为弧BE上一动点,过F点的直线MN为半⊙O的切线,MN交BC于M,交CD于N,则△MCN的周长为()A.9B.1C. 3D. 28.圆外切等腰梯形的一腰长是8,则那个等腰梯形的上底与下底长的和为()A.4B.8C.12D.169.如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,已知AD=10cm ,小明预备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为()A.20cmB.15cmC.10cm D.随直线MN的变化而变化二、填空题10.如图,PA、PB是⊙O的两条切线,A、B是切点,若∠APB=60°,PO=2,则⊙O的半径等于________.11.PA、PB分别切⊙O于点A、B,若PA=3cm,那么PB=________cm.12.如图,一圆内切于四边形ABCD,且AB=16,CD=10,则四边形A BCD的周长为________.13.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的直径是________cm.14.如图,PA,PB是⊙O的两条切线,切点分别是A、B,PA=10,CD 是⊙O的切线,交PA于点C,交PB于点D,则△PCD的周长是________.15.如图,AB,AC,BD是⊙O的切线,P,C,D为切点,假如AB=5,AC=3,则BD的长为________.16.如图,一圆外切四边形ABCD,且AB=16,CD=10,则四边形的周长为________.答案解析部分一、单选题1.【答案】B【考点】切线长定理【解析】【解答】解:设E、F分别是⊙O的切点,∵△ABC是一张三角形的纸片,AB+BC+AC=17cm,⊙O是它的内切圆,点D是其中的一个切点,BC=5cm,∴BD+CE=BC=5cm,则AD+AE=7cm,故DM=MF,FN=EN,AD=AE,∴AM+AN+MN=AD+AE=7(cm).故选:B.【分析】利用切线长定理得出BC=BD+EC,DM=MF,FN=EN,AD=AE,进而得出答案.2.【答案】C【考点】切线长定理【解析】【解答】解:A、过圆外任意一点总能够作圆的两条切线,过圆上一点只能做圆的一条切线,过圆内一点不能做圆的切线;故A错误,不符合题意;B、圆的切线长确实是,过圆外一点引圆的一条切线,这点到切点之间的线段的长度确实是圆的切线长;故B错误,不符合题意;C、依照切线长定理:过圆外一点所画的圆的两条切线长相等;故C是正确的符合题意;D、过圆外一点所画的圆的切线长取决于点离圆的距离等,故不一定大于圆的半径;故D错误,不符合题意;故答案为:C。
圆的切线的判定和性质 课后作业(答案解析)提升 高中数学选修4-1 北师大版

第二课时圆的切线的判定和性质1.下列直线是圆的切线的是() A.与圆有公共点的直线B.垂直于圆的半径的直线C.过圆半径的外端点的直线D.到圆心距离等于该圆半径的直线答案:D2.已知AB是⊙O的切线,下列条件可推出AB⊥CD的是() A.AB与⊙O相切于CD上的C点B.CD经过圆心C.CD为直径D.AB与⊙O相切于C点,且直线CD经过圆心答案:D3.如图,已知⊙O的直径AB与弦AC的夹角为30°,过C点的切线PC与AB 的延长线交于P,PC=5,则⊙O的半径是()A.533 B.536C.10 D.5答案:A4.下列说法正确的是()A.垂直于半径的直线是圆的切线B.垂直于切线的直线必经过圆心C.圆的切线垂直于经过切点的半径D.垂直于切线的直线必经过切点答案:C5.如图,⊙O为△ABC的内切圆,∠C=90°,AO的延长线交BC于点D,AC =4,CD=1,则⊙O的半径等于()A.45 B.54C.34 D.56答案:A6.如图,△ABC外切于⊙O,切点分别为D、E、F,∠A=60°,BC=7,⊙O 的半径为3,△ABC的周长为________.答案:207.如图,⊙O的半径为1,圆心O在正三角形的边AB上沿图示方向移动,当⊙O移动到与AC边相切时,OA的长为________.答案:23 38.如图,从圆外一点P引⊙O的两条切线PA、PB,点A、B为切点.求证:(1)PO平分∠APB;(2)PO垂直平分线段AB.证明:(1)连接OA、OB,则OA⊥PA,OB⊥PB,OA=OB.又PO=PO,所以△PAO≌△PBO.故∠APO=∠BPO,即PO平分∠APB.(2)由上面证明可知△PAO≌△PBO,所以PA=PB.又PO平分∠APB,由等腰三角形三线合一定理,知PO垂直平分线段AB.9.如图,BD为⊙O的直径,AD交BC于点E,AE=2,ED=4.(1)求AB的长;(2)延长DB到点F,使BF=BO,连接FA,证明:FA与⊙O相切.解:(1)AB=2 3.(2)证明:连接OA.∵BD为⊙O的直径,∴∠BAD=90°.∴BD=AB2+AD2。
2022年中考数学大题圆证明切线的两种常用方法及专项练习题汇总

2022中考数学圆综合大题证明切线的两种常用方法类型1直线与圆有交点方法归纳:直线过圆上某一点,证明直线是圆的切线时,只需“连半径,证垂直,得切线”.“证垂直”时通常利用圆中的关系得到90°的角,如直径所对的圆周角等于90°等.【例1】如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M.求证:DM与⊙O相切.1.(朝阳中考)如图,AB是⊙O的弦,OA⊥OD,AB,OD交于点C,且CD=BD.(1)判断BD与⊙O的位置关系,并证明你的结论;(2)当OA=3,OC=1时,求线段BD的长.2.(德州中考)如图,已知⊙O的半径为1,DE是⊙O的直径,过D作⊙O的切线,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明,若不是,说明理由.3.(毕节中考)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.类型2不确定直线与圆是否有公共点方法归纳:直线与圆没有已知的公共点时,通常“作垂直,证半径,得切线”.证明垂线段的长等于半径常用的方法是利用三角形全等或者利用角平分线上的点到角的两边的距离相等.【例2】如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.4.如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC 相切于点M,与AB,AD分别相交于点E,F.求证:CD与⊙O相切.5.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB长为半径作⊙D,AB=5,EB=3.(1)求证:AC是⊙D的切线;(2)求线段AC的长.参考答案【例1】 证明:法一:连接OD.∵AB =AC ,∴∠B =∠C.∵OB =OD ,∴∠BDO =∠B.∴∠BDO =∠C.∴OD ∥AC.∵DM ⊥AC ,∴DM ⊥OD.∴DM 与⊙O 相切.法二:连接OD ,AD. ∵AB 是⊙O 的直径,∴AD ⊥BC.∵AB =AC ,∴∠BAD =∠CAD.∵DM ⊥AC ,∴∠CAD +∠ADM =90°.∵OA =OD ,∴∠BAD =∠ODA.∴∠ODA +∠ADM =90°.即OD ⊥DM ,∴DM 是⊙O 的切线.1.(1)连接OB ,∵OA =OB ,∴∠OAC =∠OBC.∵OA ⊥OD ,∴∠AOC =90°.∴∠OAC +∠OCA =90°.∵DC =DB ,∴∠DCB =∠DBC.∵∠DCB =∠ACO ,∴∠ACO =∠DBC.∴∠DBC +∠OBC =90°.∴∠OBD =90°.∵点B 是半径OB 的外端,∴BD 与⊙O 相切.(2)设BD =x ,则CD =x ,OD =x +1,OB =OA =3,由勾股定理得:32+x 2=(x +1)2.解得x =4.∴BD =4.2.(1)连接BD ,则∠DBE =90°.∵四边形BCOE 是平行四边形,∴BC ∥OE ,BC =OE =1.在Rt △ABD 中,C 为AD 的中点,∴BC =12AD =1.∴AD =2.(2)BC 是⊙O 的切线,理由如下:连接OB ,由(1)得BC ∥OD ,且BC =OD.∴四边形BCDO 是平行四边形.又∵AD 是⊙O 的切线,∴OD ⊥AD.∴四边形BCDO 是矩形.∴OB ⊥BC ,∴BC 是⊙O 的切线.3.(1)连接OA ,OD ,∵D 为BE 的下半圆弧的中点,∴∠FOD=90°.∵AC=FC,∴∠CAF=∠AFC.∵∠AFC=∠OFD,∴∠CAF=∠OFD.∵OA=OD,∴∠ODF=∠OAF.∵∠FOD=90°.∴∠OFD+∠ODF=90°.∴∠OAF+∠CAF=90°,即∠OAC=90°.∴AC与⊙O相切.(2)∵半径R=5,EF=3,∴OF=OE-EF=5-3=2.在Rt△ODF中,DF=52+22=29.【例2】法一:连接DE,作DF⊥AC,垂足为F.∵AB是⊙D的切线,∴DE⊥AB.∵DF⊥AC,∴∠DEB=∠DFC=90°.∵AB=AC,∴∠B=∠C.∵BD=CD,∴△BDE≌△CDF.∴DF=DE.∴F在⊙D上.∴AC是⊙D的切线.法二:连接DE,AD,作DF⊥AC,F是垂足.∵AB与⊙D相切,∴DE⊥AB.∵AB=AC,BD=CD,∴∠DAB=∠DAC.∵DE⊥AB,DF⊥AC,∴DE=DF.∴F在⊙D上,∴AC与⊙D相切.4.证明:连接OM,过点O作ON⊥CD,垂足为N,∵⊙O与BC相切于M,∴OM⊥BC.∵正方形ABCD中,AC平分∠BCD,又∵ON⊥CD,OM⊥BC,∴OM=ON.∴N在⊙O上.∴CD与⊙O相切.5.(1)证明:过点D作DF⊥AC于F.∵∠ABC=90°,∴AB⊥BC.∵AD平分∠BAC,DF⊥AC,∴BD=DF.∴点F在⊙D上.∴AC是⊙D的切线.(2)在Rt△BDE和Rt△FDC中,∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FDC(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC,∴AC=5+3=8.2022年中考数学复习专题---圆中阴影面积计算班级:___________姓名:___________学号:___________1.如图,直线y kx b=+经过点M(1,√3)和点N(1−,3√3),A、B是此直线与坐标轴的交点.以AB为直径作⊙C,求此圆与y轴围成的阴影部分面积.2.如图,AAAA是⊙OO的直径,CC,DD是圆上两点,且有BD�=CCDD�,连结AADD,AACC,作DDDD⊥AACC的延长线于点DD.(1)求证:DDDD是⊙OO的切线;(2)若AADD=2√3,∠AADDDD=60∘,求阴影部分的面积.(结果保留ππ)3.如图,AAAA是圆OO的直径,AACC⊥AAAA,DD为圆OO上的一点,AACC=DDCC,延长CCDD交AAAA的延长线于点DD.(1)求证:CCDD为圆OO的切线.(2)若OOFF⊥AADD,OOFF=1,30∠=o,求圆中阴影部分的面积.(结果保留ππ)OAF4.如图,⊙OO是等边ΔAAAACC的外接圆,连接AAOO并延长至点PP,且AAAA=AAPP.(1)求证:PPAA是⊙OO的切线;(2)若AAAA=2√3,求图中阴影部分的面积.(结果保留ππ和根号)5.如图,OO为等边△AAAACC的外接圆,DD为直径CCDD延长线上的一点,连接AADD,AADD=AACC.(1)求证:AADD是⊙O的切线;(2)若CCDD=6,求阴影部分的面积.6.如图,AC为圆O的直径,弦AD的延长线与过点C的切线交于点B,E为BC中点,AC= 4√3,BC=4.(1)求证:DE为圆O的切线;(2)求阴影部分面积.7.已知AB是⊙O的直径,点C是圆O上一点,点P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:P A为⊙O的切线;(2)如果OP=AB=6,求图中阴影部分面积.8.如图,AAAA为⊙OO的直径,弦CCDD⊥AAAA,垂足为DD,CCDD=4√5,连接OOCC,OODD=2DDAA,FF为圆上一点,过点FF作圆的切线交AAAA的延长线于点GG,连接AAFF,AAFF=AAGG.(1)求⊙OO的半径;(2)求证:AAFF=FFGG;(3)求阴影部分的面积.9.如图,△ABC中,∠C=90º,∠ABC=2∠A,点O在AC上,OA=OB,以O为圆心,OC为半径作圆.(1)求证:AB是⊙O的切线;(2)若BC=3,求图中阴影部分的面积.10.如图,在△ABC中,∠CC=60∘,⊙OO是△ABC的外接圆,点P在直径BD的延长线上,且AB=AP.(1)求证:PA是⊙OO的切线;(2)若AB=2√3,求图中阴影部分的面积.(结果保留ππ和根号)11.如图,AB为圆O的直径,射线AD交圆O于点F,点C为劣弧BF的中点,过点C作CE⊥AD,垂足为E,连接AC(1)求证:CE是圆O的切线(2)若∠BAC=30°,AB=4,求阴影部分的面积12.如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD于G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15º,将弧CE沿弦CE翻折,交CD于点F,求图中阴影部分的面积.13.如图,已知⊙O是△ABC的外接圆,AC是直径,∠A=30°,BC=4,点D是AB的中点,连接DO并延长交⊙O于点P.(1)求劣弧PC的长(结果保留π);(2)过点P作PF⊥AC于点F,求阴影部分的面积(结果保留π).14.如图,四边形ABCD内接于圆O,对角线AC是圆O的直径,DB平分∠ADC,AC长10cm.(1)求点O到AB的距离;(2)求阴影部分的面积.15.如图,在矩形ABCD中,AB=8cm,BC=4cm,以点A为圆心,AD为半径作圆与BA 的延长线交于点E,连接CE,求阴影部分的面积.16.如图,∠APB的平分线过点O,以O点为圆心的圆与PA相切于点C,DE为⊙O的直径.(1)求证:PB是⊙O的切线;(2)若∠CPO=50°,∠E=25°,求∠POD;(3)若⊙O的半径为2,CE=2√3,求阴影部分的面积.17.如图,点P在圆O外,PA与圆O相切于A点,OP与圆周相交于C点,点B与点A 关于直线PO对称,已知OA=4,∠POA=60°求:(1)弦AB的长;(2)阴影部分的面积(结果保留π).18.如图,⊙O是Rt△ABC的外接圆,直径AB=4,直线EF经过点C,AD⊥EF于点D,∠ACD=∠B.(1)求证:EF是⊙O的切线;(2)若AD=1,求BC的长;(3)在(2)的条件下,求图中阴影部分的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的切线的判定方法练习题
知识要点:
一:切线的定义:与圆有唯一公共点的直线叫做圆的切线。
二:切线的性质:圆的切线垂直于过切点的半径。
三:切线的判定:①到圆心的距离等于半径的直线是圆的切线;
②经过半径的外端,并且垂直于这条半径的直线是圆的切线。
例题讲解:
方法一:当条件不能确定直线是否有公共点时,利用“①到圆心的距离等于半径的直线是圆的切线;”证明。
例一:如图,在以O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:CD与小圆相切。
练习题1如图,PA为⊙O的切线,A为切点,OP平分∠APC,求证:PC是⊙O的切线。
练习题2.如图,AB是⊙O直径,DE切⊙O于C,AD⊥DE,BE⊥DE,求证:以C为圆心,
CD为半径的圆C和AB相切。
练习题3.如图,在以O为圆心的两个同心圆中,AB经过圆心O,且于小圆相交于点A、于大圆相交于点B。
小圆的切线AC于大圆相交于点D,且CO平分∠ACB。
(1)试判断BC所在直线与小圆的位置关系,并说明理由;
(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;
(3)若AB=4cm,BC=5cm,求大圆与小圆围成的圆环的面积。