初中数学竞赛试卷及参考答案(初三年级)
初三数学趣味竞赛附答案

家(16 )根香蕉?
30分
• 有鸡与兔若干,总头数与总脚数之 比为2 :5,那么鸡和兔的头数之 比为( A )
A 2 :5 B 1 :3 C 3 :1 D 1 :1
第五模块
•能力展示
010101010101010101010101010101010101010101010101010101010101
7天
• 4.井深8米,一只青蛙从井底往上 跳,每次跳3米,又滑下2米,那么 它要跳几次才能到达井口? (说明理由)
6次
• 5.王老太上集市上去卖鸡蛋,第一 个人买走篮子鸡蛋的一半又一个, 第二个人买走剩下一半又一个,这 时篮子里还剩一个鸡蛋,请问王老
太共卖出(10个)个鸡蛋。
6.谜底为数学名词的谜语:失去联络 平行
2000π,
20分
甲乙丙丁四位同学在篮球比赛中犯规 的次数各不相同,A、B、C、D四位 裁判有一段对话;
A说:“甲犯规4次,乙犯规3次”; B说:“丙犯规4次,乙犯规2次”; C说:“丁犯规2次,丙犯规3次”; D说:“丁犯规1次,乙犯规3次” 记录员说:四位裁判每人只说对了一半。
甲犯规( 4 )次。
• 圆柱体的侧面展开图在满足 (长和宽相等)条件时是正方形。
二号题
二号题
• 有一组数:1,4,9,16,25,……,请观 察这组数的构成规律,用你发现的规律
• 确定第8个数为( 64 ),
•
第n个数为( n2 ).
• 三号题(8-2)
9-1准备
• 判断:
江苏省历年初中数学竞赛试题及解答(23份)

第十五届江苏省初中数学竞赛试题初一年级第一试 (1)第十五届江苏省初中数学竞赛试卷初一年级 第二试 (3)江苏省第十五届初中数学竞赛初二第1试试题 (6)江苏省第十五届初中数学竞赛初二年级 第二试 (8)江苏省第十五届初中数学竞赛初三年级 (14)2001年第十六届江苏省初中数学竞赛A 卷 (19)2001年第十六届江苏省初中数学竞赛B 卷 (24)第十六届江苏省初中数学竞赛试题(C 卷)初三年级 (29)江苏省第十七届初中数学竞赛 初一年级 第l 试 (33)江苏省第十七届初中数学竞赛试卷 初一年级(第2试) (35)江苏省第十七届初中数学竞赛 初二年级 第l 试 (38)江苏省第十七届初中数学竞赛试卷 初二年级(第2试) (40)江苏省第十七届初中数学竞赛试卷 初三年级 (43)江苏省第十八届初中数学竞赛初一年级第1试 (45)2003年江苏省第十八届初中数学竞赛初中一年级 第2试 (48)2003年江苏省第十八届初中数学竞赛初中二年级 第2试 (52)2003年江苏省第十八届初中数学竞赛初中三年级 (57)江苏省第十九届初中数学竞赛初一年级 第1试 (60)江苏省第十九届初中数学竞赛初二年级第1试 (62)江苏省第十九届初中数学竞赛试卷初二年级第2试 (65)江苏省第十九届初中数学竞赛初三年级(第1试) (71)江苏省第十九届初中数学竞赛(保留)初三年级第l 试 (73)江苏省第十九届初中数学竞赛试题与答案初三年级(第2试) (80)第十五届江苏省初中数学竞赛试题初一年级第一试一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内)1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是( ).(A)-|-3|3 (B)-(-3)3 (C)(-3)3 (D)-332. “a 的2倍与b 的一半之和的平方,减去a 、b 两数平方和的4倍”用代数式表示应为( )(A)2a+(21b 2)-4(a+b)2 (B)(2a+21b)2-a+4b 2 (c)(2a+21b)2-4(a 2+b 2) (D)(2a+21b)2-4(a 2+b 2)2 3.若a 是负数,则a+|-a|( ),(A)是负数 (B)是正数 (C)是零 (D)可能是正数,也可能是负数4.如果n 是正整数,那么表示“任意负奇数”的代数式是( ).(A)2n+l (B)2n-l (C)-2n+l (D)-2n-l5.已知数轴上的三点A 、B 、C 分别表示有理数a 、1、-l ,那么|a+1|表示( ).(A)A 、B 两点的距离 (B)A 、C 两点的距离(C)A 、B 两点到原点的距离之和(D)A 、C 两点到原点的距离之和6.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且d-2a =10,那么数轴的原点应是( ).(A)A 点 (B)B 点 (C)C 点 (D)D 点7.已知a+b =0,a≠b ,则化简a b (a+1)+ba (b+1)得( ). (A)2a (B)2b (C)+2 (D)-28.已知m<0,-l<n<0,则m ,mn ,mn 2由小到大排列的顺序是 ( ).(A)m ,mn ,mn 2 (B)mn ,mn 2,m (C)mn 2,mn ,m (D)m ,mn 2,mn二、填空题(每小题?分,共84分)9.计算:31a -(21a -4b -6c)+3(-2c+2b)= 10.计算:0.7×194+243×(-15)+0.7×95+41×(-15)= ll.某班有男生a(a>20)人,女生20人,a-20表示的实际意义是12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,0.25,则正确结果应是 .15.在数轴上,点A 、B 分别表示-31和51,则线段AB 的中点所表示的数是 . 16.已知2a x b n-1与-3a 2b 2m (m 是正整数)是同类项,那么(2m-n)x =17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2 088,则王恒出生在 年 月.18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入1 000元,2000年12月3日支取时本息和是 元,国家利息税税率是20%,交纳利息税后还有 元.19.有一列数a 1,a 2,a 3,a 4,…,a n ,其中a 1=6×2+l ;a 2=6×3+2;a 3=6×4+3;a 4=6×5+4;则第n 个数a n = ;当a n =2001时,n = .20.已知三角形的三个内角的和是180°,如果一个三角形的三个内角的度数都是小于120的质数,则这个三角形三个内角的度数分别是第十五届江苏省初中数学竞赛参考答案初一年级第一试一、1.B 2.C 3.C 4.C 5.B 6.B 7.D 8.D二、9.一6a +1 06. 10.一43.6. 11.男生比女生多的人数.1 2.90. 1 3.1 6. 1 4.0.1 2 5. 1 5.-151 1 6.1. 1 7.1988;1.18.1022.5;101 8.1 9.7n+6;2 8 5.2 O .2,8 9,8 9或2,7 1,1 07(每填错一组另扣2分).第十五届江苏省初中数学竞赛试卷初一年级 第二试一、选择题1.已知x=2是关于x 的方程3x-2m=4的根,则m 的值是( )(A)5 (B)-5 (C)1 (D)-12.已知a+2=b-2=2c =2001,且a+b+c=2001k ,那么k 的值为( )。
九年级数学竞赛培优专题及答案 20 直线与圆的位置关系1(含答案)

专题20 直线与圆的位置关系(1)阅读与思考圆心到直线的距离与圆的半径的大小量化确定直线与圆的相离、相切、相交三种位置关系.直线与圆相切是研究直线与圆的位置关系的重点.与切线相关的知识,包括弦切角、切线的性质和判断、切线长定理、切割线定理等.证明一直线是圆的切线是平面几何问题中一种常见的题型,证明的基本方法有: 1.利用定义,判断直线和圆只有一个公共点;2.当已知一条直线和圆有一个公共点时,就把圆心和这个公共点连接起来,再证明这条半径和直线垂直;3.当直线和圆的公共点没有确定时,就过圆心作直线的垂线,再证明圆心到直线的距离等于半径. 熟悉如下基本图形和以上基本结论.例题与求解【例1】如图,已知AB 为⊙O 的直径,CB 切⊙O 于点B ,CD 切⊙O 于点D ,交BA 的延长线于E .若AB =3,DE =2,则BC 的长为( ) (青岛市中考试题)A .2B .3C .3.5D .4例1题图 例2题图解题思路:本例包含了切线相关的丰富性质,从C 点看可应用切线长定理,从E 点看可应用切割线定理,又EC 为⊙O 的切线,可应用切线性质,故解题思路广阔.【例2】如图,⊙O 是△ABC 的外接圆,已知∠ACB =45°,∠ABC =120°,⊙O 的半径为1. (1) 求弦AC ,AB 的长;(2) 若P 为CB 的延长线上一点,试确定P 点的位置,使P A 与⊙O 相切,并证明你的结论.(哈尔滨市中考试题)解题思路:第(2)题是考查探索能力的开放性几何题,只要探求得PB 与BC ,或PC 与BC 的关系,或求得PB 或PC 的长,点P 的位置即可确定.E【例3】已知△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点.过点P 作BC 的平行线交BT 于点E ,交直线AC 于点F .(1) 当点P 在线段AB 上时(如图),求证:P A •PB =PE •PF ;(2) 当点P 为线段BA 的延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明;如果不成立,请说明理由. (北京市中考试题)解题思路:本例是“运动型”的开放性问题,要求点在运动变化中,判断原结论是否成立,通过观察、比较、归纳、分析等系列活动,逐步确定应有的结论.【例4】已知:如图1,把矩形纸片ABCD 折叠,使得顶点A 与边DC 上的动点P 重合(P 不与点D ,C 重合),MN 为折痕,点M ,N 分别在边BC ,AD 上.连接AP ,MP ,AM ,AP 与MN 相较于点F ,⊙O 过点M ,C ,P .(1) 请你在图1中作出⊙O (不写作法,保留作图痕迹);(2)AF AN 与APAD是否相等?请说明理由; (3) 随着点P 的运动,若⊙O 与AM 相切于点M 时,⊙O 又与AD 相切于点H .设AB 为4,请你通过计算,画出这时的图形(图2、图3供参考).(宜昌市中考试题)解题思路:对于(3),只依靠AB 的长不能画出图形,需求出关键的量,因为∠C =90°,⊙O 过点M ,C ,P ,故将画出矩形的条件转化为求出CP (或MP )的长.当矩形确定后,依据线段CP 的长,就可确定P 点的位置.TTC MNNN【例5】如图,已知△ABC 内接于⊙O ,AD ,BD 为⊙O 的切线,作DE ∥BC ,交AC 于点E ,连接EO 并延长交BC 于点F .求证:BF =FC . (太原市竞赛试题)解题思路:要证明BF =FC ,只需证FO ⊥BC 即可,连接OA ,OB ,OD ,将问题转化为证明∠DAO =∠EFC .【例6】如图,在等腰△ABC 中,已知AB =AC ,∠C 的平分线与AB 交于点P ,M 是△ABC 的内切⊙I 与边BC 的切点,作MD ∥AC ,交⊙I 于点D ,求证:PD 是⊙I 的切线. (全国初中数学联赛试题)解题思路:设⊙I 切AB 于点S ,连接IM ,IS ,ID ,直接证明∠PDI =90°困难,不妨证明∠PDI =∠PSI ,即证明△PIS ≌△PID .能力训练A 级1. P A ,PB 切⊙O 于A ,B ,∠APB =78°,点C 是⊙O 上异于A ,B 的任意一点,则∠ACB =__________.2.如图,以△ABC 的边AB 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线交AC 于点E .要使DE ⊥AC ,则△ABC 的边必须满足的条件是__________. (武汉市中考试题)第2题图 第3题图3. 如图,P A 切⊙O 于点A ,C 是AB 上任意一点,∠P AB =62°,则∠C 的度数是__________.(荆门市中考试题)P4.直角梯形ABCD 中,AD ∥BC ,∠B =90°,AD +BC <DC .若腰DC 上有一点P ,使AP ⊥BP ,则这样的点( )A .不存在B .只有一个C .只有两个D .有无数个5.如图,已知AB 是⊙O 的直径,CD ,CB 是⊙O 的切线,D ,B 为切点,OC 交⊙O 于点E ,AE 的延长线交BC 于点F ,连接AD ,BD ,给出以下四个结论:①AD ∥OC ;②E 为△CDB 的内心;③FC =FE .其中正确的结论是 ( )A .①②B .②③C .①③D .①②③6.如图,ABCD 为⊙O 的内接四边形,AC 平分∠BAD 并与BD 相交于E 点,CF 切⊙O 于点C 并与AD 的延长线相交于点F .图中的四个三角形①△CAF ,②△ABC ,③△ABD ,④△BEC ,其中一定相似的是( ) (连云港市中考试题)A .①②③B .②③④C .①③④D .①②④第5题图 第6题图 第7题图7.如图,△ABC 内接于⊙O ,AE 切⊙O 于点A ,BC ∥AE . (1) 求证:△ABC 是等腰三角形;(2) 设AB =10cm ,BC =8cm ,点P 是射线AE 上的点,若以A ,P ,C 为顶点的三角形与△ABC 相似,问这样的点有几个? (南昌市中考试题)8.如图,Rt △ABC 中,∠C =90°,以AC 为直径的⊙O 交斜边AB 于点E ,OD ∥AB . 求证:(1) ED 是⊙O 的切线;(2) 2DE 2=BE •OD .ACB9.如图,在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的边,且a ,b 是关于x 的一元二次方程x 2+4(c +2)=(c+4)x 的两个根. 点D 在AB 上,以BD 为直径的⊙O 切AC 于点E .(1) 求证:△ABC 是直角三角形;(2) 若tan A =34时,求AE 的长. (内蒙古中考试题)10.如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径作⊙O 交AC 边于点D ,E 是边BC 中点,连接DE .(1) 求证:直线DE 是⊙O 的切线;(2) 连接OC 交DE 于点F ,若OF =CF ,求tan ∠ACO 的值. (武汉市中考试题)11.如图,⊙O 的半径r =25,四边形ABCD 内接于⊙O ,AC ⊥BD 于点H ,P 为CA 延长线上一点,且∠PDA =∠ABD .(1) 试判断PD 与⊙O 的位置关系,并说明理由;(2) 若tan ∠ADB =34,P A =43-33AH ,求BD 的长;(3) 在(2)的条件下,求四边形ABCD 的面积. (成都市中考试题)ABC BECB 级1.如图,AB 是⊙O 的直径,CD 是弦,过点C 的切线与AD 的延长线交于点E .若∠DAB =56°, ∠ABC =64°,则∠CED =__________.2.如图,⊙O 与矩形ABCD 的边AD ,AB ,BC 分别相切于点E ,F ,G ,P 是EG 上的一点,则∠EPF =__________. (广州市中考试题)第1题图 第2题图 第3题图3.如图,直线AB ,AC 与⊙O 分别相切于点B ,C 两点,P 为圆上一点,P 到AB ,AC 的距离分别为4cm ,6cm ,那么P 到BC 的距离为__________cm. (全国初中数学联赛试题)4.如图,在Rt △ABC 中,∠A =90°,⊙O 分别与AB ,AC 相切于点E ,F ,圆心O 在BC 上,若AB =a ,AC =b ,则⊙O 的半径等于( )A .abB .a +b 2C .aba +bD .a +b ab5.如图,在⊙O 的内接△ABC 中,∠ABC =30°,AC 的延长线与过点B 的⊙O 的切线相交于点D .若⊙O 的半径OC =1,BD ∥OC ,则CD 的长为( )A .1+33 B .233 C .33D . 2第4题图 第5题图 第6题图6.如图,⊙O 的内接△ABC 的外角∠ACE 的平分线交⊙O 于点D .DF ⊥AC ,垂足为F ,DE ⊥BC ,垂足为E .给出以下四个结论:①CE =CF ;②∠ACB =∠EDF ;③DE 是⊙O 的切线;④AD =BD .其中正确的结论是( ) (苏州市中考试题)A .①②③B .②③④C .①③④D .①②④7.如图,已知AC 切⊙O 于点C ,CP 为⊙O 的直径,AB 切⊙O 于点D ,与CP 的延长线交于点B .若AC =PC .求证:(1) BD =2BP ;(2) PC =3BP . (天津市中考试题)8.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =12cm ,AD =8cm ,BC =22cm ,AB 为⊙O 的直径.动点P 从点A 开始沿AD 边向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿CB 边向点B 以2cm/s 的速度运动. P ,Q 分别从点A ,C 同时出发,当其中一个动点到达端点时,另一个动点也随之停止.设运动时间为t (s).(1) 当t 为何值时,四边形PQCD 为平行四边形?(2) 当t 为何值时,PQ 与⊙O 相切? (呼和浩特市中考试题)9.如图,已知在△ABC 中,∠ABC =90°,O 是AB 上一点,以O 为圆心,OB 为半径的半圆与AB 交于点E ,与AC 切于点D ,AD =2,AE =1.求证:S △AOD ,S △BCD 是方程10x 2-51x +54=0的两个根. (河南省中考试题)10.如图,点O 在∠APB 的平分线上,⊙O 与P A 相切于点C . (1) 求证:直线PB 与⊙O 相切;(2) PO 的延长线与⊙O 交于点E ,若⊙O 的半径为3,PC =4,求弦CE 的长.(武汉市中考试题)CCABDE11.如图,直线y =43x +4交x 轴于点B ,交y 轴于点A ,⊙O ′过A ,O 两点.(1) 如图1,若⊙O ′交AB 于点C ,当O ′在OA 上时,求弦AC 的长; (2) 如图2,当⊙O ′与直线l 相切于点A 时,求圆心O ′的坐标;(3) 当O ′A 平分△AOB 的外角时,请画出图形,并求⊙O ′的半径的长.12.如图,AB 是⊙O 的直径,AB =d ,过点A 作⊙O 的切线并在其上取一点C ,使AC =AB ,连接OC 交⊙O 于点D ,BD 的延长线交AC 于点E . 求AE 的长. (四川省竞赛试题)C专题20 直线与圆的位置关系(1)例1、B 提示:连接OD ,则~ODE CBE ∆∆例2、(1)AC =AB = (2)提示:若PA 是⊙O 的切线,则PA ⊥AO ,又BO ⊥AO ,得PA ∥BD ,PB ADBC DC∴=,9030AOD OAC ∠=︒∠=︒,, 120AOC ∠=︒,22AD OD DC ∴==,2PB BC ∴=,即当2PB BC =时,PA 是 ⊙O 的切线例3、 提示(1)证明~PFA PBE ∆∆ (2)当P 为BA 延长线上一点时,第(1)题的结论仍成立例4、(1)略 (2)AF AP AN AD ≠,理由如下:假设AF APAN AD≠,则MN ∥CD 。
江苏省第十九届初三数学竞赛试卷(附答案)

主办单位:江苏省教育学会中学数学专业委员会江苏教育出版社《初中生数学学习》编辑部江苏省第十九届初中数学竞赛试卷初三年级是正确的,请将正确答案的英文字母填在题后圆括号内。
1、已知整数,x y =,那么整数对(,)x y 的个数是( ) (A )0 (B )1 (C )2 (D )32、方程222x x x-=的正根的个数是 ( )(A ) 0 (B )1 (C )2 (D )33、在直角坐标系中,已知两点A (8,3)-、B (4,5)-以及动点C (0,)n 、D (,0)m ,则当四边形ABCD 的周长最小时,比值m n为 ( )(A )23-(B )2- (C )32- (D )3-4、设一个三角形的三边长为正整数,,a n b ,其中b n a ≤≤。
则对于给定的边长n ,所有这样的三角形的个数是 ( ) (A )n (B )1n + (C )2n n + (D )1(1)2n n +5、甲、乙、丙、丁4人打靶,每人打4枪,每人各自中靶的环数之积都是72(中靶环数最高为10),且4人中靶的总环数恰为4个连续整数,那么,其中打中过4环的人数为 ( ) (A ) 0 (B )1 (C )2 (D )36、空间6个点(任意三点不共线)两两连线,用红、蓝两色染这些线段,其中A 点连出的线段都是红色的,以这6个点为顶点的三角形中,三边同色的三角形至少有 ( ) (A )3个 (B )4个 (C )5个 (D )6个 二、填空题(每题7分,共56分)7、已知1222S x x x =--++,且12x -≤≤,则S 的最大值与最小值的差是 。
8、已知两个整数a 、b ,满足010b a <<<,且9a a b+是整数,那么数对(,)a b 有 个。
9、方程22229129x y x y xy ++-=的非负整数解是_______________________________________。
九年级数学竞赛培优专题及答案 14 平行线分线段成比例(含答案)

专题14平行线分线段成比例阅读与思考平行线分线段成比例定理是证明比例线段的常用依据之一,是研究比例线段及相似形的最基本、最重要的理论.运用平行线分线段成比例定理解题的关键是寻找题中的平行线.若无平行线,需作平行线,而作平行线要考虑好过哪一个点作平行线,一般是由成比例的两条线段启发而得.此外,还要熟悉并善于从复杂的图形中分解出如下的基本图形:例题与求解【例1】如图,在梯形ABCD中,AD∥BC,AD=a,BC=b,E,F分别是AD,BC的中点,且AF 交BE于P,CE交DF于Q,则PQ的长为____.(上海市竞赛试题)解题思路:建立含PQ的比例式,为此,应首先判断PQ与AD(或BC)的位置关系,关键是从复杂的图形中分解出基本图形,并能在多个成比例线段中建立联系.【例2】如图,在△ABC中,D,E是BC的三等分点,M是AC的中点,BM交AD,AE于G,H,则BG︰GH:HM等于()A.3︰2︰1 B.4︰2︰1 C.5︰4︰3 D.5︰3︰2(“祖冲之杯”邀请赛试题)解题思路:因题设条件没有平行线,故须过M作BC的平行线,构造基本图形.【例3】如图,□ABCD 中,P 为对角线BD 上一点,过点P 作一直线分别交BA ,BC 的延长线于Q ,R ,交CD ,AD 于S ,T . 求证:PQ •PT =P R •PS .(吉林省中考试题)解题思路:要证PQ •PT =P R •PS ,需证PQPS=PR PT ,由于PQ ,PT ,P R ,PS 在同一直线上,故不能直接应用定理,需观察分解图形.【例4】梯形ABCD 中,AD //BC ,AB =DC .(1)如图1,如果P ,E ,F 分别是BC ,AC ,BD 的中点,求证:AB =PE +PF ;(2)如图2,如果P 是BC 上的任意一点(中点除外),PE ∥AB ,PF ∥DC ,那么AB =PE +PF 这个结论还成立吗?如果成立,请证明;如果不成立,说明理由.(上海市闵行区中考试题)解题思路:(1)不难证明;对于(2),先假设结论成立,从平行线出发证明AB =PE +PF ,即要证明PE AB +PF AB=1,将线段和差问题的证明转化为与成比例线段相关问题的证明.【例5】如图,已知AB ∥CD ,AD ∥CE ,F ,G 分别是AC 和FD 的中点,过G 的直线依次交AB ,AD ,CD ,CE 于点M ,N ,P ,Q .求证:MN +PQ =2PN .解题思路:考虑延长BA ,EC 构造平行四边形,再利用平行线设法构造有关的比例式.图2图1(浙江省竞赛试题)【例6】已知:△ABC是任意三角形.(1)如图1,点M,P,N分别是边AB,BC,CA的中点,求证:∠MPN=∠A;(2)如图2,点M,N分别在边AB,AC上,且AMAB=13,ANAC=13,点P1,P2是边BC的三等分点,你认为∠MP1N+∠MP2N=∠A是否正确?请说明你的理由;(3)如图3,点M,N分别在边AB,AC上,且P1,P2,…,P2009是边BC的2010等分点,则∠MP1N+∠MP2N+…+∠MP2009N=____.(济南市中考试题)解题思路:本题涉及的考点有三角形中位线定理、平行四边形的判定、相似三角形的判定与性质.能力训练A级1.设K=a b cc+-=a b cb-+=a b ca-++,则K=____.(镇江市中考试题)2.如图,AD∥EF∥BC,AD=15,BC=21,2AE=EB,则EF=____.第2题第3题第4题第5题图1 图2 图33.如图,在△ABC 中,AM 与BN 相交于D ,BM =3MC ,AD =DM ,则BD ︰DN =____.(杭州市中考试题)4.如图,ABCD 是正方形,E ,F 是AB ,BC 的中点,连结EC 交DB ,交DF 于G ,H ,则EG ︰GH ︰HC =____.(重庆市中考试题)5.如图,在正△ABC 的边BC ,CA 上分别有点E ,F ,且满足BE =CF =a ,EC =F A =b (a >b ),当BF 平分AE 时,则ab的值为( ) ABCD6.如图,△ABC 中,AD 是BC 边上的中线,F 是AD 上的一点,且AF ︰FD =1︰5,连结CF 并延长交AB 于E ,则AE ︰EB 等于( )A .1︰10B .1︰9C .1︰8D .1︰77.如图,PQ ∥AB ,PQ =6,BP =4,AB =8,则PC 等于( ) A .4B .8C .12D .168.如图,EF ∥BC ,FD ∥AB ,BD =35BC ,则BE ︰EA 等于( )A .3︰5B .2︰5C .2︰3D .3︰29.(1)阅读下列材料,补全证明过程.已知,如图,矩形ABCD 中,AC ,BD 相交于点O ,OE ⊥BC 于E ,连结DE 交OC 于点F ,作FG ⊥BC 于G .求证:点G 是线段BC 的一个三等分点.(2)请你依照上面的画法,在原图上画出BC 的一个四等分点.(要求:保留画图痕迹,不写画法及证明过程)(山西中考试题)10.如图,已知在□ABCD 中,E 为AB 边的中点,AF =12FD ,FE 与AC 相交于G . 求证:AG =15AC .11.如图,梯形ABCD 中,AD ∥BC ,EF 经过梯形对角线的交点O ,且EF ∥AD . (1)求证:OE =OF ;第9题 第10题 第11题第6题 第7题第8题(2)求OEAD+OEBC的值;(3)求证:1AD+1BC=2EF.(宿迁市中考试题)12.如图,四边形ABCD是梯形,点E是上底边AD上的一点,CE的延长线与BC的延长线交于点F,过点E作BA的平行线交CD的延长线于点M,MB与AD交于点N.求证:∠AFN=∠DME.(全国初中数学联赛试题)B级1.如图,工地上竖立着两根电线杆AB,CD,它们相距15cm,分别自两杆上高出地面4m,6m的A,C处,向两侧地面上的E,D和B,F点处,用钢丝绳拉紧,以固定电线杆,那么钢丝绳AD与BC的交点P离地面的高度为____m.(全国初中数学联赛试题)2.如图,□ABCD 的对角线交于O 点,过O 任作一直线与CD ,BC 的延长线分别交于F ,E 点.设BC =a ,CD =b ,CF =c ,则CE =____.(黑龙江省中考试题)3.如图,D ,F 分别是△ABC 边AB ,AC 上的点,且AD ︰DB =CF ︰F A =2︰3,连结DF 交BC 边的延长线于点E ,那么EF ︰FD=____.(“祖冲之杯”邀请赛试题)4.如图,设AF =10,FB =12,BD =14,DC =6,CE =9,EA =7,且KL ∥DF ,LM ∥FE ,MN ∥ED ,则EF ︰FD =____.(江苏省竞赛试题)5.如图,AB ∥EF ∥CD ,已知AB =20,CD =80,那么EF 的值是( ) A .10B .12C .16D .18(全国初中数学联赛试题)6.如图,CE ,CF 分别平分∠ACB ,∠ACD ,AE ∥CF ,AF ∥CE ,直线EF 分别交AB ,AC 于点M ,N .若BC =a ,AC =b ,AB =c ,且c >a >b ,则EM 的长为( )A .2c a- B .2a b- C .2c b- D .2a b c+- (山东省竞赛试题)7.如图,在□ABCD 的边AD 延长线上取一点F ,BF 分别交AC 与CD 于E ,G .若EF =32,GF =24,则BE 等于( )A .4B .8C .10D .12E .16(美国初中数学联赛试题)8.如图,在梯形ABCD 中,AB ∥CD ,AB =3CD ,E 是对角线AC 的中点,直线BE 交AD 于点F ,则AF ︰FD 的值是( )A .2B .53C .32D .1(黄冈市竞赛试题)9.如图,P 是梯形ABCD 的中位线MN 所在直线上的任意一点,直线AP ,BP 分别交直线CD 于E ,F .求证:MN NP =1()2AE BFEP FP+. (宁波市竞赛试题)第7题 第8题 第9题第5题 第6题第2题 第3题第1题10.如图,在四边形ABCD 中,AC 与BD 相交于O ,直线l 平行于BD 且与AB ,DC ,BC ,AD 及AC 的延长线分别交于点M ,N ,R ,S 和P .求证:PM ·PN =P R ·PS .(山东省竞赛试题)11.如图,AB ⊥BC ,CD ⊥BC ,B ,D 是垂足,AD 和BC 交于E ,EF ⊥BD 于F .我们可以证明:11AB CD+=1EF 成立(不要求证出).以下请回答:若将图中垂直改为AB ∥CD ∥EF ,那么, (1)11AB CD+=1EF 还成立吗?如果成立,请给出证明;如果不成立,请说明理由. (2)请找出S △ABD ,S △BED 和S △BDC 的关系式,并给出证明.(黄冈市竞赛试题)12.在Rt △ABC 中,∠BAC =90°,AD 平分∠BAC ,过D 点的直线PQ 交边AC 于点P ,交边AB 的延长线于点Q .(1)如图1,当PQ ⊥AC 时,求证:11AQ AP +; 第11题第10题(2)如图2,当PQ不与AD垂直时,(1)的结论还成立吗?证明你的结论;(3)如图3,若∠BAC=60°,其它条件不变,且11AQ AP+=nAD,则n=____(直接写出结果)专题14 平行线分线段成比例例1aba b+提示:由AP DQ aPF QF b==,推得PQ∥AD。
全国各地初中(九年级)数学竞赛《不等式》真题大全 (附答案)

全国初中(九年级))数学竞赛专题大全竞赛专题5 不等式一、单选题1.(2021·全国·九年级竞赛)若满足不等式871513n n k <<+的整数k 只有一个,则正整数n 的最大值为( ). A .100B .112C .120D .1502.(2021·全国·九年级竞赛)27234x x x ----有意义,则x 的取值范围是( )A .4x >B .7x ≥5x ≠C .4x >且5x ≠D .45x <<3.(2021·全国·九年级竞赛)某校初一运动队为了备战校运动会需要购置一批运动鞋.已知该运动队有20名同学,统计表如下表,由于不小心弄脏了统计表,下表中阴影部分的两个数据看不到. 鞋码 38 394041 42 人数 532下列说法正确的是( ).A .这组鞋码数据中的中位数是40,众数是39 B .这组鞋码数据中的中位数与众数一定相等 C .这组鞋码数据中的平均数p 满足3940p ≤≤ D .以上说法都不对4.(2021·全国·九年级竞赛)如果不等式组9080x a x b -≥⎧⎨-<⎩的整数解仅为1,2,3,那么适合这个不等式组的有序对(),a b 共有( ). A .17个B .64个C .72个D .81个5.(2021·全国·九年级竞赛)若不等式054ax ≤+≤的整数解是1,2,3,4,则a 的取值范围是( ). A .54a -B .1a <-C .514a -≤<-D .54a -6.(2021·全国·九年级竞赛)2009x y 且0x y <<,则满足此等式的不同整数对(,)x y 有( )对. A .1B .2C .3D .47.(2021·全国·九年级竞赛)有两个四位数,它们的差是534,它们平方数的末四位数相同.则较大的四位数有( )种可能.A .1B .2C .3D .48.(2021·全国·九年级竞赛)一个正方形纸片,用剪刀沿一条不过顶点的直线将其剪成两部分,拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分,又从得到的3部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分,……,如此下去,最后得到34个六十二边形和一些多边形纸片,则至少要剪的刀数是( ). A .2004B .2005C .2006D .20079.(2021·全国·九年级竞赛)若正数a ,b ,c 满足不等式1126352351124c a b c a b c a b a c b ⎧<+<⎪⎪⎪<+<⎨⎪⎪<+<⎪⎩则a ,b ,c 的大小关系是( )A .a b c <<B .b c a <<C .c a b <<D .不确定10.(2021·全国·九年级竞赛)设114,,11(1)r a b c r r r r r r r ≥=-==++++的是( ). A .a b c >> B .b c a >> C .c a b >> D .c b a >>二、填空题11.(2021·全国·九年级竞赛)设a ,b 为正整数,且2537a b <<则b 取最小值时a b +=_____ 12.(2021·全国·九年级竞赛)已知实数x ,y 满足234x y -=且0,1x y ≥≤,则x y -的最大值是______,最小值是_______.13.(2021·全国·九年级竞赛)已知01a ≤≤,且满足122918303030a a a ⎡⎤⎡⎤⎡⎤++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ ([]x 表示不超过x 的最大整数),则[]10a 的值等于_______.14.(2021·全国·九年级竞赛)若化简2269x x x --+25x -,则满足条件是x 的取值围是_________.15.(2021·全国·九年级竞赛)[]x 表示不超过x 的最大整数(例如[]3.23=).已知正整数n 小于2006,且362n n n⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦,则这样的n 有___________个. 16.(2021·全国·九年级竞赛)不等式2242x ax a +<的解是___________.17.(2021·全国·九年级竞赛)已知正整数m 和n 有大于1的最大公约数,并且满足3371m n +=,则mn =________.18.(2021·全国·九年级竞赛)长沙市某中学100名学生向某“希望学校”捐书1000本,其中任意10人捐书总数不超过190本,那么捐书最多的某同学最多能捐书_________本.19.(2021·全国·九年级竞赛)已知由小到大的10个正整数1210,,,a a a 的和是2000,那么5a 的最大值是_________,这时10a 的值应是_________. 三、解答题20.(2021·全国·九年级竞赛)某宾馆底楼客房比二楼客房少5间,某旅游团有48人.若全部安排底楼,每间房间住4人,房间不够;每间住5人,则有房间没有住满5人.又若全部安排住2楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人.问该宾馆底楼有多少间客房?21.(2021·全国·九年级竞赛)一座大楼有4部电梯,如果每部电梯可停靠三层(不一定连续三层,也不一定停最低层),对大楼中的任意两层,至少有一部电梯可在这两层停靠.问:这座大楼最多有几层22.(2021·全国·九年级竞赛)解方程22424x x x x ⎡⎤+-=⎢⎥⎣⎦.23.(2021·全国·九年级竞赛)证明:对任意实数x 及任意正整数n 有[][]121n x x x x nx n n n -⎡⎤⎡⎤⎡⎤+++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.24.(2021·全国·九年级竞赛)已知01,01,01a b c <<<<<<,证明: ()()()1,1,1a b b c c a ---中至少有一个不大于14. 25.(2021·全国·九年级竞赛)设正数a ,b ,c ,x ,y ,x 满足a x b y c z k +=+=+=,证明;2ay bz cx k ++<. 26.(2021·全国·九年级竞赛)已知实数a ,b ,c 满足0,10a b c ac ++==,证明1110a b c++<.27.(2021·全国·九年级竞赛)下图是某单位职工年龄(取正整数)的频率分布图(每组可含最低年龄但不含最高值),根据图中提供的信息回答下列问题:(1)该厂共有多少职工?(2)年龄不小于38但小于44岁的职工人数占职工总人数的百分比是多少? (3)如果42岁的职工有4人,那么42岁以上的职工有多少人?(4)有人估计该单位职工的平均年龄在39岁与42岁之间,问这个估计正确吗?28.(2021·全国·九年级竞赛)某人到花店买花,他只有24元,打算买6支玫瑰和3支百合,但发现钱不够,只买了4支玫瑰和5支百合,这样还剩下2元多钱.请你算一算:2支玫瑰和3支百合哪个价格高?29.(2021·全国·九年级竞赛)1132x x -+ 30.(2021·全国·九年级竞赛)解不等式:2243414143x x x x x x x x +-->-++-- 31.(2021·全国·九年级竞赛)求满足下列条件的最小正整数n ,使得对这样的n ,有唯一的正整数k ,满足871513n n k <<+. 32.(2021·全国·九年级竞赛)解不等式: 2256154x x x x -+≤++.33.(2021·全国·九年级竞赛)解不等式21311x x x x -+>-+. 34.(2021·全国·九年级竞赛)如果二次不等式:28210ax ax ++<的解是71x -≤<-,求a 的值. 35.(2021·全国·九年级竞赛)某校参加全国数,理,化,计算机比赛的人数分别是20,16,x ,20人.已知这组数据的中位数和平均数相等,求这组数据的中位数.36.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6次、第7次,第8次,第9次射击中,分别得到9.0环、8.4环、8.1环、9.3环,他的前9次射击所得平均环数高于前5次射击所得平均环数,如果要使10次射击的平均环数超过8.8环,那么他第10次射击至少要得多少环?(每次射击环数精确到0.1环)37.(2021·全国·九年级竞赛)今有浓度为5%,8%,9%的甲、乙、丙三种盐水分别为60g,60g,47g ,现要配制成浓度为7%的盐水100g .间甲盐水最多可用多少克?最少可用多少克?38.(2021·全国·九年级竞赛)求证:对任意的实数x ,y ,[2][2][][][]x y x x y y ++++.39.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6、第7、第8、第9次射击中,分别得了9.0环,8.4环,8.1环,9.3环,他的前9次射击所得环数的平均值高于前5次射击所得的平均环数.如果他要使10次射击的平均环数超过8.8环,那么他在第10次射击中最少要得多少环?(每次射击所得环数都精确到0.1环)40.(2021·全国·九年级竞赛)已知x ,y ,z 都是正数,证明:32()()()()()()x y x z y z y x z x z y +≤++++++.41.(2021·全国·九年级竞赛)某饮料厂生产A 、B 两种矿泉水,每天生产B 种矿泉水比A 种矿泉水多10吨,A 种矿泉水比B 种矿泉水每天多获利润2000元,其中A 种矿泉水每吨可获利润200元,B 种矿泉水每吨可获利润100元.(1)问:该厂每天生产A 种,B 种矿泉水各多少吨?(2)由于江水受到污染,市政府要求该厂每天必须多生产10吨矿泉水,该厂决定响应市政府的号召,在每天的利润不超过原利润的情况下不少于8000元,该厂每天生产A 种矿泉水最多多少吨?42.(2021·全国·九年级竞赛)要使不等式2320x x -+≤①与不等式2(1)(3)20m x m x -+--<②无公共解,求m 的取值范围.43.(2021·全国·九年级竞赛)已知三个非负数a ,b ,c ,满足325a b c ++=和231a b c +-=.若37m a b c =+-,求m 的最大值和最小值.44.(2021·全国·九年级竞赛)某班学生到公园进行活动,划船的有22人,乘电动车的有20人,乘过山车的有19人,既划船又乘电动车的有9人,既乘电动车又乘过山车的有6人,既划船又乘过山车的有8人,并且有4人没有参加上述3项活动中任何一项活动,问这个班学生人数的可能值是多少?竞赛专题5 不等式答案解析 (竞赛真题强化训练)一、单选题1.(2021·全国·九年级竞赛)若满足不等式871513n n k <<+的整数k 只有一个,则正整数n 的最大值为( ). A .100 B .112C .120D .150【答案】B 【解析】 【分析】 【详解】 由已知不等式得13156767,,787878n k k n nk n n +<<<<<<.因由已知条件,67n 与78n 之间只有 唯一一个整数k ,所以76287n n-≤解得112n ≤.当112n =时,9698k ≤≤,存在唯一97k =,所以n 的 最大值为112.故应选B .2.(2021·全国·九年级竞赛)27234x x x ----有意义,则x 的取值范围是( )A .4x >B .7x ≥5x ≠C .4x >且5x ≠D .45x <<【答案】C 【解析】 【分析】 【详解】依题意得27077321544x x x x x x x x ⎧⎧-≥≤≥⎪⎪-≠⇒≠≠⎨⎨⎪⎪>>⎩⎩或且,4x ⇒>且5x ≠.故选C .3.(2021·全国·九年级竞赛)某校初一运动队为了备战校运动会需要购置一批运动鞋.已知该运动队有20名同学,统计表如下表,由于不小心弄脏了统计表,下表中阴影部分的两个数据看不到. 鞋码 38 39 40 41 42 人数 532下列说法正确的是( ).A .这组鞋码数据中的中位数是40,众数是39 B .这组鞋码数据中的中位数与众数一定相等 C .这组鞋码数据中的平均数p 满足3940p ≤≤ D .以上说法都不对 【答案】C 【解析】 【分析】 【详解】设穿39码和40码的学生分别有x 人和y 人,则()2052310x y +=-++=.(1)若y x ≥,即穿40码的人数最多时,中位数和众数都等于40,故选A 错;(2)若5x y ==,则中位数1(3940)39.52=+=,众数为39和40,中位数不等于众数,故选B 错;(3)平均数[]13853940(10)41342239.75220xp x x =⨯++⨯-+⨯+⨯=-,且010x ≤≤,于是39.2539.75p <≤,满足3940p ≤≤,故选C 正确.所以应选C .4.(2021·全国·九年级竞赛)如果不等式组9080x a x b -≥⎧⎨-<⎩的整数解仅为1,2,3,那么适合这个不等式组的有序对(),a b 共有( ). A .17个 B .64个 C .72个 D .81个【答案】C 【解析】 【分析】 【详解】 解 因98ax b x ⎧≥⎪⎪⎨⎪<⎪⎩中x 的整数值仅为1,2,3,所以01,34,98a b <≤<≤即9a <≤, 2432b <≤,故a 可取1,2,…,9这9个值,b 可取25,26,….32这8个值,所以有序对(),a b 有8972⨯=个.故选C .5.(2021·全国·九年级竞赛)若不等式054ax ≤+≤的整数解是1,2,3,4,则a 的取值范围是( ). A .54a -B .1a <-C .514a -≤<-D .54a -【答案】C 【解析】 【分析】 【详解】解 由054ax ≤+≤得51ax -≤≤-,且已知0x >,所以0a <,15ax a ≤-≤-. 又不等式054ax ≤+≤的整数解是1,2,3,4,所以101a <-≤,且545a≤-<解得 1a ≤-且5114a -<-≤,故514a -≤<-,所以选C .6.(2021·全国·九年级竞赛)2009x y 且0x y <<,则满足此等式的不同整数对(,)x y 有( )对. A .1 B .2 C .3 D .4【答案】C 【解析】 【分析】 【详解】选C .理由:由20094941=⨯,得200941= 又0x y <<2009200941641241541341441===20094114761641025369656===因此,满足条件的整数对(,)x y 为(41,1476),(164,1025),(369,656).共有3对.7.(2021·全国·九年级竞赛)有两个四位数,它们的差是534,它们平方数的末四位数相同.则较大的四位数有( )种可能. A .1 B .2C .3D .4【答案】C 【解析】 【分析】 【详解】理由:设较大的四位数为x ,较小的四位数为y ,则534x y -=, ① 且22x y -能被10000整除.而22()()x y x y x y -=+-2672()x y =⨯+,则x y +能被5000整除.令()5000x y k k ++=∈N . ②由式①②解得2500267,2500267.x k y k =+⎧⎨=-⎩ 考虑到x ,y 均为四位数,于是,100025002679999,100025002679999,k k ≤+≤⎧⎨≤-≤⎩解得126755832500625k ≤≤. k 可取1,2或3.从而,x 可取的值有3个:2767,5267,7767.8.(2021·全国·九年级竞赛)一个正方形纸片,用剪刀沿一条不过顶点的直线将其剪成两部分,拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分,又从得到的3部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分,……,如此下去,最后得到34个六十二边形和一些多边形纸片,则至少要剪的刀数是( ). A .2004 B .2005C .2006D .2007【答案】B 【解析】 【分析】 【详解】解 (算两次方法)依题意,用剪刀沿不过顶点的直线剪成两部分时,所得各张多边形(包括三角形)的纸片的内角和增加了2180360⨯︒=︒,剪过k 刀后,可得(1)+k 个多边形,这些多边形的内角总和为360360(1)360k k ︒+⨯︒=+⨯︒.另一方面,因为这1k +个多边形中有34个为六十二边形,它们的内角总和为34(622)1802040180⨯-⨯=⨯︒︒,余下的多边形(包括三角形)有13433k k +-=-个,其内角总和至少为(33)180k -⨯︒,于是(1)3602040180(33)180k k +⨯︒≥⨯︒+-⨯︒,解得2005k ≥.其次,我们按如下方式剪2005刀时,可得到符合条件的结论.先从正方形剪下1个三角形和1个五边形,再将五边形剪成1个三角形和1个六边形,…,如此下去,剪了58刀后,得到1个六十二边形和58个三角形,取出其中33个三角形,每个各剪一刀,又可得到33个四边形和33个三角形,对这33个四边形,按上述方法各剪58刀,便得到33个六十二边形和3358⨯个三角形,于是共剪了583333582005++⨯=(刀),故选B .9.(2021·全国·九年级竞赛)若正数a ,b ,c 满足不等式1126352351124c a b c a b c a b a c b ⎧<+<⎪⎪⎪<+<⎨⎪⎪<+<⎪⎩则a ,b ,c 的大小关系是( )A .a b c <<B .b c a <<C .c a b <<D .不确定【答案】B 【解析】 【分析】 【详解】解 由已知条件及加法的单调性得1126352251124c c a b c c c a a a b c a a b b a b c b b ⎧+<++<+⎪⎪⎪+<++<+⎨⎪⎪+<++<+⎪⎩,即1736582371524c a b c c a a b c a b a b c b ⎧<++<⎪⎪⎪<++<⎨⎪⎪<++<⎪⎩①②③由①,②得17816176366c a b c a a a <++<=< (传递性),所以a c >. 由①,③得7673222b a bc c c c <++<=< (传递性),所以b c <.可见,a ,b ,c 的大小关系是a c b >>,故选B . 10.(2021·全国·九年级竞赛)设114,,11(1)r a b c r r r r r r r ≥=-==++++的是( ). A .a b c >> B .b c a >>C .c a b >>D .c b a >>【答案】D 【解析】 【分析】 【详解】 解:因111221r r r ≥<+=+,故 ()(111a b r r r r r r =+<=+++, 1111r r r r c b r r r x +-+->=+⋅+.所以c b a >>. 故选:D . 二、填空题11.(2021·全国·九年级竞赛)设a ,b 为正整数,且2537a b <<则b 取最小值时a b +=_____ 【答案】17 【解析】 【分析】 【详解】由已知条件得32,57a b b a >>.令32,57A a b B b a =-=-,则A ,B 均为正整数,解出52,737310a A B b A B =+=+≥+=.当1,1A B ==时等号成立,故b 的最小值为10,这时527a =+=,17a b +=.故应填17.12.(2021·全国·九年级竞赛)已知实数x ,y 满足234x y -=且0,1x y ≥≤,则x y -的最大值是______,最小值是_______. 【答案】 4352【解析】 【分析】 【详解】 434370222y x ++≤=≤=. 又243x y -=所以24433x x x y x -+-=-=.故当0x =时,x y -取最小值43;当72x =时,x y -取最大值175(4)322+=所以应填45,32.13.(2021·全国·九年级竞赛)已知01a ≤≤,且满足122918303030a a a ⎡⎤⎡⎤⎡⎤++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ ([]x 表示不超过x 的最大整数),则[]10a 的值等于_______. 【答案】6 【解析】 【分析】 【详解】 因122902303030a a a <+<+<<+<,所以1229,,,303030a a a ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦每一个等于0或1.由题设知其中恰有18个等于1, 所以12111213290,1303030303030a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=+==+=+=+==+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦于是111201,123030a a <+<≤+<,解得1183019,61063a a ≤<≤<所以[]106a =.故应填6. 14.(2021·全国·九年级竞赛)若化简2269x x x --+25x -,则满足条件是x 的取值围是_________. 【答案】23x ≤≤ 【解析】 【分析】 【详解】由()2226923232(3)25x x x x x x x x x x --+=--=---=---=-,得2030x x -≥⎧⎨-≤⎩即23x ≤≤.故填23x ≤≤.15.(2021·全国·九年级竞赛)[]x 表示不超过x 的最大整数(例如[]3.23=).已知正整数n 小于2006,且362n n n⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦,则这样的n 有___________个. 【答案】334 【解析】 【分析】 【详解】解 设[]6n m =则(01)6na a m =≤+<从而66n m a =+.当102a ≤<时, 22(021)3n m a a =+≤<,故23n m ⎡⎤=⎢⎥⎣⎦.于是由362n n n⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦得662332m a m m m a ++==+,从而0a =.此时(6204)06133n m m =<≤≤. 当112a ≤<,223n m a =+由212222m m a m +≤+<+得213n m ⎡⎤=+⎢⎥⎣⎦代入 362n n n ⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦得2133m m m a ++=+,得13a =,与112a ≤<矛盾,舍去. 故所有的n 共有334个.16.(2021·全国·九年级竞赛)不等式2242x ax a +<的解是___________. 【答案】67a a x -<<(当0a >时);76a ax <<-(当0a <时);无解(当0a =时).【解析】 【分析】 【详解】解 原不等式化为()()670x a x a +-<,方程()()670x a x a +-=的两根为6a -和7a.若0a >,则67a a -<不等式的解为67a ax -<<; 若0a <,则76a a <-不等式的解为76a a x <<-; 若0a =,则67a a-=,不等式无解. 故应填:67a a x -<< (当0a >时); 76a ax <<-(当0a <时);无解(当0a =时). 17.(2021·全国·九年级竞赛)已知正整数m 和n 有大于1的最大公约数,并且满足3371m n +=,则mn =________. 【答案】196 【解析】 【分析】 【详解】理由:设k 是m ,n 的最大公约数,则m 和n 可以表示为,m ka n kb ==(1k >,a ,b 均为正整数).于是,()3323()371753m n ka kb k k a b +=+=+==⨯.因为1k >且7与53都是质数,23232k a b k a k k +>≥>, 所以7k =且2353k a b +=,即34953a b ⨯+=.由a ,b 是正整数,得1,4a b ==. 所以7,28m n ==.故728196mn =⨯=.18.(2021·全国·九年级竞赛)长沙市某中学100名学生向某“希望学校”捐书1000本,其中任意10人捐书总数不超过190本,那么捐书最多的某同学最多能捐书_________本. 【答案】109 【解析】 【分析】 【详解】设100名学生捐书数分别是12100,,,a a a ,不妨设其中100a 为最大,于是100101000a +=()129100a a a a +++++()101118100a a a a ++++()192027100a a a a +++++(91a +++)9299100a a a +++190190190≤+++111902090=⨯=,所以100109a ≤.另一方面,当12999a a a ====,100109a =时,满足题目要求,故捐书最多的人最多能捐书109本.19.(2021·全国·九年级竞赛)已知由小到大的10个正整数1210,,,a a a 的和是2000,那么5a 的最大值是_________,这时10a 的值应是_________. 【答案】 329 335或334 【解析】 【分析】 【详解】要使10a 最大,必须1a ,2a ,3a ,4a 及6a ,7a ,8a ,9a ,10a 尽量小.又因为1210a a a <<<,且1a ,2a ,3a ,4a 的最小可能值依次为1,2,3,4,于是有2000123≥+++56104a a a ++++,即56101990a a a +++≤.又651a a ≥+,752a a ≥+,853a a ≥+,954a a ≥+,1055a a ≥+,故51990615a ≥+,51975132966a ≤=.又5a 为正整数,所以5329a ≤,于是6710a a a +++=199********-=.又761a a ≥+,862a a ≥+,963a a ≥+,1064a a ≥+,故65101661a +≤,616515a ≤=13305,且6a 为正整数,所以6330a ≤,而651330a a ≥+=,所以6330a =,要7a ,8a ,9a 最小得7331a =,8332a =,9333a =,这时101661a =-()6789335a a a a +++=.但如果取1a ,2a ,3a ,4a 依次为1,2,3,5,那么同样可得569,,,a a a 取上述值,这时10334a =.故应填5a 的最大值是329,这时10a 的值应是335或334. 三、解答题20.(2021·全国·九年级竞赛)某宾馆底楼客房比二楼客房少5间,某旅游团有48人.若全部安排底楼,每间房间住4人,房间不够;每间住5人,则有房间没有住满5人.又若全部安排住2楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人.问该宾馆底楼有多少间客房? 【答案】宾馆的底楼有客房10间 【解析】 【分析】 【详解】设底楼有x 间客房,则2楼有()5+x 间客房. 简4485483(5)484(5)48x x x x <⎧⎪>⎪⎨+<⎪⎪+>⎩依题意可得不等式组解不等式组得9.611x <<.又x 为正整数,所以10x =. 答:宾馆的底楼有客房10间.21.(2021·全国·九年级竞赛)一座大楼有4部电梯,如果每部电梯可停靠三层(不一定连续三层,也不一定停最低层),对大楼中的任意两层,至少有一部电梯可在这两层停靠.问:这座大楼最多有几层? 【答案】这座大楼最多有5层【解析】 【分析】 【详解】设大楼有n 层,则楼层对的个数为(1)2n n -每架电梯停3层,有3232⨯=个楼层对, 所以(1)43,(1)242n n n n -⨯≥-≤,且n 为正整数,所以5n ≤.设置4部电梯使它们停靠的楼层分别为 ()()()()1,4,5,2,4,5,3,4,5,1,2,3满足题目要求,故这座大楼最多有5层.22.(2021·全国·九年级竞赛)解方程22424x x x x ⎡⎤+-=⎢⎥⎣⎦.【答案】4x =-或45【解析】 【分析】 【详解】原方程中显然0x ≠,故原方程可化为2241()2x x ⎡⎤+-=⎢⎥⎣⎦.又2222221()21()2()1x x x ⎡⎤⎡⎤⎡⎤+-=+-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,故原方程可化为224[()]1x x=+,所以4x 为整数,设4n x =(n 为整数),原方程又化为2[]14n n =+.于是2124n n n +≤<+,即222(12)2(12)440,2(13)2(12)4802(13)2(13)n n n n n n n n ⎧≤≥+⎧--≥⎪⇒≤≤⎨⎨--<<<⎩⎪⎩或 或.2(12)2(13n <<).又n 为整数,所以1n =-或5n =,故4x =-或4523.(2021·全国·九年级竞赛)证明:对任意实数x 及任意正整数n 有[][]121n x x x x nx n n n -⎡⎤⎡⎤⎡⎤+++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.【答案】见解析 【解析】 【分析】 【详解】设[]x x α=-,则01a ≤≤,于是存在小于n 的正整数r ,使1r rn nα-≤<故[][]1r rx x x n n-+<<+, 故当0k n r ≤≤-时,[][][][]11r k r n rx x x x x n n n n--≤+≤+<++=-, 故[](0)k x x k n r n ⎡⎤+=≤≤-⎢⎥⎣⎦当11n r k n -+≤≤-时,[][][][][]1111111r n r k r n r x x x x x x n n n n n n--+--+=++≤+<++=++<+, 故[]1(11)k x x n r k n n ⎡⎤+=+-+≤≤-⎢⎥⎣⎦,于是[]1111[]()(n n r n r x x x x x x x n n n n n ---+⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=++++++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦[][]21)(1)(1)(1)[]1n r n x x n r x r x n x r n n -+-⎡⎤⎡⎤++++=-++-+=+-⎢⎥⎢⎥⎣⎦⎣⎦①. 又因为[][]1n x r nx n x r +-≤≤+,所以[][]1nx n x r =+-②. 由①及②便知要证等式成立.24.(2021·全国·九年级竞赛)已知01,01,01a b c <<<<<<,证明: ()()()1,1,1a b b c c a ---中至少有一个不大于14. 【答案】见解析 【解析】 【分析】 【详解】 (1)1(1)22a a a a +--≤=11(1)(1)22b bc c --≤三式平方后相乘得 31(1)(1)(1)()4a b b c c a -⋅-⋅-≤故()()()1,1,1a b b c c a ---中至少有一个不大于14.25.(2021·全国·九年级竞赛)设正数a ,b ,c ,x ,y ,x 满足a x b y c z k +=+=+=,证明; 2ay bz cx k ++<. 【答案】见解析 【解析】 【分析】 【详解】因3()()()()()()k a x b y c z abc xyz ay c z bz a x cx b y =+++=+++++++()()abc xyz k ay bz cx k ay bx cx =++++>++.又0k >,所以2ay bz cx k ++<.26.(2021·全国·九年级竞赛)已知实数a ,b ,c 满足0,10a b c ac ++==,证明1110a b c++<.【答案】见解析 【解析】 【分析】 【详解】因10abc =,故a ,b ,c 都不为零.又2222()2()0a b c a b c ab bc ca ++=+++++=且2220a b c ++>,所以0ab bc ca ++<,于是1110bc ca ab a b c abc++++=<. 27.(2021·全国·九年级竞赛)下图是某单位职工年龄(取正整数)的频率分布图(每组可含最低年龄但不含最高值),根据图中提供的信息回答下列问题:(1)该厂共有多少职工?(2)年龄不小于38但小于44岁的职工人数占职工总人数的百分比是多少? (3)如果42岁的职工有4人,那么42岁以上的职工有多少人?(4)有人估计该单位职工的平均年龄在39岁与42岁之间,问这个估计正确吗? 【答案】(1)50;(2)60%;(3)15人;(4)正确 【解析】 【分析】 【详解】(1)职工人数47911106350=++++++=;(2)年龄不小于38但小于44岁职工人数占职工总数的百分比为91110100%60%50++⨯=; (3)年龄在42岁以上职工人数()1063415=++-=(人); (4)设该厂职工的年龄平均值为n ,则11(34436738940114210446463)199239.84395050n ≥⨯+⨯+⨯+⨯+⨯+⨯+⨯=⨯=>且11(36438740942114410466483)209241.84425050n <⨯+⨯+⨯+⨯+⨯+⨯+⨯=⨯=<,故所作的估计是正确的.28.(2021·全国·九年级竞赛)某人到花店买花,他只有24元,打算买6支玫瑰和3支百合,但发现钱不够,只买了4支玫瑰和5支百合,这样还剩下2元多钱.请你算一算:2支玫瑰和3支百合哪个价格高? 【答案】2支玫瑰的价格高于3支百合的价格. 【解析】 【分析】 【详解】解 设玫瑰每支x 元,百合每支y 元,依题意得632445242x y x y +>⎧⎨+=-⎩①② 32⨯-⨯②①得918y <,故2y <. 53⨯-⨯①②得1854x >,故3x >.答:2支玫瑰的价格高于3支百合的价格.29.(2021·全国·九年级竞赛)1132x x -+ 【答案】8313x ---≤≤【解析】 【分析】 【详解】解 首先,由1030x x -≥⎧⎨+≥⎩得31x -≤≤.1132x x -≥+① 数上式两边均非负(当31x -≤≤时),两边平方后,整理得 9843x x --≥+②于是980x --≥,即98x ≤-结合31x -≤≤得938x -≤≤-.并且②式两边平方,得2(98)16(3)x x ≥--+,整理得264128330x x ++≥.③因方程264128330x x ++=的两根为1,2831x -±= 所以③的解为831x --≤或831x -+≥结合938x -≤≤-得原不等式的解为8313x ---≤≤30.(2021·全国·九年级竞赛)解不等式:2243414143x x x x x x x x +-->-++-- 【答案】1144x -<<或364x -<<634x <【解析】 【分析】 【详解】解 不等式两边乘以4,化简为5115(1)(1)(1)(1)43414143x x x x +-->+--++-- 移项、整理得22151169161x x ->--,移项、通分得2224(646)0(169)(161)x x x -<--, 可化为222(646)(169)(161)0x x x ---<,即222139()()()0163216x x x ---<. 如右图得2116x <或2393216x <<,解得1144x -<<或364x -<<634x <<31.(2021·全国·九年级竞赛)求满足下列条件的最小正整数n ,使得对这样的n ,有唯一的正整数k ,满足871513n n k <<+. 【答案】15 【解析】 【分析】 【详解】因n ,k 为正整数,所以0,0n n k >+>. 由题中不等式得151387n k n +>>,即1513187k n >+>所以7687k n >>,故76,87k n k n ><. 令760,780A k n B n k =-≥=-≥,可解出87,76n A B k A B =+=+. 又因为A ,B 均为正整数,1,1A B ≥≥,所以8715n ≥+=.当且仅当1,1A B ==时n 取最小值15,这时k 有唯一值716113⨯+⨯=. 故所求n 的最小值为15.32.(2021·全国·九年级竞赛)解不等式: 2256154x x x x -+≤++.【答案】41x -≤<-或4x <-或15x ≥.【解析】 【分析】 【详解】解 移项,通分整理得1020(1)(4)x x x -+≤++故得(Ⅰ) 1020(1)(4)0x x x -+≥⎧⎨++<⎩,或(Ⅱ)1020(1)(4)0x x x -+≤⎧⎨++>⎩.解(I ) 1541x x ⎧≤⎪⎨⎪-<<-⎩,∴41x -≤<-. 解(Ⅰ)1541x x x ⎧≥⎪⎨⎪--⎩或∴4x <-或15x ≥. 综上所述得,原不等式的解为41x -≤<-或4x <-或15x ≥.33.(2021·全国·九年级竞赛)解不等式21311x x x x -+>-+. 【答案】1x <-或1x > 【解析】 【分析】 【详解】解 移项通分得(21)(1)(3)(1)0(1)(1)x x x x x x -+-+->-+,即220(1)(1)x x x x -+>-+. 因22172()024xx x,故上述不等式化为()()110,1x x x -+>∴<-或1x >. 34.(2021·全国·九年级竞赛)如果二次不等式:28210ax ax ++<的解是71x -≤<-,求a 的值. 【答案】3a =【解析】 【分析】 【详解】解 依题意,1,7--是方程28210ax ax ++=的两个根,且0a >,由韦达定理得 2(1)(7)a-⨯-=,所以3a =. 35.(2021·全国·九年级竞赛)某校参加全国数,理,化,计算机比赛的人数分别是20,16,x ,20人.已知这组数据的中位数和平均数相等,求这组数据的中位数. 【答案】18或20. 【解析】 【分析】 【详解】(1)当16x ≤时,平均数为564x x +=,中位数为2016182+=.由56184x+=,解得16x =,满足16x ≤;(2)当1620x ≤≤时,平均数564x x +=,中位数为202x +.由562042x x++=,解得16x =,不符合1620x <<;当20x ≥时,平均数为564x x +=,中位数为2020202+=.由56204x+=,解得24x =,符合20x ≥.因此,所求中位数为18或20.36.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6次、第7次,第8次,第9次射击中,分别得到9.0环、8.4环、8.1环、9.3环,他的前9次射击所得平均环数高于前5次射击所得平均环数,如果要使10次射击的平均环数超过8.8环,那么他第10次射击至少要得多少环?(每次射击环数精确到0.1环) 【答案】第10次至少要射9.9环 【解析】 【分析】 【详解】设前9次射击共得x 环,依题意得1(9.08.48.19.3)95x x -+++>,解得78.3x <,故78.30.178.2x ≤-=.依题目要求,第10次射击至少要达到的环数为()8.8100.178.29.9⨯+-=(环). 答:第10次至少要射9.9环37.(2021·全国·九年级竞赛)今有浓度为5%,8%,9%的甲、乙、丙三种盐水分别为60g,60g,47g ,现要配制成浓度为7%的盐水100g .间甲盐水最多可用多少克?最少可用多少克? 【答案】甲种盐水最多可用49g ,最少可用35g 【解析】【分析】【详解】设3种盐水应分别取,,xg yg zg ,1005%8%9%1007%060060047x y z x y z x y z ++=⎧⎪++=⨯⎪⎪≤≤⎨⎪≤≤⎪≤≤⎪⎩,解得20043100y x z x =-⎧⎨=-⎩所以02004600310047x x ≤-≤⎧⎨≤-≤⎩, 解得3549x ≤≤.答:甲种盐水最多可用40g ,最少可用35g .38.(2021·全国·九年级竞赛)求证:对任意的实数x ,y ,[2][2][][][]x y x x y y ++++.【答案】见解析.【解析】【分析】【详解】设[],[]x x y y n αββ=+=+=+,其中0,1αβ≤<,m ,n 为整数.(1)若110,022αβ≤<≤<,则021,021,01αβαβ≤<≤<≤+<.这时有 [2][2][22][22]22x y m m m n αβ+=+++=+,[][][]x x y y +++[][()()][]m a m n n αββ=+++++++()22m m n n m n =+++=+,所以[2][2][][][]x y x x y y +=+++.(2)若111,122αβ≤<≤<,则122,122,12αβαβ≤<≤<≤+<.这时有 [2][2][22][22]2121x y m n m n αβ+=+++=+++222m n =++,[][][][][()()][]x x y y m m n n ααββ+++=+++++++()1221m m n n m n =++++=++.所以[2][2][][][]x y x x y y +>+++.(3)若110,122αβ≤<≤<(111,022αβ≤<≤<的情况类似),这时有021α≤<,13122,22βαβ≤<≤+<,这时有[2][2][22][22]221x y m a n m n β+=+++=++,[][][][()()]221x x y y m m n a n m n β+++=+++++++.综上所述,不论何种情况,都有[2][2][][][]x y x x y y +≤+++.39.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6、第7、第8、第9次射击中,分别得了9.0环,8.4环,8.1环,9.3环,他的前9次射击所得环数的平均值高于前5次射击所得的平均环数.如果他要使10次射击的平均环数超过8.8环,那么他在第10次射击中最少要得多少环?(每次射击所得环数都精确到0.1环)【答案】第10次最少要得9.9环.【解析】【分析】【详解】9.设前5次射击所得平均环数为a ,第10次击中x 环,依题意59.08.48.19.39a a ++++<, ① 59.08.48.19.38.810a x +++++<. ② 由①得8.7a <,从而558.70.143.4a ≤⨯-=.由②得8834.8553.243.49.8x a >--≥-=,所以9.9x ≥,即第10次最少要得9.9环.40.(2021·全国·九年级竞赛)已知x ,y ,z 都是正数,证明:32()()()()()()x y x z y z y x z x z y +≤++++++. 【答案】见解析【解析】【分析】【详解】 (0,0)2a b ab a b +≥≥得 []()()()()11()2()()2()()x x y x z x x y x z x x x y x z x y x z x y x z +++++=⋅=+++++++①. 1()2()()y y y x y zy x y z ≤+++++②. 1()2()()z z z x z yz x z y ≤+++++③由①+②+③即得要证不等式. 41.(2021·全国·九年级竞赛)某饮料厂生产A 、B 两种矿泉水,每天生产B 种矿泉水比A 种矿泉水多10吨,A 种矿泉水比B 种矿泉水每天多获利润2000元,其中A 种矿泉水每吨可获利润200元,B 种矿泉水每吨可获利润100元.(1)问:该厂每天生产A 种,B 种矿泉水各多少吨?(2)由于江水受到污染,市政府要求该厂每天必须多生产10吨矿泉水,该厂决定响应市政府的号召,在每天的利润不超过原利润的情况下不少于8000元,该厂每天生产A 种矿泉水最多多少吨?【答案】(1)该厂每天生产A 种矿泉水30吨,B 种矿泉水40吨.(2)该厂每天最多生产A 种矿泉水20吨.【解析】【分析】【详解】解 (1)设该厂每天生产A 种矿泉水x 吨,则该厂每天生产B 种矿泉水10x +吨,依题意得()200100102000x x -+=,解得30,1040x x =+=.(2)设该厂每天生产A 吨矿泉水y 吨,依题意得该厂每天共生产30401080++=吨矿泉水且()10000200100808000y y ≥+-≥,其中100002003010040=⨯+⨯为该厂原来每天获得的利润,解上述不等式得020y ≤≤.答:(1)该厂每天生产A 种矿泉水30吨,B 种矿泉水40吨.(2)该厂每天最多生产A 种矿泉水20吨.42.(2021·全国·九年级竞赛)要使不等式2320x x -+≤①与不等式2(1)(3)20m x m x -+--<②无公共解,求m 的取值范围.【答案】0m ≥【解析】【分析】【详解】解 ①化为()()120x x --<,故①的解为12x <<.②化为()()1210m x x ⎡⎤⎣⎦-+-<.③(1)当1m =,③为()210x -<,即1x <,符合题意.(2)当10m ->,即1m 时,③的解为211x m -<<-符合题意. (3)当10m -<,即1m <时,又分两种情形讨论: 若211m <-,即1m <-时,③的解为21x m <-或1x >,不符合题意; 若211m >-,即1m >-时,③的解为1x <或21x m>-. 要使①与②无公共解,必须221m ≥-即0m ≥,结合1m <得01m ≤<. 综上所述,得到要使①与②无公共解,m 的取值范围是0m ≥.43.(2021·全国·九年级竞赛)已知三个非负数a ,b ,c ,满足325a b c ++=和231a b c +-=.若37m a b c =+-,求m 的最大值和最小值.【答案】m 的最大值为111-;m 的最小值为57- 【解析】【分析】【详解】 解 由325,231a b c a b c ++=+-=可解出73,711a c b c =-=-,于是()()37373711732m a b c c c c c =+-=-+--=-.由0,0,0a b c ≥≥≥得73071100c c c -≥⎧⎪-≥⎨⎪≥⎩解得37711c ≤≤. 所以m 的最大值为71321111m =⨯-=-,m 的最小值为353277m =⨯-=-. 44.(2021·全国·九年级竞赛)某班学生到公园进行活动,划船的有22人,乘电动车的有20人,乘过山车的有19人,既划船又乘电动车的有9人,既乘电动车又乘过山车的有6人,既划船又乘过山车的有8人,并且有4人没有参加上述3项活动中任何一项活动,问这个班学生人数的可能值是多少?【答案】这个班的学生人数可能是42,43,44,45,46,47,48.【解析】【分析】【详解】解 设3项活动都参加了的学生有n 人,于是由容斥原理I 知至少参加了一项活动人数为222019(968)38n n ++-+++=+.所以,这个班的学生人数为38442n n ++=+.另一方面参加了两项活动的学生人数分别是9,6,8,所以06n ≤≤,故424248n ≤+≤.综上所述,这个班的学生人数可能是42,43,44,45,46,47,48.。
初三数学竞赛试卷带答案

一、选择题(每题5分,共20分)1. 下列数中,不是有理数的是()A. -√2B. 0.5C. 3D. 2/32. 若a,b是方程x^2 - 4x + 3 = 0的两个根,则a + b的值为()A. 4B. -4C. 3D. 13. 下列函数中,是奇函数的是()A. y = x^2B. y = 2xC. y = |x|D. y = x^34. 在直角坐标系中,点A(2,3)关于原点对称的点的坐标是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)5. 若等差数列{an}的前n项和为Sn,且S5 = 50,S9 = 90,则公差d为()A. 2C. 4D. 5二、填空题(每题5分,共20分)6. 若一个数的平方等于它本身,则这个数是_______。
7. 二项式定理中,(x + y)^n展开式中,x的系数是_______。
8. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C = _______。
9. 若x^2 - 5x + 6 = 0,则x^2 - 5x的值为_______。
10. 一个等腰三角形的底边长为8,腰长为10,则这个三角形的周长为_______。
三、解答题(每题10分,共30分)11. 解方程:3x^2 - 5x + 2 = 0。
12. 已知函数y = 2x - 3,求证:对于任意实数x1,x2,都有y1 + y2 ≥ 2y。
13. 在△ABC中,AB = AC,点D是边BC上的一点,且BD = DC。
若∠ADB = 40°,求∠A的度数。
答案一、选择题1. A2. A3. D4. A5. A二、填空题6. 07. C_n^1 x^(n-1) y9. -510. 28三、解答题11. 解:分解因式得 (3x - 2)(x - 1) = 0,所以 x = 2/3 或 x = 1。
12. 证明:设x1 < x2,则y1 = 2x1 - 3,y2 = 2x2 - 3。
江苏省第十六届初中数学竞赛试题(初三年级)及答案

1 / 4江苏省第十六届初中数学竞赛试题(初三年级)一、选择题(6×6=36分)1. 已知5252a b ==-+227a b ++的值为 (A )3 (B )4 (C )5 (D )62. 若两个方程20x ax b ++=和20x bx a ++=,则( )(A )a b = (B )0a b += (C )1a b += (D )1a b +=-3. 下列给出四个命题:命题1 若||||a b =,则||||a a b b =;命题2 若2550a a -+=2(1)1a a -=-;命题3 若关于x 的不等式(3)1m x +>的解集是13x m <+,则3m <-; 命题4 若方程210x mx +-=中0m >,则该方程有一正根和一负根,且负根的绝对值较大。
其中正确的命题个数是( )(A )1 (B )2 (C )3 (D )44. 如图,四边形ABCD 中,∠BAD=90°,AB=BC=23AC=6,AD=3,则CD 的长是( )(A )4 (B )42(C )32(D ) 335.已知三角形的每条边长的数值都是2001的质因数那么这样的三角形共有( )(A )6个 (B )7个 (C )8个 (D )9个6.12块规格完全相同的巧克力,每块至多被分为两小块(可以不相等)。
如果 这12 块巧克力可以平均分给n 名同学,则n 可以为( )(A )26 (B )23 (C )17 (D )15二、填空题(5×8=40分)7.若||2a b ==,且0ab <,则a b -= .8.如图,D 、E 、F 分别是△ABC 的边BC 、CA 、AB 上的点且DE ∥BA ,DF ∥CA 。
(1) 要使四边形AFDE 是菱形,则要增加条件:____________________________(2) 要使四边形AFDE 是矩形,则要增加条件:____________________________第4题 第8题2 / 49.方程18272938x x x x x x x x +++++=+++++的解是 . 10.要使610222x ++为完全平方数,那么非负数x 可以是____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛试卷及参考答案(初三年级)
一、选择题(每小题6分,共36分-以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后圆括号内,) 1.多项式x 2
-x+l 的最小值是( ). (A)1 (B)
45 (C)21 (D)4
3 2. 式子10-10|2x-3|(1≤x ≤2)的不同整数值的个数是 ( ). (A)9 (B)10 (C)11 (D)12 3.自然数n 满足1616247
2)22()22(2
-+--=--n n
n n n n ,这样的n 的个数是( ).
(A)2 (B)1 (C)3 (D)4
4,△ ABC 中,∠ABC =30°,边AB =10,边AC 可以取值5、7、9、11之一,满足这些条件的互不全等的三角形的个数是( ), (A)3 (B)4 (C)5 (D)6
5.A 、B 、C 、D 四人参加某一期的体育彩票兑奖活动.现已知: 如果A 中奖,那么B 也中奖; 如果B 中奖,那么C 中奖或A 不中奖; 如果D 不中奖,那么A 中奖,C 不中奖; 如果D 中奖,那么A 也中奖. 则这四人中,中奖的人数是( ). (A)l (B)2 (C)3 (D)4 6.已知△ ABC 的三边分别为x 、y 、z .
(1)以x 、y 、z 为三边的三角形一定存在; (2)以x 2
、y 2
、z 2
为三边的三角形一定存在; (3)以
21(x+y)、21(y+z)、2
1
(z+x)为三边的三角形一定存在; (4)以|x-y|+l 、|y-z|+l 、|z-x|+l 为三边的三角形一定存在以上四个结论中,正确结论的个数为( ).
(A)1 (B)2 (C)3 (D)4 二、填空题(每题5分,共40分)“
7.已知x 2+x-6是多项式2x 4+x 3-ax 2
+bx+a+b-1的因式,则a = ,b= :
8.如图,直角梯形ABCD 中,∠A =90°,AC ⊥BD ,已知
AD BC =k ,则BD
AC
9.函数y =3-|x-2|的图象如图所示;则点A 与B 的坐标分别是A( , )、B( , ).
10.已知3m 2
-2m-5=0,5n 2
+2n-3=0,其中m 、n 为实数,则|m-n
1
|= 11.初三(1)班语文、英语、数学三门课测试,成绩优秀的分别有15、12、9名,并且这三门课中,至少有一门优秀的共有22,名,那么三门课全是优秀的最多有 名,最少1有 名.
12.如图,正方形ABCD 的边长为l 点P 为边BC 上任意一点(可与点B 或C 重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B'、C'、D',则.BB'+CC'+DD'的最大值为 ;最小值为
13.新华高科技股份有限公司董事会决定今年用13亿资金投资发展项目.现有6个项目可供选择(每个项目或者被全部投资,或者不被投资),各项目所需投资金额和预计年均收益如下表:
项 目 A B C D E F 投资(亿元) 5 2 6
4
6 8 收益(亿元)
0.55
0.4
0.6 0.4
0.9
1
如果要求所有投资项目的收益总额不得低于1.6亿元,那么当选择投资的项目是 时,投资的收益总额最大.
14.已知由小到大的10个正整数a 1,a 2,a 3,……,a 10的和是2 000,那么a 5的最大值是 ,这时a 10的值应是 .
三、解答题(每题16分,共48分) 15.若关于x 的方程
x
1
kx x -x x 1-x 2k 2+=-只有一个解,试求k 的值与方程的解. 16.已知一平面内的任意四点,其中任何三点都不在一条直线上.试问:是否一定能从这样的四点中选出三点构成一个三角形,使得这个三角形至少有一内角不大于45°?请证明你的结论.
17.依法纳税是每个公民应尽的义务,《中华人民共和国个人所得税法》规定,公民每
月工资、薪金收入不超过800元,不需交税;超过800元的部分为全月应纳税所得额,都应交税,且根据超过部分的多少按不同的税率交税,详细的税率如下表:
级别全月应纳税所得额税率(%)
1 不超过500元部分 5
2 超过500元至2000元部分10
3 超过2000元至5000元部分15
…………………………
(1)某公民2000年10月的总收入为l 350元,问他应交税款多少元?
(2)设x表示每月收入(单位:元),y表示应交税款(单位:元),当l300<x≤2 800时,请写出y关于x的函数关系式;
(3)某企业高级职员2000年11月应交税款55元,问该月他的总收入是多少元? 18.(1)已知四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°,如图,证明:BC+DC =AC;
(2)如图,四边形ABCD中,AB=BC,∠ABC=60°,P为四边形ABCD内一点,且∠APD =120°,证明:PA+PD+PC≥BD
初三年级答案。