[精品]2016-2017学年湖北省武汉市新洲区八年级(下)期末数学试卷(解析版)

合集下载

湖北省武汉市新洲区八年级下期末数学试卷(含答案解析)

湖北省武汉市新洲区八年级下期末数学试卷(含答案解析)

湖北省武汉市新洲区八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)如果代数式有意义,那么实数的取值范围是()A.≥0 B.≠5 C.≥5 D.>52.(3分)下列二次根式中,最简二次根式是()A.B.C.2D.3.(3分)下列函数中,正比例函数是()A.y=B.y=22C.y=D.y=2+14.(3分)如图所示,在▱ABCD中,AC,BD相交于点O,则下列结论中错误的是()A.OA=OC B.∠ABC=∠ADC C.AB=CD D.AC=BD5.(3分)下列说法中不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线互相垂直的平行四边形是菱形C.有一个角是直角的平行四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形6.(3分)某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:)A.85,90 B.85,87.5 C.90,85 D.95,907.(3分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分8.(3分)一架25米长的云梯,斜立在一竖直的墙上,这时梯脚距离墙底端7米.如果梯子的顶端沿墙下滑4米,那么梯脚将水平滑动()A.9米B.15米C.5米D.8米9.(3分)把直线y=3沿着y轴平移后得到直线AB,直线AB经过点(p,q),且3p=q+2,则直线AB 的解析式是()A.y=3﹣2 B.y=﹣3+2 C.y=﹣3﹣2 D.y=3+210.(3分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12 B.15 C.20 D.30二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)+=.12.(3分)已知一组数据:4,﹣1,5,9,7,则这组数据的极差是.13.(3分)若等边△ABC的边长为6,那么△ABC的面积是.14.(3分)已知:一次函数y1=+2与函数y2=|﹣1|在同一平面直角坐标系中,若y2>y1,则的取值范围是.15.(3分)如图,四边形ABCD中,∠A=∠C=90°,∠ABC=135°,CD=6,AB=2,则四边形ABCD 的面积为.16.(3分)如图,在平面直角坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.现将菱形OABC 沿轴的正方向无滑动翻转,每次翻转60°,连续翻转2018次,点B的落点依次为B1,B2,B3,B4,…,则B2018的坐标为.三、解答题(共8题,共72分)17.(8分)计算:(1)×﹣÷ (2)(+2)218.(8分)一次函数y =+b 经过点(﹣4,﹣2)和点(2,4),求一次函数y =+b 的解析式19.(8分)如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =CO ,BO =DO ,且∠ABC +∠ADC =180°(1)求证:四边形ABCD 是矩形;(2)若DE ⊥AC 交BC 于E ,∠ADB :∠CDB =2:3,则∠BDE 的度数是多少?20.(8分)某同学在本学期的数学成绩如下表所示(成绩均取整数):(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期该同学的期末考试成绩至少为多少分才能保证达到总评成绩90分的最低目标?21.(8分)如图,直线AB :y =+2交轴于点A ,交y 轴正半轴于点B ,且S △OAB =3(1)求A 、B 两点的坐标;(2)将直线AB绕A点顺时针旋转45°,交y轴于点C,求直线AC的解析式.22.(10分)某华为手机专卖店销售5台甲型手机和8台乙型手机的利润为1600元,销售15台甲型手机和6台乙型手机的利润为3000元.(1)求每台甲型手机和乙型手机的利润;(2)专卖店计划购进两种型号的华为手机共120台,其中乙型手机的进货量不低于甲型手机的2倍.设购进甲型手机台,这120台手机全部销售的销售总利润为y元.①直接写出y关于的函数关系式,的取值范围是.②该商店如何进货才能使销售总利润最大?说明原因.(3)专卖店预算员按照(2)中的方案准备进货,同时专卖店对甲型手机销售价格下调a元,结果预算员发现无论按照哪种进货方案最后销售总利润不变.请你判断有这种可能性吗?如果有,求出a的值;如果没有,说明理由.23.(10分)点E、F分别是▱ABCD的边BC、CD上的点,∠EAF=60°,AF=4.(1)若AB=2,点E与点B、点F与点D分别重合(如图1),求平行四边形ABCD的面积;(2)若AB=BC,∠B=∠EAF=60°(如图2),求证:△AEF为等边三角形;(3)若BE=CE,CF=2DF,AB=3(如图3),直接写出AE的长度(无需解答过程).24.(12分)如图,平面直角坐标系中,已知点A(0,5),点P(m,5)在第二象限,连接AP、OP.(1)如图1,若OP=6,求m的值;(2)如图2,点C在轴负半轴上,以CP为斜边作直角三角形BCP,∠CBP=90°,且∠BPC=∠APO.取OC的中点D,连接AD、BD,求证:AD=BD;(3)如图3,将△AOP沿直线OP翻折得到△EOP(点A的对应点为点E).若点E到轴的距离不大于3,直接写出m的取值范围(无需解答过程).2017-2018学年湖北省武汉市新洲区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)如果代数式有意义,那么实数的取值范围是()A.≥0 B.≠5 C.≥5 D.>5【解答】解:由题意可知:﹣5≥0,∴≥5故选:C.2.(3分)下列二次根式中,最简二次根式是()A.B.C.2D.【解答】解:A、被开方数含能开得尽方的因数或因式,故A错误;B、被开方数含分母,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含能开得尽方的因数或因式,故D错误;故选:C.3.(3分)下列函数中,正比例函数是()A.y=B.y=22C.y=D.y=2+1【解答】解:A、符合正比例函数的含义,故本选项正确;B、自变量次数不为1,故本选项错误;C、是反比例函数,故本选项错误;D、是一次函数,故本选项错误.故选:A.4.(3分)如图所示,在▱ABCD中,AC,BD相交于点O,则下列结论中错误的是()A.OA=OC B.∠ABC=∠ADC C.AB=CD D.AC=BD【解答】解:A、∵四边形ABCD是平行四边形,∴OA=OC(平行四边形的对角线互相平分),正确,不符合题意;B、∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,正确,不符合题意;C、∵四边形ABCD是平行四边形,∴CD=AB,正确,不符合题意;D、根据四边形ABCD是平行四边形不能推出AC=BD,错误,符合题意;故选:D.5.(3分)下列说法中不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线互相垂直的平行四边形是菱形C.有一个角是直角的平行四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形【解答】解:A、两组对边分别平行的四边形是平行四边形,正确,不合题意;B、对角线互相垂直的平行四边形是菱形,正确,不合题意;C、有一个角是直角的平行四边形是矩形,正确,不合题意;D、两条对角线互相垂直且相等的平行四边形是正方形,故原命题错误,符合题意.故选:D.6.(3分)某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:)A.85,90 B.85,87.5 C.90,85 D.95,90【解答】解:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选:B.7.(3分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分【解答】解:根据题意得:85×+80×+90×=17+24+45=86(分),故选:D.8.(3分)一架25米长的云梯,斜立在一竖直的墙上,这时梯脚距离墙底端7米.如果梯子的顶端沿墙下滑4米,那么梯脚将水平滑动()A.9米B.15米C.5米D.8米【解答】解:梯子顶端距离墙角地距离为=24m,顶端下滑后梯子低端距离墙角的距离为=15m,15m﹣7m=8m.故选:D.9.(3分)把直线y=3沿着y轴平移后得到直线AB,直线AB经过点(p,q),且3p=q+2,则直线AB 的解析式是()A.y=3﹣2 B.y=﹣3+2 C.y=﹣3﹣2 D.y=3+2【解答】解:设直线y=3沿着y轴平移后得到直线AB,则直线AB的解析式可设为y=3+,把点(p,q)代入得q=3p+,则,解得=﹣2.∴直线AB的解析式可设为y=3﹣2.故选:A.10.(3分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12 B.15 C.20 D.30【解答】解:设每个小直角三角形的面积为m,则S1=4m+S2,S3=S2﹣4m,因为S1+S2+S3=60,所以4m+S2+S2+S2﹣4m=60,即3S2=60,解得S2=20.故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)+=3.【解答】解:=2+=3.故答案为:3.12.(3分)已知一组数据:4,﹣1,5,9,7,则这组数据的极差是10 .【解答】解:这组数据的极差是:9﹣(﹣1)=10;故答案为:10.13.(3分)若等边△ABC的边长为6,那么△ABC的面积是9.【解答】解:如图,过A作AD⊥BC于点D,∵△ABC为等边三角形,∴BD=CD=BC=3,且AB=6,在Rt△ABD中,由勾股定理可得AD===3,=BC•AD=×6×3=9,∴S故答案为:9.14.(3分)已知:一次函数y1=+2与函数y2=|﹣1|在同一平面直角坐标系中,若y2>y1,则的取值范围是<﹣或>6 .【解答】解:∵y2>y1∴|﹣1|>+2∴﹣1+2或﹣+1+2∴>6或<﹣故答案为>6或<﹣15.(3分)如图,四边形ABCD中,∠A=∠C=90°,∠ABC=135°,CD=6,AB=2,则四边形ABCD 的面积为16 .【解答】解:延长AB和DC,两线交于O,∵∠C=90°,∠ABC=135°,∴∠OBC=45°,∠BCO=90°,∴∠O=45°,∵∠A=90°,∴∠D=45°,则OB=BC,OD=OA,OA=AD,BC=OC,设BC=OC=,则BO=,∵CD=6,AB=2,∴6+=(+2),解得:=6﹣2,∴OB==6﹣4,BC=OC=6﹣2,OA=AD=2+6﹣4=6﹣2,∴四边形ABCD的面积S=S△OAD﹣S△OBC=×OA×AD﹣=×(6﹣2)×﹣=16,故答案为:16.16.(3分)如图,在平面直角坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.现将菱形OABC 沿轴的正方向无滑动翻转,每次翻转60°,连续翻转2018次,点B的落点依次为B1,B2,B3,B4,…,则B2018的坐标为(1346,0).【解答】解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2018=336×6+2,∴点B2向右平移1344(即336×4)到点B2018.∵B2的坐标为(2,0),∴B2018的坐标为(2+1344,0),∴B2018的坐标为(1346,0).故答案为:(1346,0);三、解答题(共8题,共72分)17.(8分)计算:(1)×﹣÷(2)(+2)2【解答】解:(1)×﹣÷==2=;(2)(+2)2=3+4+4=7+4.18.(8分)一次函数y=+b经过点(﹣4,﹣2)和点(2,4),求一次函数y=+b的解析式【解答】解:∵一次函数y=+b经过点(﹣4,﹣2)和点(2,4),∴代入得:,解得:=1,b=2,∴一次函数y=+b的解析式是y=+2.19.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC =180°(1)求证:四边形ABCD是矩形;(2)若DE⊥AC交BC于E,∠ADB:∠CDB=2:3,则∠BDE的度数是多少?【解答】解:(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)∵∠ADC=90°,∠ADB:∠CDB=2:3,∴∠ADB=36°∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ADB=36°,∴∠DOC=72°.∵DE⊥AC,∴∠BDE=90°﹣∠DOC=18°.20.(8分)某同学在本学期的数学成绩如下表所示(成绩均取整数):(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期该同学的期末考试成绩至少为多少分才能保证达到总评成绩90分的最低目标?【解答】解:(1)该学期的平时平均成绩为:(88+70+96+86)÷4=85(分).(2)按照如图所示的权重,依题意得:85×10%+85×30%+60% ≥90.解得:≥93.33,又∵成绩均取整数,∴≥94.答:期末考试成绩至少需要94分.21.(8分)如图,直线AB:y=+2交轴于点A,交y轴正半轴于点B,且S△OAB=3(1)求A、B两点的坐标;(2)将直线AB绕A点顺时针旋转45°,交y轴于点C,求直线AC的解析式.【解答】解:(1)∵直线AB:y=+2,令=0,则y=2,即B(0,2),令y=0,则=﹣2,即A(﹣2,0),∵S△OAB=3,∴×2×2=3,∴2=3,∴A、B两点的坐标为(﹣2,0)、(0,3);(2)如图,过点B作BD⊥BA,交AC的延长线于点D,过点D作DH⊥y轴于H.∵∠BAC=45°,∴△ABD是等腰直角三角形,∴AB=BD,∵∠AOB=∠BHD=90°,∴∠ABO=∠BDH,∴△ABO≌△BDH,∴DH=BO=3,BH=AO=2,∴HO=3﹣2=1,∴D(3,1),设直线AC的解析式为y=a+b,由A、D两点的坐标可得,解得,∴AC的解析式为y=+.22.(10分)某华为手机专卖店销售5台甲型手机和8台乙型手机的利润为1600元,销售15台甲型手机和6台乙型手机的利润为3000元.(1)求每台甲型手机和乙型手机的利润;(2)专卖店计划购进两种型号的华为手机共120台,其中乙型手机的进货量不低于甲型手机的2倍.设购进甲型手机台,这120台手机全部销售的销售总利润为y元.①直接写出y关于的函数关系式y=60+12000 ,的取值范围是0<≤40且为正整数.②该商店如何进货才能使销售总利润最大?说明原因.(3)专卖店预算员按照(2)中的方案准备进货,同时专卖店对甲型手机销售价格下调a元,结果预算员发现无论按照哪种进货方案最后销售总利润不变.请你判断有这种可能性吗?如果有,求出a的值;如果没有,说明理由.【解答】解:(1)设每台甲手机的利润为元,每台乙手机的利润为y元,由题意得:,解得∴每台甲手机的利润为160元,每台乙手机的利润为100元.(2)①y=60+12000,0<≤40且为正整数故答案为:y=60+12000;0<≤40且为正整数②∵y=60+12000,0<≤40且为正整数,∴=60>0,y随的增大而增大,∴当=40时,y=60×40+12000=14400最大.即该商店购进40台A手机,80台B手机才能使销售总利润最大.(3)有这种可能性,理由如下:由题意可知:y=60+12000﹣a,0<≤40且为正整数,∴y=(60﹣a)+12000,当60﹣a=0,即a=60时利润y=12000元与进货方案无关.23.(10分)点E、F分别是▱ABCD的边BC、CD上的点,∠EAF=60°,AF=4.(1)若AB=2,点E与点B、点F与点D分别重合(如图1),求平行四边形ABCD的面积;(2)若AB=BC,∠B=∠EAF=60°(如图2),求证:△AEF为等边三角形;(3)若BE=CE,CF=2DF,AB=3(如图3),直接写出AE的长度(无需解答过程).【解答】(1)解:如图1,过点B作BH⊥AD于H,在Rt△ABH中,∠BAD=60°,∴∠ABH=30°,∵AB=2,∴AH=1,BH=,∴S=AD×BH=AF×BH=4;(2)证明:如图2,连接AC.∵四边形ABCD是平行四边形,∴AD∥BC,∵∠B=∠EAF=60°,∴∠BAD=120°,在▱ABCD中,AB=BC,∴▱ABCD是菱形,∵AC是菱形对角线,∴∠ACD=∠BAC=60°=∠B,∴AB=AC,∴∠BAE=∠CAF,在△ABE和△ACF中,∴△ABE≌△ACF,∴AE=AF,∵∠EAF=60°,∴△AEF为等边三角形;(3)解:如图3,延长AE交DC延长线于P,过点F作FG⊥AP与G.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠C=∠ECP,∵BE=CE,∠AEB=∠PEC,∴△ABE≌△PCE,∴AE=PE,PC=AB=CD=3,CF=2DF,∴CF=2,∴PF=5,在Rt△AFG中,AF=4,∠EAF=60°,∴∠AFG=30°,∴AG=2,FG=2.在Rt△PFG中,PF=5,FG=2,根据勾股定理得,PG=.∴AP=AG+PG=2+,∴AE=PE=AP=.24.(12分)如图,平面直角坐标系中,已知点A(0,5),点P(m,5)在第二象限,连接AP、OP.(1)如图1,若OP=6,求m的值;(2)如图2,点C在轴负半轴上,以CP为斜边作直角三角形BCP,∠CBP=90°,且∠BPC=∠APO.取OC的中点D,连接AD、BD,求证:AD=BD;(3)如图3,将△AOP沿直线OP翻折得到△EOP(点A的对应点为点E).若点E到轴的距离不大于3,直接写出m的取值范围(无需解答过程).【解答】(1)解.由点A(0,5),点P(m,5)可知PA⊥y轴,∵OP=6,OA=5,由勾股定理可求PA==,∴m=﹣;(2)证明:方法一:如图2,取CP、OP中点M、N,连接DM、DN、BM、AN.∵D、M、N分别为OC、PC、PO的中点,∴DM∥PO,DN∥PC,∴四边形PMDN是平行四边形,∴PM=DN,DM=PN,∠PMD=∠PND,又M、N分别为Rt△PBC、Rt△PAO斜边的中点,∴BM=MP,AN=PN,∵∠BPC=∠APO∴∠BMP=∠ANP,∴∠BMP+∠PMD=∠ANP+∠PND,∴∠DNA=∠BMD,∴△DNA≌△BMD,∴AD=BD.方法二:如图3,延长CB至M,使BM=BC,在y轴上面取点N使AN=OA,连接PM,PN,CN,OM.∵∠BPC=∠APO∴∠BPM=∠APN∴∠CPN=∠MPO∴△PCN≌△PMO,∴CN=OM.∵D、A、B分别为OC、ON、CM的中点,∴BD=OM,AD=CN,∴AD=BD.(3)由条件可知点E的纵坐标大于或等于﹣3小于或等于3.①当点E的纵坐标为3时,如图4,过点E作ES⊥轴于S,交直线AP于R,在Rt△OES中,OE=OA=5,ES=3,可求OS=AR=4,RE=2,∵PA=PE=﹣m,PR=4+m,在Rt△PRE中,由22+(4+m)2=(﹣m)2,解得:m=﹣;②当点E的纵坐标为﹣3时,如图5,过点E作ES⊥轴于S,交直线AP于R,在Rt△OES中,OE=OA=5,ES=3,∴OS=AR=4,∴PR=10﹣4=6由勾股定理得:RE==8,∵PA=PE=﹣m,PR=﹣4﹣m,在Rt△△PRE中,由82+(4+m)2=(﹣m)2,解得:m=﹣10;综上所述:当﹣10≤m≤﹣时,点E到轴的距离不大于3.。

湖北省武汉市新洲区八年级下期末数学试卷(含答案解析)

湖北省武汉市新洲区八年级下期末数学试卷(含答案解析)

湖北省武汉市新洲区八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)如果代数式有意义,那么实数的取值范围是()A.≥0 B.≠5 C.≥5 D.>52.(3分)下列二次根式中,最简二次根式是()A.B.C.2D.3.(3分)下列函数中,正比例函数是()A.y=B.y=22C.y=D.y=2+14.(3分)如图所示,在▱ABCD中,AC,BD相交于点O,则下列结论中错误的是()A.OA=OC B.∠ABC=∠ADC C.AB=CD D.AC=BD5.(3分)下列说法中不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线互相垂直的平行四边形是菱形C.有一个角是直角的平行四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形6.(3分)某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是()A.85,90 B.85,87.5 C.90,85 D.95,907.(3分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分8.(3分)一架25米长的云梯,斜立在一竖直的墙上,这时梯脚距离墙底端7米.如果梯子的顶端沿墙下滑4米,那么梯脚将水平滑动()A .9米B .15米C .5米D .8米9.(3分)把直线y =3沿着y 轴平移后得到直线AB ,直线AB 经过点(p ,q ),且3p =q +2,则直线AB 的解析式是( ) A .y =3﹣2B .y =﹣3+2C .y =﹣3﹣2D .y =3+210.(3分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNPQ 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=60,则S 2的值是( )A .12B .15C .20D .30二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)+= .12.(3分)已知一组数据:4,﹣1,5,9,7,则这组数据的极差是 . 13.(3分)若等边△ABC 的边长为6,那么△ABC 的面积是 .14.(3分)已知:一次函数y 1=+2与函数y 2=|﹣1|在同一平面直角坐标系中,若y 2>y 1,则的取值范围是 .15.(3分)如图,四边形ABCD 中,∠A =∠C =90°,∠ABC =135°,CD =6,AB =2,则四边形ABCD 的面积为 .16.(3分)如图,在平面直角坐标系中放置一菱形OABC ,已知∠ABC =60°,OA =1.现将菱形OABC 沿轴的正方向无滑动翻转,每次翻转60°,连续翻转2018次,点B 的落点依次为B 1,B 2,B 3,B 4,…,则B 2018的坐标为 .三、解答题(共8题,共72分) 17.(8分)计算: (1)×﹣÷(2)(+2)218.(8分)一次函数y =+b 经过点(﹣4,﹣2)和点(2,4),求一次函数y =+b 的解析式19.(8分)如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =CO ,BO =DO ,且∠ABC +∠ADC =180° (1)求证:四边形ABCD 是矩形;(2)若DE ⊥AC 交BC 于E ,∠ADB :∠CDB =2:3,则∠BDE 的度数是多少?20.(8分)某同学在本学期的数学成绩如下表所示(成绩均取整数):(1)计算该同学本学期的平时平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期该同学的期末考试成绩至少为多少分才能保证达到总评成绩90分的最低目标?21.(8分)如图,直线AB :y =+2交轴于点A ,交y 轴正半轴于点B ,且S △OAB =3 (1)求A 、B 两点的坐标;(2)将直线AB 绕A 点顺时针旋转45°,交y 轴于点C ,求直线AC 的解析式.22.(10分)某华为手机专卖店销售5台甲型手机和8台乙型手机的利润为1600元,销售15台甲型手机和6台乙型手机的利润为3000元.(1)求每台甲型手机和乙型手机的利润;(2)专卖店计划购进两种型号的华为手机共120台,其中乙型手机的进货量不低于甲型手机的2倍.设购进甲型手机台,这120台手机全部销售的销售总利润为y元.①直接写出y关于的函数关系式,的取值范围是.②该商店如何进货才能使销售总利润最大?说明原因.(3)专卖店预算员按照(2)中的方案准备进货,同时专卖店对甲型手机销售价格下调a元,结果预算员发现无论按照哪种进货方案最后销售总利润不变.请你判断有这种可能性吗?如果有,求出a的值;如果没有,说明理由.23.(10分)点E、F分别是▱ABCD的边BC、CD上的点,∠EAF=60°,AF=4.(1)若AB=2,点E与点B、点F与点D分别重合(如图1),求平行四边形ABCD的面积;(2)若AB=BC,∠B=∠EAF=60°(如图2),求证:△AEF为等边三角形;(3)若BE=CE,CF=2DF,AB=3(如图3),直接写出AE的长度(无需解答过程).24.(12分)如图,平面直角坐标系中,已知点A(0,5),点P(m,5)在第二象限,连接AP、OP.(1)如图1,若OP=6,求m的值;(2)如图2,点C在轴负半轴上,以CP为斜边作直角三角形BCP,∠CBP=90°,且∠BPC=∠APO.取OC 的中点D,连接AD、BD,求证:AD=BD;(3)如图3,将△AOP沿直线OP翻折得到△EOP(点A的对应点为点E).若点E到轴的距离不大于3,直接写出m的取值范围(无需解答过程).2017-2018学年湖北省武汉市新洲区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)如果代数式有意义,那么实数的取值范围是()A.≥0 B.≠5 C.≥5 D.>5【解答】解:由题意可知:﹣5≥0,∴≥5故选:C.2.(3分)下列二次根式中,最简二次根式是()A.B.C.2D.【解答】解:A、被开方数含能开得尽方的因数或因式,故A错误;B、被开方数含分母,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含能开得尽方的因数或因式,故D错误;故选:C.3.(3分)下列函数中,正比例函数是()A.y=B.y=22C.y=D.y=2+1【解答】解:A、符合正比例函数的含义,故本选项正确;B、自变量次数不为1,故本选项错误;C、是反比例函数,故本选项错误;D、是一次函数,故本选项错误.故选:A.4.(3分)如图所示,在▱ABCD中,AC,BD相交于点O,则下列结论中错误的是()A.OA=OC B.∠ABC=∠ADC C.AB=CD D.AC=BD【解答】解:A、∵四边形ABCD是平行四边形,∴OA=OC(平行四边形的对角线互相平分),正确,不符合题意;B、∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,正确,不符合题意;C、∵四边形ABCD是平行四边形,∴CD=AB,正确,不符合题意;D、根据四边形ABCD是平行四边形不能推出AC=BD,错误,符合题意;故选:D.5.(3分)下列说法中不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线互相垂直的平行四边形是菱形C.有一个角是直角的平行四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形【解答】解:A、两组对边分别平行的四边形是平行四边形,正确,不合题意;B、对角线互相垂直的平行四边形是菱形,正确,不合题意;C、有一个角是直角的平行四边形是矩形,正确,不合题意;D、两条对角线互相垂直且相等的平行四边形是正方形,故原命题错误,符合题意.故选:D.6.(3分)某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是()A.85,90 B.85,87.5 C.90,85 D.95,90【解答】解:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选:B.7.(3分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分【解答】解:根据题意得:85×+80×+90×=17+24+45=86(分),故选:D .8.(3分)一架25米长的云梯,斜立在一竖直的墙上,这时梯脚距离墙底端7米.如果梯子的顶端沿墙下滑4米,那么梯脚将水平滑动( ) A .9米B .15米C .5米D .8米【解答】解:梯子顶端距离墙角地距离为=24m ,顶端下滑后梯子低端距离墙角的距离为=15m ,15m ﹣7m =8m . 故选:D .9.(3分)把直线y =3沿着y 轴平移后得到直线AB ,直线AB 经过点(p ,q ),且3p =q +2,则直线AB 的解析式是( ) A .y =3﹣2B .y =﹣3+2C .y =﹣3﹣2D .y =3+2【解答】解:设直线y =3沿着y 轴平移后得到直线AB ,则直线AB 的解析式可设为y =3+, 把点(p ,q )代入得q =3p +,则,解得 =﹣2.∴直线AB 的解析式可设为y =3﹣2. 故选:A .10.(3分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNPQ 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=60,则S 2的值是( )A .12B .15C .20D .30【解答】解:设每个小直角三角形的面积为m ,则S 1=4m +S 2,S 3=S 2﹣4m , 因为S 1+S 2+S 3=60, 所以4m +S 2+S 2+S 2﹣4m =60,即3S 2=60, 解得S 2=20. 故选:C .二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)+= 3 .【解答】解:=2+=3.故答案为:3. 12.(3分)已知一组数据:4,﹣1,5,9,7,则这组数据的极差是 10 . 【解答】解:这组数据的极差是:9﹣(﹣1)=10; 故答案为:10.13.(3分)若等边△ABC 的边长为6,那么△ABC 的面积是 9 .【解答】解:如图,过A 作AD ⊥BC 于点D , ∵△ABC 为等边三角形,∴BD =CD =BC =3,且AB =6,在Rt △ABD 中,由勾股定理可得AD ===3,∴S △ABC =BC •AD =×6×3=9,故答案为:9.14.(3分)已知:一次函数y 1=+2与函数y 2=|﹣1|在同一平面直角坐标系中,若y 2>y 1,则的取值范围是 <﹣或>6 . 【解答】解:∵y 2>y 1∴|﹣1|>+2∴﹣1+2或﹣+1+2∴>6或<﹣故答案为>6或<﹣15.(3分)如图,四边形ABCD 中,∠A =∠C =90°,∠ABC =135°,CD =6,AB =2,则四边形ABCD 的面积为 16 .【解答】解:延长AB 和DC ,两线交于O , ∵∠C =90°,∠ABC =135°, ∴∠OBC =45°,∠BCO =90°, ∴∠O =45°, ∵∠A =90°, ∴∠D =45°,则OB =BC ,OD =OA ,OA =AD ,BC =OC ,设BC =OC =,则BO =,∵CD =6,AB =2,∴6+=(+2),解得:=6﹣2,∴OB ==6﹣4,BC =OC =6﹣2,OA =AD =2+6﹣4=6﹣2,∴四边形ABCD 的面积S =S △OAD ﹣S △OBC =×OA ×AD ﹣=×(6﹣2)×﹣=16, 故答案为:16.16.(3分)如图,在平面直角坐标系中放置一菱形OABC ,已知∠ABC =60°,OA =1.现将菱形OABC 沿轴的正方向无滑动翻转,每次翻转60°,连续翻转2018次,点B 的落点依次为B 1,B 2,B 3,B 4,…,则B2018的坐标为(1346,0).【解答】解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2018=336×6+2,∴点B2向右平移1344(即336×4)到点B2018.∵B2的坐标为(2,0),∴B2018的坐标为(2+1344,0),∴B2018的坐标为(1346,0).故答案为:(1346,0);三、解答题(共8题,共72分)17.(8分)计算:(1)×﹣÷(2)(+2)2【解答】解:(1)×﹣÷==2=;(2)(+2)2=3+4+4=7+4.18.(8分)一次函数y=+b经过点(﹣4,﹣2)和点(2,4),求一次函数y=+b的解析式【解答】解:∵一次函数y=+b经过点(﹣4,﹣2)和点(2,4),∴代入得:,解得:=1,b=2,∴一次函数y=+b的解析式是y=+2.19.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°(1)求证:四边形ABCD是矩形;(2)若DE⊥AC交BC于E,∠ADB:∠CDB=2:3,则∠BDE的度数是多少?【解答】解:(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)∵∠ADC=90°,∠ADB:∠CDB=2:3,∴∠ADB=36°∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ADB=36°,∴∠DOC=72°.∵DE ⊥AC ,∴∠BDE =90°﹣∠DOC =18°.20.(8分)某同学在本学期的数学成绩如下表所示(成绩均取整数):(1)计算该同学本学期的平时平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期该同学的期末考试成绩至少为多少分才能保证达到总评成绩90分的最低目标?【解答】解:(1)该学期的平时平均成绩为:(88+70+96+86)÷4=85(分).(2)按照如图所示的权重,依题意得:85×10%+85×30%+60% ≥90.解得:≥93.33,又∵成绩均取整数,∴≥94.答:期末考试成绩至少需要94分.21.(8分)如图,直线AB :y =+2交轴于点A ,交y 轴正半轴于点B ,且S △OAB =3(1)求A 、B 两点的坐标;(2)将直线AB 绕A 点顺时针旋转45°,交y 轴于点C ,求直线AC 的解析式.【解答】解:(1)∵直线AB:y=+2,令=0,则y=2,即B(0,2),令y=0,则=﹣2,即A(﹣2,0),∵S=3,△OAB∴×2×2=3,∴2=3,∴A、B两点的坐标为(﹣2,0)、(0,3);(2)如图,过点B作BD⊥BA,交AC的延长线于点D,过点D作DH⊥y轴于H.∵∠BAC=45°,∴△ABD是等腰直角三角形,∴AB=BD,∵∠AOB=∠BHD=90°,∴∠ABO=∠BDH,∴△ABO≌△BDH,∴DH=BO=3,BH=AO=2,∴HO=3﹣2=1,∴D(3,1),设直线AC的解析式为y=a+b,由A、D两点的坐标可得,解得,∴AC的解析式为y=+.22.(10分)某华为手机专卖店销售5台甲型手机和8台乙型手机的利润为1600元,销售15台甲型手机和6台乙型手机的利润为3000元.(1)求每台甲型手机和乙型手机的利润;(2)专卖店计划购进两种型号的华为手机共120台,其中乙型手机的进货量不低于甲型手机的2倍.设购进甲型手机台,这120台手机全部销售的销售总利润为y元.①直接写出y关于的函数关系式y=60+12000 ,的取值范围是0<≤40且为正整数.②该商店如何进货才能使销售总利润最大?说明原因.(3)专卖店预算员按照(2)中的方案准备进货,同时专卖店对甲型手机销售价格下调a元,结果预算员发现无论按照哪种进货方案最后销售总利润不变.请你判断有这种可能性吗?如果有,求出a的值;如果没有,说明理由.【解答】解:(1)设每台甲手机的利润为元,每台乙手机的利润为y元,由题意得:,解得∴每台甲手机的利润为160元,每台乙手机的利润为100元.(2)①y=60+12000,0<≤40且为正整数故答案为:y=60+12000;0<≤40且为正整数②∵y=60+12000,0<≤40且为正整数,∴=60>0,y随的增大而增大,∴当=40时,y=60×40+12000=14400最大.即该商店购进40台A手机,80台B手机才能使销售总利润最大.(3)有这种可能性,理由如下:由题意可知:y=60+12000﹣a,0<≤40且为正整数,∴y=(60﹣a)+12000,当60﹣a=0,即a=60时利润y=12000元与进货方案无关.23.(10分)点E、F分别是▱ABCD的边BC、CD上的点,∠EAF=60°,AF=4.(1)若AB=2,点E与点B、点F与点D分别重合(如图1),求平行四边形ABCD的面积;(2)若AB=BC,∠B=∠EAF=60°(如图2),求证:△AEF为等边三角形;(3)若BE=CE,CF=2DF,AB=3(如图3),直接写出AE的长度(无需解答过程).【解答】(1)解:如图1,过点B作BH⊥AD于H,在Rt△ABH中,∠BAD=60°,∴∠ABH=30°,∵AB=2,∴AH=1,BH=,=AD×BH=AF×BH=4;∴S▱ABCD(2)证明:如图2,连接AC.∵四边形ABCD是平行四边形,∴AD∥BC,∵∠B=∠EAF=60°,∴∠BAD=120°,在▱ABCD中,AB=BC,∴▱ABCD是菱形,∵AC是菱形对角线,∴∠ACD=∠BAC=60°=∠B,∴AB=AC,∴∠BAE=∠CAF,在△ABE和△ACF中,∴△ABE≌△ACF,∴AE=AF,∵∠EAF=60°,∴△AEF为等边三角形;(3)解:如图3,延长AE交DC延长线于P,过点F作FG⊥AP与G.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠C=∠ECP,∵BE=CE,∠AEB=∠PEC,∴△ABE≌△PCE,∴AE=PE,PC=AB=CD=3,CF=2DF,∴CF=2,∴PF=5,在Rt△AFG中,AF=4,∠EAF=60°,∴∠AFG=30°,∴AG=2,FG=2.在Rt△PFG中,PF=5,FG=2,根据勾股定理得,PG=.∴AP=AG+PG=2+,∴AE=PE=AP=.24.(12分)如图,平面直角坐标系中,已知点A(0,5),点P(m,5)在第二象限,连接AP、OP.(1)如图1,若OP=6,求m的值;(2)如图2,点C在轴负半轴上,以CP为斜边作直角三角形BCP,∠CBP=90°,且∠BPC=∠APO.取OC 的中点D,连接AD、BD,求证:AD=BD;(3)如图3,将△AOP沿直线OP翻折得到△EOP(点A的对应点为点E).若点E到轴的距离不大于3,直接写出m的取值范围(无需解答过程).【解答】(1)解.由点A(0,5),点P(m,5)可知PA⊥y轴,∵OP=6,OA=5,由勾股定理可求PA==,∴m=﹣;(2)证明:方法一:如图2,取CP、OP中点M、N,连接DM、DN、BM、AN.∵D、M、N分别为OC、PC、PO的中点,∴DM∥PO,DN∥PC,∴四边形PMDN是平行四边形,∴PM=DN,DM=PN,∠PMD=∠PND,又M、N分别为Rt△PBC、Rt△PAO斜边的中点,∴BM=MP,AN=PN,∵∠BPC=∠APO∴∠BMP=∠ANP,∴∠BMP+∠PMD=∠ANP+∠PND,∴∠DNA=∠BMD,∴△DNA≌△BMD,∴AD=BD.方法二:如图3,延长CB至M,使BM=BC,在y轴上面取点N使AN=OA,连接PM,PN,CN,OM.∵∠BPC=∠APO∴∠BPM=∠APN∴∠CPN=∠MPO∴△PCN≌△PMO,∴CN=OM.∵D、A、B分别为OC、ON、CM的中点,∴BD=OM,AD=CN,∴AD=BD.(3)由条件可知点E的纵坐标大于或等于﹣3小于或等于3.①当点E的纵坐标为3时,如图4,过点E作ES⊥轴于S,交直线AP于R,在Rt△OES中,OE=OA=5,ES=3,可求OS=AR=4,RE=2,∵PA=PE=﹣m,PR=4+m,在Rt△PRE中,由22+(4+m)2=(﹣m)2,解得:m=﹣;②当点E的纵坐标为﹣3时,如图5,过点E作ES⊥轴于S,交直线AP于R,在Rt△OES中,OE=OA=5,ES=3,∴OS=AR=4,∴PR=10﹣4=6由勾股定理得:RE==8,∵PA=PE=﹣m,PR=﹣4﹣m,在Rt△△PRE中,由82+(4+m)2=(﹣m)2,解得:m=﹣10;综上所述:当﹣10≤m≤﹣时,点E到轴的距离不大于3.。

新洲区八年级数学期末试卷

新洲区八年级数学期末试卷

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -2B. 0C. 1D. -32. 下列各组数中,成等差数列的是()A. 2,4,6,8B. 1,3,5,7C. 2,5,8,11D. 1,4,9,163. 若a、b是方程2x^2 - 5x + 2 = 0的两个实数根,则a + b的值为()A. 5B. -5C. 2D. -24. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x^2 + 1D. y = 2x^3 - 15. 若a、b、c、d是等比数列,且a + b + c + d = 8,b + c = 4,则a + d的值为()A. 4B. 6C. 8D. 106. 已知等差数列的前三项分别为1,3,5,则该数列的公差为()A. 1B. 2C. 3D. 47. 若函数f(x) = x^2 - 2x + 1在区间[1, 3]上单调递增,则f(2)的值()A. 大于f(1)B. 等于f(1)C. 小于f(1)D. 无法确定8. 若三角形的三边长分别为3,4,5,则该三角形是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 不等边三角形9. 下列各式中,正确的是()A. 3^2 = 9B. (-2)^3 = -8C. (-1)^4 = 1D. 0^2 = 010. 已知函数f(x) = 2x - 1,若f(x) > 0,则x的取值范围是()A. x > 0B. x < 0C. x ≤ 0D. x ≥ 0二、填空题(每题3分,共30分)11. 等差数列{an}中,a1 = 3,公差d = 2,则a10 = ________。

12. 若函数f(x) = x^2 + 2x - 3在区间[-3, 1]上单调递减,则f(-1)的值是________。

13. 已知等比数列{bn}中,b1 = 2,公比q = 3,则b5 = ________。

湖北省武汉市新洲区八年级下期末数学试卷(含答案解析)

湖北省武汉市新洲区八年级下期末数学试卷(含答案解析)

湖北省武汉市新洲区八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)如果代数式有意义,那么实数的取值范围是()A.≥0 B.≠5 C.≥5 D.>52.(3分)下列二次根式中,最简二次根式是()A.B.C.2D.3.(3分)下列函数中,正比例函数是()A.y=B.y=22C.y=D.y=2+14.(3分)如图所示,在▱ABCD中,AC,BD相交于点O,则下列结论中错误的是()A.OA=OC B.∠ABC=∠ADC C.AB=CD D.AC=BD5.(3分)下列说法中不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线互相垂直的平行四边形是菱形C.有一个角是直角的平行四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形6.(3分)某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是()A.85,90 B.85,87.5 C.90,85 D.95,907.(3分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分8.(3分)一架25米长的云梯,斜立在一竖直的墙上,这时梯脚距离墙底端7米.如果梯子的顶端沿墙下滑4米,那么梯脚将水平滑动( ) A .9米B .15米C .5米D .8米9.(3分)把直线y =3沿着y 轴平移后得到直线AB ,直线AB 经过点(p ,q ),且3p =q +2,则直线AB 的解析式是( ) A .y =3﹣2B .y =﹣3+2C .y =﹣3﹣2D .y =3+210.(3分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNPQ 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=60,则S 2的值是( )A .12B .15C .20D .30二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)+= .12.(3分)已知一组数据:4,﹣1,5,9,7,则这组数据的极差是 . 13.(3分)若等边△ABC 的边长为6,那么△ABC 的面积是 .14.(3分)已知:一次函数y 1=+2与函数y 2=|﹣1|在同一平面直角坐标系中,若y 2>y 1,则的取值范围是 .15.(3分)如图,四边形ABCD 中,∠A =∠C =90°,∠ABC =135°,CD =6,AB =2,则四边形ABCD 的面积为 .16.(3分)如图,在平面直角坐标系中放置一菱形OABC ,已知∠ABC =60°,OA =1.现将菱形OABC 沿轴的正方向无滑动翻转,每次翻转60°,连续翻转2018次,点B 的落点依次为B 1,B 2,B 3,B 4,…,则B 2018的坐标为 .三、解答题(共8题,共72分) 17.(8分)计算: (1)×﹣÷(2)(+2)218.(8分)一次函数y =+b 经过点(﹣4,﹣2)和点(2,4),求一次函数y =+b 的解析式19.(8分)如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =CO ,BO =DO ,且∠ABC +∠ADC =180° (1)求证:四边形ABCD 是矩形;(2)若DE ⊥AC 交BC 于E ,∠ADB :∠CDB =2:3,则∠BDE 的度数是多少?20.(8分)某同学在本学期的数学成绩如下表所示(成绩均取整数):(1)计算该同学本学期的平时平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期该同学的期末考试成绩至少为多少分才能保证达到总评成绩90分的最低目标?21.(8分)如图,直线AB :y =+2交轴于点A ,交y 轴正半轴于点B ,且S △OAB =3 (1)求A 、B 两点的坐标;(2)将直线AB绕A点顺时针旋转45°,交y轴于点C,求直线AC的解析式.22.(10分)某华为手机专卖店销售5台甲型手机和8台乙型手机的利润为1600元,销售15台甲型手机和6台乙型手机的利润为3000元.(1)求每台甲型手机和乙型手机的利润;(2)专卖店计划购进两种型号的华为手机共120台,其中乙型手机的进货量不低于甲型手机的2倍.设购进甲型手机台,这120台手机全部销售的销售总利润为y元.①直接写出y关于的函数关系式,的取值范围是.②该商店如何进货才能使销售总利润最大?说明原因.(3)专卖店预算员按照(2)中的方案准备进货,同时专卖店对甲型手机销售价格下调a元,结果预算员发现无论按照哪种进货方案最后销售总利润不变.请你判断有这种可能性吗?如果有,求出a的值;如果没有,说明理由.23.(10分)点E、F分别是▱ABCD的边BC、CD上的点,∠EAF=60°,AF=4.(1)若AB=2,点E与点B、点F与点D分别重合(如图1),求平行四边形ABCD的面积;(2)若AB=BC,∠B=∠EAF=60°(如图2),求证:△AEF为等边三角形;(3)若BE=CE,CF=2DF,AB=3(如图3),直接写出AE的长度(无需解答过程).24.(12分)如图,平面直角坐标系中,已知点A(0,5),点P(m,5)在第二象限,连接AP、OP.(1)如图1,若OP=6,求m的值;(2)如图2,点C在轴负半轴上,以CP为斜边作直角三角形BCP,∠CBP=90°,且∠BPC=∠APO.取OC 的中点D,连接AD、BD,求证:AD=BD;(3)如图3,将△AOP沿直线OP翻折得到△EOP(点A的对应点为点E).若点E到轴的距离不大于3,直接写出m的取值范围(无需解答过程).2017-2018学年湖北省武汉市新洲区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)如果代数式有意义,那么实数的取值范围是()A.≥0 B.≠5 C.≥5 D.>5【解答】解:由题意可知:﹣5≥0,∴≥5故选:C.2.(3分)下列二次根式中,最简二次根式是()A.B.C.2D.【解答】解:A、被开方数含能开得尽方的因数或因式,故A错误;B、被开方数含分母,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含能开得尽方的因数或因式,故D错误;故选:C.3.(3分)下列函数中,正比例函数是()A.y=B.y=22C.y=D.y=2+1【解答】解:A、符合正比例函数的含义,故本选项正确;B、自变量次数不为1,故本选项错误;C、是反比例函数,故本选项错误;D、是一次函数,故本选项错误.故选:A.4.(3分)如图所示,在▱ABCD中,AC,BD相交于点O,则下列结论中错误的是()A.OA=OC B.∠ABC=∠ADC C.AB=CD D.AC=BD【解答】解:A、∵四边形ABCD是平行四边形,∴OA=OC(平行四边形的对角线互相平分),正确,不符合题意;B、∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,正确,不符合题意;C、∵四边形ABCD是平行四边形,∴CD=AB,正确,不符合题意;D、根据四边形ABCD是平行四边形不能推出AC=BD,错误,符合题意;故选:D.5.(3分)下列说法中不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线互相垂直的平行四边形是菱形C.有一个角是直角的平行四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形【解答】解:A、两组对边分别平行的四边形是平行四边形,正确,不合题意;B、对角线互相垂直的平行四边形是菱形,正确,不合题意;C、有一个角是直角的平行四边形是矩形,正确,不合题意;D、两条对角线互相垂直且相等的平行四边形是正方形,故原命题错误,符合题意.故选:D.6.(3分)某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是()A.85,90 B.85,87.5 C.90,85 D.95,90【解答】解:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选:B.7.(3分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分【解答】解:根据题意得:85×+80×+90×=17+24+45=86(分),故选:D .8.(3分)一架25米长的云梯,斜立在一竖直的墙上,这时梯脚距离墙底端7米.如果梯子的顶端沿墙下滑4米,那么梯脚将水平滑动( ) A .9米B .15米C .5米D .8米【解答】解:梯子顶端距离墙角地距离为=24m ,顶端下滑后梯子低端距离墙角的距离为=15m ,15m ﹣7m =8m . 故选:D .9.(3分)把直线y =3沿着y 轴平移后得到直线AB ,直线AB 经过点(p ,q ),且3p =q +2,则直线AB 的解析式是( ) A .y =3﹣2B .y =﹣3+2C .y =﹣3﹣2D .y =3+2【解答】解:设直线y =3沿着y 轴平移后得到直线AB ,则直线AB 的解析式可设为y =3+, 把点(p ,q )代入得q =3p +,则,解得 =﹣2.∴直线AB 的解析式可设为y =3﹣2. 故选:A .10.(3分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNPQ 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=60,则S 2的值是( )A .12B .15C .20D .30【解答】解:设每个小直角三角形的面积为m ,则S 1=4m +S 2,S 3=S 2﹣4m , 因为S 1+S 2+S 3=60, 所以4m +S 2+S 2+S 2﹣4m =60,即3S 2=60, 解得S 2=20. 故选:C .二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)+= 3 .【解答】解:=2+=3.故答案为:3. 12.(3分)已知一组数据:4,﹣1,5,9,7,则这组数据的极差是 10 . 【解答】解:这组数据的极差是:9﹣(﹣1)=10; 故答案为:10.13.(3分)若等边△ABC 的边长为6,那么△ABC 的面积是 9 .【解答】解:如图,过A 作AD ⊥BC 于点D , ∵△ABC 为等边三角形,∴BD =CD =BC =3,且AB =6,在Rt △ABD 中,由勾股定理可得AD ===3,∴S △ABC =BC •AD =×6×3=9,故答案为:9.14.(3分)已知:一次函数y 1=+2与函数y 2=|﹣1|在同一平面直角坐标系中,若y 2>y 1,则的取值范围是 <﹣或>6 . 【解答】解:∵y 2>y 1∴|﹣1|>+2∴﹣1+2或﹣+1+2∴>6或<﹣故答案为>6或<﹣15.(3分)如图,四边形ABCD 中,∠A =∠C =90°,∠ABC =135°,CD =6,AB =2,则四边形ABCD 的面积为 16 .【解答】解:延长AB 和DC ,两线交于O , ∵∠C =90°,∠ABC =135°, ∴∠OBC =45°,∠BCO =90°, ∴∠O =45°, ∵∠A =90°, ∴∠D =45°,则OB =BC ,OD =OA ,OA =AD ,BC =OC ,设BC =OC =,则BO =,∵CD =6,AB =2,∴6+=(+2),解得:=6﹣2,∴OB ==6﹣4,BC =OC =6﹣2,OA =AD =2+6﹣4=6﹣2,∴四边形ABCD 的面积S =S △OAD ﹣S △OBC =×OA ×AD ﹣=×(6﹣2)×﹣=16, 故答案为:16.16.(3分)如图,在平面直角坐标系中放置一菱形OABC ,已知∠ABC =60°,OA =1.现将菱形OABC 沿轴的正方向无滑动翻转,每次翻转60°,连续翻转2018次,点B 的落点依次为B 1,B 2,B 3,B 4,…,则B 2018的坐标为 (1346,0) .【解答】解:连接AC ,如图所示.∵四边形OABC 是菱形,∴OA =AB =BC =OC .∵∠ABC =60°,∴△ABC 是等边三角形.∴AC =AB .∴AC =OA .∵OA =1,∴AC =1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2018=336×6+2,∴点B 2向右平移1344(即336×4)到点B 2018.∵B 2的坐标为(2,0),∴B 2018的坐标为(2+1344,0),∴B 2018的坐标为(1346,0).故答案为:(1346,0);三、解答题(共8题,共72分)17.(8分)计算:(1)×﹣÷(2)(+2)2【解答】解:(1)×﹣÷==2=;(2)(+2)2=3+4+4=7+4.18.(8分)一次函数y=+b经过点(﹣4,﹣2)和点(2,4),求一次函数y=+b的解析式【解答】解:∵一次函数y=+b经过点(﹣4,﹣2)和点(2,4),∴代入得:,解得:=1,b=2,∴一次函数y=+b的解析式是y=+2.19.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°(1)求证:四边形ABCD是矩形;(2)若DE⊥AC交BC于E,∠ADB:∠CDB=2:3,则∠BDE的度数是多少?【解答】解:(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)∵∠ADC=90°,∠ADB:∠CDB=2:3,∴∠ADB=36°∵四边形ABCD是矩形,∴OA =OD ,∴∠OAD =∠ADB =36°,∴∠DOC =72°.∵DE ⊥AC ,∴∠BDE =90°﹣∠DOC =18°.20.(8分)某同学在本学期的数学成绩如下表所示(成绩均取整数):(1)计算该同学本学期的平时平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期该同学的期末考试成绩至少为多少分才能保证达到总评成绩90分的最低目标?【解答】解:(1)该学期的平时平均成绩为:(88+70+96+86)÷4=85(分).(2)按照如图所示的权重,依题意得:85×10%+85×30%+60% ≥90.解得:≥93.33,又∵成绩均取整数,∴≥94.答:期末考试成绩至少需要94分.21.(8分)如图,直线AB :y =+2交轴于点A ,交y 轴正半轴于点B ,且S △OAB =3(1)求A 、B 两点的坐标;(2)将直线AB 绕A 点顺时针旋转45°,交y 轴于点C ,求直线AC 的解析式.【解答】解:(1)∵直线AB:y=+2,令=0,则y=2,即B(0,2),令y=0,则=﹣2,即A(﹣2,0),=3,∵S△OAB∴×2×2=3,∴2=3,∴A、B两点的坐标为(﹣2,0)、(0,3);(2)如图,过点B作BD⊥BA,交AC的延长线于点D,过点D作DH⊥y轴于H.∵∠BAC=45°,∴△ABD是等腰直角三角形,∴AB=BD,∵∠AOB=∠BHD=90°,∴∠ABO=∠BDH,∴△ABO≌△BDH,∴DH=BO=3,BH=AO=2,∴HO=3﹣2=1,∴D(3,1),设直线AC的解析式为y=a+b,由A、D两点的坐标可得,解得,∴AC的解析式为y=+.22.(10分)某华为手机专卖店销售5台甲型手机和8台乙型手机的利润为1600元,销售15台甲型手机和6台乙型手机的利润为3000元.(1)求每台甲型手机和乙型手机的利润;(2)专卖店计划购进两种型号的华为手机共120台,其中乙型手机的进货量不低于甲型手机的2倍.设购进甲型手机台,这120台手机全部销售的销售总利润为y元.①直接写出y关于的函数关系式y=60+12000 ,的取值范围是0<≤40且为正整数.②该商店如何进货才能使销售总利润最大?说明原因.(3)专卖店预算员按照(2)中的方案准备进货,同时专卖店对甲型手机销售价格下调a元,结果预算员发现无论按照哪种进货方案最后销售总利润不变.请你判断有这种可能性吗?如果有,求出a的值;如果没有,说明理由.【解答】解:(1)设每台甲手机的利润为元,每台乙手机的利润为y元,由题意得:,解得∴每台甲手机的利润为160元,每台乙手机的利润为100元.(2)①y=60+12000,0<≤40且为正整数故答案为:y=60+12000;0<≤40且为正整数②∵y=60+12000,0<≤40且为正整数,∴=60>0,y随的增大而增大,∴当=40时,y=60×40+12000=14400最大.即该商店购进40台A手机,80台B手机才能使销售总利润最大.(3)有这种可能性,理由如下:由题意可知:y=60+12000﹣a,0<≤40且为正整数,∴y=(60﹣a)+12000,当60﹣a=0,即a=60时利润y=12000元与进货方案无关.23.(10分)点E、F分别是▱ABCD的边BC、CD上的点,∠EAF=60°,AF=4.(1)若AB=2,点E与点B、点F与点D分别重合(如图1),求平行四边形ABCD的面积;(2)若AB=BC,∠B=∠EAF=60°(如图2),求证:△AEF为等边三角形;(3)若BE=CE,CF=2DF,AB=3(如图3),直接写出AE的长度(无需解答过程).【解答】(1)解:如图1,过点B作BH⊥AD于H,在Rt△ABH中,∠BAD=60°,∴∠ABH=30°,∵AB=2,∴AH=1,BH=,=AD×BH=AF×BH=4;∴S▱ABCD(2)证明:如图2,连接AC.∵四边形ABCD是平行四边形,∴AD∥BC,∵∠B=∠EAF=60°,∴∠BAD=120°,在▱ABCD中,AB=BC,∴▱ABCD是菱形,∵AC是菱形对角线,∴∠ACD=∠BAC=60°=∠B,∴AB=AC,∴∠BAE=∠CAF,在△ABE和△ACF中,∴△ABE≌△ACF,∴AE=AF,∵∠EAF=60°,∴△AEF为等边三角形;(3)解:如图3,延长AE交DC延长线于P,过点F作FG⊥AP与G.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠C=∠ECP,∵BE=CE,∠AEB=∠PEC,∴△ABE≌△PCE,∴AE=PE,PC=AB=CD=3,CF=2DF,∴CF=2,∴PF=5,在Rt△AFG中,AF=4,∠EAF=60°,∴∠AFG=30°,∴AG=2,FG=2.在Rt△PFG中,PF=5,FG=2,根据勾股定理得,PG=.∴AP=AG+PG=2+,∴AE=PE=AP=.24.(12分)如图,平面直角坐标系中,已知点A(0,5),点P(m,5)在第二象限,连接AP、OP.(1)如图1,若OP=6,求m的值;(2)如图2,点C在轴负半轴上,以CP为斜边作直角三角形BCP,∠CBP=90°,且∠BPC=∠APO.取OC 的中点D,连接AD、BD,求证:AD=BD;(3)如图3,将△AOP沿直线OP翻折得到△EOP(点A的对应点为点E).若点E到轴的距离不大于3,直接写出m的取值范围(无需解答过程).【解答】(1)解.由点A(0,5),点P(m,5)可知PA⊥y轴,∵OP=6,OA=5,由勾股定理可求PA==,∴m=﹣;(2)证明:方法一:如图2,取CP、OP中点M、N,连接DM、DN、BM、AN.∵D、M、N分别为OC、PC、PO的中点,∴DM∥PO,DN∥PC,∴四边形PMDN是平行四边形,∴PM=DN,DM=PN,∠PMD=∠PND,又M、N分别为Rt△PBC、Rt△PAO斜边的中点,∴BM=MP,AN=PN,∵∠BPC=∠APO∴∠BMP=∠ANP,∴∠BMP+∠PMD=∠ANP+∠PND,∴∠DNA =∠BMD ,∴△DNA ≌△BMD ,∴AD =BD .方法二:如图3,延长CB 至M ,使BM =BC ,在y 轴上面取点N 使AN =OA ,连接PM ,PN ,CN ,OM . ∵∠BPC =∠APO∴∠BPM =∠APN∴∠CPN =∠MPO∴△PCN ≌△PMO ,∴CN =OM .∵D 、A 、B 分别为OC 、ON 、CM 的中点,∴BD =OM ,AD =CN ,∴AD =BD .(3)由条件可知点E 的纵坐标大于或等于﹣3小于或等于3.①当点E 的纵坐标为3时,如图4,过点E 作ES ⊥轴于S ,交直线AP 于R ,在Rt △OES 中,OE =OA =5,ES =3,可求OS =AR =4,RE =2,∵PA =PE =﹣m ,PR =4+m ,在Rt △PRE 中,由22+(4+m )2=(﹣m )2,解得:m =﹣;②当点E 的纵坐标为﹣3时,如图5,过点E 作ES ⊥轴于S ,交直线AP 于R , 在Rt △OES 中,OE =OA =5,ES =3,∴OS =AR =4,∴PR =10﹣4=6由勾股定理得:RE ==8,∵PA =PE =﹣m ,PR =﹣4﹣m ,在Rt △△PRE 中,由82+(4+m )2=(﹣m )2,解得:m =﹣10;综上所述:当﹣10≤m ≤﹣时,点E 到轴的距离不大于3.。

2016-2017学年度下学期期末考试八年级数学试卷(含答案)

2016-2017学年度下学期期末考试八年级数学试卷(含答案)

2016-2017学年度下学期期末考试八年级数学试卷一、选择题(3分×10)1.下列二次根式中,是最简二次根式的是()A.2.0B.12C.3D.18 2.下列各式中,正确的是()A.2<15<3B.3<15<4C.4<15<5D.14<15<16 3.以下列长度(单位:cm )为边长的三角形是直角三角形的是() A.5,6,7 B.7,8,9 C.6,8,10 D.5,7,9 4.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限 5.能判定四边形ABCD 为平行四边形的条件是() A.AB ∥CD,AD=BC; B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC; D.AB=AD,CB=CD6.8名学生的平均成绩是x ,如果另外2名学生每人得84分,那么整个组的平均成绩是() A.284x + B.101688+ C.1084x 8+ D.10168x 8+ 7.已知一个直角三角形的两边长分别为3和4,则第三边长为() A.5 B.7 C.7 D.7或5 8.如图,菱形ABCD 的对角线AC 、BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF.若EF=3,BD=4,则菱形ABCD 的周长为() A.4 B.64 C.47 D.289.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中21l l 和分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地,其中正确的个数是() A.4 B.3 C.2 D.110.如图,点A 、B 、C 在一次函数y=-2x+m 的图像上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m —1)D.23(m —1)二、填空题(3分×6)11.函数y=1-x 中,自变量x 的取值范围是 。

武汉市2016-2017学年八年级数学下学期期末试题(附答案)

武汉市2016-2017学年八年级数学下学期期末试题(附答案)

武汉市2016-2017学年八年级数学下学期期末试题〔附答案〕〔考试时间:120分钟总分值:120分〕一、选择题:〔共10小题,每题3分,共30分〕1、假设√x −2在实数范围内有意义,则x 的取值范围是〔 〕 A. x >0 B. x ≥2 C. x ≠2 D. x ≤22、直角三角形中,斜边长为13,一直角边为12,则另一直角边的长为〔 〕 A. 1 B. 3 C. 5 D. 83、如图,能判定四边形ABCD 是平行四边形的是〔 〕 A. AB ∥CD ,AD =BC B. ∠A =∠B ,∠C =∠D C. AB =AD ,CB =CD D. AB =CD ,AD =BC4、以下等式成立的是〔 〕A. √2+√3=√5B.√2+√82=3 C. √(−3)2=−3 D. √8-√2=√25、某蓄水池的横断面示意图如下图,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图像能大致表示水的深度h 和放水时间t 之间的关系的是〔 〕6、直线y =ax +b 和y =cx +d 在坐标系中的图像如下图,则a 、b 、c 、d 从小到大的排列顺序是〔 〕 A. c <a <d <b B. d <b <a <c C. a <c <d <b D. a <b <c <d7、如图,矩形ABCD 中,点E 在边AB 上,将矩形ABCD 沿直线DE 折叠,点A 恰好落在边BC 上的点F 处,假设AE =5,BF =3,则CD 的长是〔 〕 A. 7 B. 8 C. 9 D. 108、已知A ,B 两地相距4千米,上午8:00,甲从A 地出发步行到B 地,上午8:00乙从B 地出发骑自行车到A 地,甲乙两人离A 地的距离〔千米〕与甲所用的时间〔分〕之间的关系如下图,由图中的信息可知,乙到达A 地的时间为〔 〕 A. 上午8:30 B. 上午8:35 C. 上午8:40 D. 上午8:459、正方形A 1B 1C 1O , A 2B 2C 2C 1, A 3B 3C 3C 2,……,按如下图的方式放置。

湖北省武汉市新洲区八年级下期末数学试卷(含答案解析)【精品】.doc

湖北省武汉市新洲区八年级下期末数学试卷(含答案解析)【精品】.doc

湖北省武汉市新洲区八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)如果代数式有意义,那么实数的取值范围是()A.≥0 B.≠5 C.≥5 D.>52.(3分)下列二次根式中,最简二次根式是()A.B.C.2D.3.(3分)下列函数中,正比例函数是()A.y=B.y=22C.y=D.y=2+14.(3分)如图所示,在▱ABCD中,AC,BD相交于点O,则下列结论中错误的是()A.OA=OC B.∠ABC=∠ADC C.AB=CD D.AC=BD5.(3分)下列说法中不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线互相垂直的平行四边形是菱形C.有一个角是直角的平行四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形6.(3分)某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:)A.85,90 B.85,87.5 C.90,85 D.95,907.(3分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分8.(3分)一架25米长的云梯,斜立在一竖直的墙上,这时梯脚距离墙底端7米.如果梯子的顶端沿墙下滑4米,那么梯脚将水平滑动()A.9米B.15米C.5米D.8米9.(3分)把直线y=3沿着y轴平移后得到直线AB,直线AB经过点(p,q),且3p=q+2,则直线AB的解析式是()A.y=3﹣2 B.y=﹣3+2 C.y=﹣3﹣2 D.y=3+210.(3分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S、S2、S3.若S1+S2+S3=60,则S2的值是()1A.12 B.15 C.20 D.30二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)+=.12.(3分)已知一组数据:4,﹣1,5,9,7,则这组数据的极差是.13.(3分)若等边△ABC的边长为6,那么△ABC的面积是.14.(3分)已知:一次函数y1=+2与函数y2=|﹣1|在同一平面直角坐标系中,若y2>y1,则的取值范围是.15.(3分)如图,四边形ABCD中,∠A=∠C=90°,∠ABC=135°,CD=6,AB=2,则四边形ABCD的面积为.16.(3分)如图,在平面直角坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.现将菱形OABC沿轴的正方向无滑动翻转,每次翻转60°,连续翻转2018次,点B的落点依次为B,B2,1 B,B4,…,则B2018的坐标为.3三、解答题(共8题,共72分)17.(8分)计算: (1)×﹣÷(2)(+2)218.(8分)一次函数y =+b 经过点(﹣4,﹣2)和点(2,4),求一次函数y =+b 的解析式 19.(8分)如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =CO ,BO =DO ,且∠ABC +∠ADC =180°(1)求证:四边形ABCD 是矩形;(2)若DE ⊥AC 交BC 于E ,∠ADB :∠CDB =2:3,则∠BDE 的度数是多少?20.(8分)某同学在本学期的数学成绩如下表所示(成绩均取整数):(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期该同学的期末考试成绩至少为多少分才能保证达到总评成绩90分的最低目标?21.(8分)如图,直线AB :y =+2交轴于点A ,交y 轴正半轴于点B ,且S △OAB =3(1)求A、B两点的坐标;(2)将直线AB绕A点顺时针旋转45°,交y轴于点C,求直线AC的解析式.22.(10分)某华为手机专卖店销售5台甲型手机和8台乙型手机的利润为1600元,销售15台甲型手机和6台乙型手机的利润为3000元.(1)求每台甲型手机和乙型手机的利润;(2)专卖店计划购进两种型号的华为手机共120台,其中乙型手机的进货量不低于甲型手机的2倍.设购进甲型手机台,这120台手机全部销售的销售总利润为y元.①直接写出y关于的函数关系式,的取值范围是.②该商店如何进货才能使销售总利润最大?说明原因.(3)专卖店预算员按照(2)中的方案准备进货,同时专卖店对甲型手机销售价格下调a元,结果预算员发现无论按照哪种进货方案最后销售总利润不变.请你判断有这种可能性吗?如果有,求出a 的值;如果没有,说明理由.23.(10分)点E、F分别是▱ABCD的边BC、CD上的点,∠EAF=60°,AF=4.(1)若AB=2,点E与点B、点F与点D分别重合(如图1),求平行四边形ABCD的面积;(2)若AB=BC,∠B=∠EAF=60°(如图2),求证:△AEF为等边三角形;(3)若BE=CE,CF=2DF,AB=3(如图3),直接写出AE的长度(无需解答过程).24.(12分)如图,平面直角坐标系中,已知点A(0,5),点P(m,5)在第二象限,连接AP、OP.(1)如图1,若OP=6,求m的值;(2)如图2,点C在轴负半轴上,以CP为斜边作直角三角形BCP,∠CBP=90°,且∠BPC=∠APO.取OC的中点D,连接AD、BD,求证:AD=BD;(3)如图3,将△AOP沿直线OP翻折得到△EOP(点A的对应点为点E).若点E到轴的距离不大于3,直接写出m的取值范围(无需解答过程).湖北省武汉市新洲区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)如果代数式有意义,那么实数的取值范围是()A.≥0 B.≠5 C.≥5 D.>5【解答】解:由题意可知:﹣5≥0,∴≥5故选:C.2.(3分)下列二次根式中,最简二次根式是()A.B.C.2D.【解答】解:A、被开方数含能开得尽方的因数或因式,故A错误;B、被开方数含分母,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含能开得尽方的因数或因式,故D错误;故选:C.3.(3分)下列函数中,正比例函数是()A.y=B.y=22C.y=D.y=2+1【解答】解:A、符合正比例函数的含义,故本选项正确;B、自变量次数不为1,故本选项错误;C、是反比例函数,故本选项错误;D、是一次函数,故本选项错误.故选:A.4.(3分)如图所示,在▱ABCD中,AC,BD相交于点O,则下列结论中错误的是()A.OA=OC B.∠ABC=∠ADC C.AB=CD D.AC=BD【解答】解:A、∵四边形ABCD是平行四边形,∴OA=OC(平行四边形的对角线互相平分),正确,不符合题意;B、∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,正确,不符合题意;C、∵四边形ABCD是平行四边形,∴CD=AB,正确,不符合题意;D、根据四边形ABCD是平行四边形不能推出AC=BD,错误,符合题意;故选:D.5.(3分)下列说法中不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线互相垂直的平行四边形是菱形C.有一个角是直角的平行四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形【解答】解:A、两组对边分别平行的四边形是平行四边形,正确,不合题意;B、对角线互相垂直的平行四边形是菱形,正确,不合题意;C、有一个角是直角的平行四边形是矩形,正确,不合题意;D、两条对角线互相垂直且相等的平行四边形是正方形,故原命题错误,符合题意.故选:D.6.(3分)某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:)A.85,90 B.85,87.5 C.90,85 D.95,90【解答】解:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选:B.7.(3分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分【解答】解:根据题意得:85×+80×+90×=17+24+45=86(分),故选:D.8.(3分)一架25米长的云梯,斜立在一竖直的墙上,这时梯脚距离墙底端7米.如果梯子的顶端沿墙下滑4米,那么梯脚将水平滑动()A.9米B.15米C.5米D.8米【解答】解:梯子顶端距离墙角地距离为=24m,顶端下滑后梯子低端距离墙角的距离为=15m,15m﹣7m=8m.故选:D.9.(3分)把直线y=3沿着y轴平移后得到直线AB,直线AB经过点(p,q),且3p=q+2,则直线AB的解析式是()A.y=3﹣2 B.y=﹣3+2 C.y=﹣3﹣2 D.y=3+2【解答】解:设直线y=3沿着y轴平移后得到直线AB,则直线AB的解析式可设为y=3+,把点(p,q)代入得q=3p+,则,解得=﹣2.∴直线AB的解析式可设为y=3﹣2.故选:A.10.(3分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S、S2、S3.若S1+S2+S3=60,则S2的值是()1A.12 B.15 C.20 D.30【解答】解:设每个小直角三角形的面积为m,则S1=4m+S2,S3=S2﹣4m,因为S1+S2+S3=60,所以4m+S2+S2+S2﹣4m=60,即3S2=60,解得S2=20.故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)+=3.【解答】解:=2+=3.故答案为:3.12.(3分)已知一组数据:4,﹣1,5,9,7,则这组数据的极差是10 .【解答】解:这组数据的极差是:9﹣(﹣1)=10;故答案为:10.13.(3分)若等边△ABC的边长为6,那么△ABC的面积是9.【解答】解:如图,过A作AD⊥BC于点D,∵△ABC为等边三角形,∴BD=CD=BC=3,且AB=6,在Rt△ABD中,由勾股定理可得AD===3,=BC•AD=×6×3=9,∴S故答案为:9.14.(3分)已知:一次函数y1=+2与函数y2=|﹣1|在同一平面直角坐标系中,若y2>y1,则的取值范围是<﹣或>6 .【解答】解:∵y2>y1∴|﹣1|>+2∴﹣1+2或﹣+1+2∴>6或<﹣故答案为>6或<﹣15.(3分)如图,四边形ABCD中,∠A=∠C=90°,∠ABC=135°,CD=6,AB=2,则四边形ABCD的面积为16 .【解答】解:延长AB和DC,两线交于O,∵∠C=90°,∠ABC=135°,∴∠OBC=45°,∠BCO=90°,∴∠O=45°,∵∠A=90°,∴∠D=45°,则OB=BC,OD=OA,OA=AD,BC=OC,设BC=OC=,则BO=,∵CD=6,AB=2,∴6+=(+2),解得:=6﹣2,∴OB==6﹣4,BC=OC=6﹣2,OA=AD=2+6﹣4=6﹣2,∴四边形ABCD的面积S=S△OAD﹣S△OBC=×OA×AD﹣=×(6﹣2)×﹣=16,故答案为:16.16.(3分)如图,在平面直角坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.现将菱形OABC沿轴的正方向无滑动翻转,每次翻转60°,连续翻转2018次,点B的落点依次为B,B2,1 B,B4,…,则B2018的坐标为(1346,0).3【解答】解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2018=336×6+2,∴点B2向右平移1344(即336×4)到点B2018.∵B2的坐标为(2,0),∴B2018的坐标为(2+1344,0),∴B2018的坐标为(1346,0).故答案为:(1346,0);三、解答题(共8题,共72分)17.(8分)计算:(1)×﹣÷(2)(+2)2【解答】解:(1)×﹣÷==2=;(2)(+2)2=3+4+4=7+4.18.(8分)一次函数y=+b经过点(﹣4,﹣2)和点(2,4),求一次函数y=+b的解析式【解答】解:∵一次函数y=+b经过点(﹣4,﹣2)和点(2,4),∴代入得:,解得:=1,b=2,∴一次函数y=+b的解析式是y=+2.19.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°(1)求证:四边形ABCD是矩形;(2)若DE⊥AC交BC于E,∠ADB:∠CDB=2:3,则∠BDE的度数是多少?【解答】解:(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)∵∠ADC=90°,∠ADB:∠CDB=2:3,∴∠ADB=36°∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ADB=36°,∴∠DOC=72°.∵DE⊥AC,∴∠BDE=90°﹣∠DOC=18°.20.(8分)某同学在本学期的数学成绩如下表所示(成绩均取整数):(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期该同学的期末考试成绩至少为多少分才能保证达到总评成绩90分的最低目标?【解答】解:(1)该学期的平时平均成绩为:(88+70+96+86)÷4=85(分).(2)按照如图所示的权重,依题意得:85×10%+85×30%+60% ≥90.解得:≥93.33,又∵成绩均取整数,∴≥94.答:期末考试成绩至少需要94分.21.(8分)如图,直线AB:y=+2交轴于点A,交y轴正半轴于点B,且S△OAB=3 (1)求A、B两点的坐标;(2)将直线AB绕A点顺时针旋转45°,交y轴于点C,求直线AC的解析式.【解答】解:(1)∵直线AB:y=+2,令=0,则y=2,即B(0,2),令y=0,则=﹣2,即A(﹣2,0),∵S△OAB=3,∴×2×2=3,∴2=3,∴A、B两点的坐标为(﹣2,0)、(0,3);(2)如图,过点B作BD⊥BA,交AC的延长线于点D,过点D作DH⊥y轴于H.∵∠BAC=45°,∴△ABD是等腰直角三角形,∴AB=BD,∵∠AOB=∠BHD=90°,∴∠ABO=∠BDH,∴△ABO≌△BDH,∴DH=BO=3,BH=AO=2,∴HO=3﹣2=1,∴D(3,1),设直线AC的解析式为y=a+b,由A、D两点的坐标可得,解得,∴AC的解析式为y=+.22.(10分)某华为手机专卖店销售5台甲型手机和8台乙型手机的利润为1600元,销售15台甲型手机和6台乙型手机的利润为3000元.(1)求每台甲型手机和乙型手机的利润;(2)专卖店计划购进两种型号的华为手机共120台,其中乙型手机的进货量不低于甲型手机的2倍.设购进甲型手机台,这120台手机全部销售的销售总利润为y元.①直接写出y关于的函数关系式y=60+12000 ,的取值范围是0<≤40且为正整数.②该商店如何进货才能使销售总利润最大?说明原因.(3)专卖店预算员按照(2)中的方案准备进货,同时专卖店对甲型手机销售价格下调a元,结果预算员发现无论按照哪种进货方案最后销售总利润不变.请你判断有这种可能性吗?如果有,求出a 的值;如果没有,说明理由.【解答】解:(1)设每台甲手机的利润为元,每台乙手机的利润为y元,由题意得:,解得∴每台甲手机的利润为160元,每台乙手机的利润为100元.(2)①y=60+12000,0<≤40且为正整数故答案为:y=60+12000;0<≤40且为正整数②∵y=60+12000,0<≤40且为正整数,∴=60>0,y随的增大而增大,∴当=40时,y=60×40+12000=14400最大.即该商店购进40台A手机,80台B手机才能使销售总利润最大.(3)有这种可能性,理由如下:由题意可知:y=60+12000﹣a,0<≤40且为正整数,∴y=(60﹣a)+12000,当60﹣a=0,即a=60时利润y=12000元与进货方案无关.23.(10分)点E、F分别是▱ABCD的边BC、CD上的点,∠EAF=60°,AF=4.(1)若AB=2,点E与点B、点F与点D分别重合(如图1),求平行四边形ABCD的面积;(2)若AB=BC,∠B=∠EAF=60°(如图2),求证:△AEF为等边三角形;(3)若BE=CE,CF=2DF,AB=3(如图3),直接写出AE的长度(无需解答过程).【解答】(1)解:如图1,过点B作BH⊥AD于H,在Rt△ABH中,∠BAD=60°,∴∠ABH=30°,∵AB=2,∴AH=1,BH=,=AD×BH=AF×BH=4;∴S(2)证明:如图2,连接AC.∵四边形ABCD是平行四边形,∴AD∥BC,∵∠B=∠EAF=60°,∴∠BAD=120°,在▱ABCD中,AB=BC,∴▱ABCD是菱形,∵AC是菱形对角线,∴∠ACD=∠BAC=60°=∠B,∴AB=AC,∴∠BAE=∠CAF,在△ABE和△ACF中,∴△ABE≌△ACF,∴AE=AF,∵∠EAF=60°,∴△AEF为等边三角形;(3)解:如图3,延长AE交DC延长线于P,过点F作FG⊥AP与G.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠C=∠ECP,∵BE=CE,∠AEB=∠PEC,∴△ABE≌△PCE,∴AE=PE,PC=AB=CD=3,CF=2DF,∴CF=2,∴PF=5,在Rt△AFG中,AF=4,∠EAF=60°,∴∠AFG=30°,∴AG=2,FG=2.在Rt△PFG中,PF=5,FG=2,根据勾股定理得,PG=.∴AP=AG+PG=2+,∴AE=PE=AP=.24.(12分)如图,平面直角坐标系中,已知点A(0,5),点P(m,5)在第二象限,连接AP、OP.(1)如图1,若OP=6,求m的值;(2)如图2,点C在轴负半轴上,以CP为斜边作直角三角形BCP,∠CBP=90°,且∠BPC=∠APO.取OC的中点D,连接AD、BD,求证:AD=BD;(3)如图3,将△AOP沿直线OP翻折得到△EOP(点A的对应点为点E).若点E到轴的距离不大于3,直接写出m的取值范围(无需解答过程).【解答】(1)解.由点A(0,5),点P(m,5)可知PA⊥y轴,∵OP=6,OA=5,由勾股定理可求PA==,∴m=﹣;(2)证明:方法一:如图2,取CP、OP中点M、N,连接DM、DN、BM、AN.∵D、M、N分别为OC、PC、PO的中点,∴DM∥PO,DN∥PC,∴四边形PMDN是平行四边形,∴PM=DN,DM=PN,∠PMD=∠PND,又M、N分别为Rt△PBC、Rt△PAO斜边的中点,∴BM=MP,AN=PN,∵∠BPC=∠APO∴∠BMP=∠ANP,∴∠BMP+∠PMD=∠ANP+∠PND,∴∠DNA=∠BMD,∴△DNA≌△BMD,∴AD=BD.方法二:如图3,延长CB至M,使BM=BC,在y轴上面取点N使AN=OA,连接PM,PN,CN,OM.∵∠BPC=∠APO∴∠BPM=∠APN∴∠CPN=∠MPO∴△PCN≌△PMO,∴CN=OM.∵D、A、B分别为OC、ON、CM的中点,∴BD=OM,AD=CN,∴AD=BD.(3)由条件可知点E的纵坐标大于或等于﹣3小于或等于3.①当点E的纵坐标为3时,如图4,过点E作ES⊥轴于S,交直线AP于R,在Rt△OES中,OE=OA=5,ES=3,可求OS=AR=4,RE=2,∵PA=PE=﹣m,PR=4+m,在Rt△PRE中,由22+(4+m)2=(﹣m)2,解得:m=﹣;②当点E的纵坐标为﹣3时,如图5,过点E作ES⊥轴于S,交直线AP于R,在Rt△OES中,OE=OA=5,ES=3,∴OS=AR=4,∴PR=10﹣4=6由勾股定理得:RE==8,∵PA=PE=﹣m,PR=﹣4﹣m,在Rt△△PRE中,由82+(4+m)2=(﹣m)2,解得:m=﹣10;综上所述:当﹣10≤m≤﹣时,点E到轴的距离不大于3.21。

湖北省武汉市新洲区八年级下期末数学试卷(含答案解析)

湖北省武汉市新洲区八年级下期末数学试卷(含答案解析)

湖北省武汉市新洲区八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)如果代数式有意义,那么实数的取值范围是()A.≥0 B.≠5 C.≥5 D.>52.(3分)下列二次根式中,最简二次根式是()A.B.C.2D.3.(3分)下列函数中,正比例函数是()A.y=B.y=22C.y=D.y=2+14.(3分)如图所示,在▱ABCD中,AC,BD相交于点O,则下列结论中错误的是()A.OA=OC B.∠ABC=∠ADC C.AB=CD D.AC=BD5.(3分)下列说法中不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线互相垂直的平行四边形是菱形C.有一个角是直角的平行四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形6.(3分)某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:)A.85,90 B.85,87.5 C.90,85 D.95,907.(3分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分8.(3分)一架25米长的云梯,斜立在一竖直的墙上,这时梯脚距离墙底端7米.如果梯子的顶端沿墙下滑4米,那么梯脚将水平滑动()A.9米B.15米C.5米D.8米9.(3分)把直线y=3沿着y轴平移后得到直线AB,直线AB经过点(p,q),且3p=q+2,则直线AB的解析式是()A.y=3﹣2 B.y=﹣3+2 C.y=﹣3﹣2 D.y=3+210.(3分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S、S2、S3.若S1+S2+S3=60,则S2的值是()1A.12 B.15 C.20 D.30二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)+=.12.(3分)已知一组数据:4,﹣1,5,9,7,则这组数据的极差是.13.(3分)若等边△ABC的边长为6,那么△ABC的面积是.14.(3分)已知:一次函数y1=+2与函数y2=|﹣1|在同一平面直角坐标系中,若y2>y1,则的取值范围是.15.(3分)如图,四边形ABCD中,∠A=∠C=90°,∠ABC=135°,CD=6,AB=2,则四边形ABCD 的面积为.16.(3分)如图,在平面直角坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.现将菱形OABC 沿轴的正方向无滑动翻转,每次翻转60°,连续翻转2018次,点B的落点依次为B1,B2,B3,B4,…,则B2018的坐标为.三、解答题(共8题,共72分) 17.(8分)计算: (1)×﹣÷(2)(+2)218.(8分)一次函数y =+b 经过点(﹣4,﹣2)和点(2,4),求一次函数y =+b 的解析式19.(8分)如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =CO ,BO =DO ,且∠ABC +∠ADC =180°(1)求证:四边形ABCD 是矩形;(2)若DE ⊥AC 交BC 于E ,∠ADB :∠CDB =2:3,则∠BDE 的度数是多少?20.(8分)某同学在本学期的数学成绩如下表所示(成绩均取整数):(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期该同学的期末考试成绩至少为多少分才能保证达到总评成绩90分的最低目标?21.(8分)如图,直线AB:y=+2交轴于点A,交y轴正半轴于点B,且S△OAB=3(1)求A、B两点的坐标;(2)将直线AB绕A点顺时针旋转45°,交y轴于点C,求直线AC的解析式.22.(10分)某华为手机专卖店销售5台甲型手机和8台乙型手机的利润为1600元,销售15台甲型手机和6台乙型手机的利润为3000元.(1)求每台甲型手机和乙型手机的利润;(2)专卖店计划购进两种型号的华为手机共120台,其中乙型手机的进货量不低于甲型手机的2倍.设购进甲型手机台,这120台手机全部销售的销售总利润为y元.①直接写出y关于的函数关系式,的取值范围是.②该商店如何进货才能使销售总利润最大?说明原因.(3)专卖店预算员按照(2)中的方案准备进货,同时专卖店对甲型手机销售价格下调a元,结果预算员发现无论按照哪种进货方案最后销售总利润不变.请你判断有这种可能性吗?如果有,求出a的值;如果没有,说明理由.23.(10分)点E、F分别是▱ABCD的边BC、CD上的点,∠EAF=60°,AF=4.(1)若AB=2,点E与点B、点F与点D分别重合(如图1),求平行四边形ABCD的面积;(2)若AB=BC,∠B=∠EAF=60°(如图2),求证:△AEF为等边三角形;(3)若BE=CE,CF=2DF,AB=3(如图3),直接写出AE的长度(无需解答过程).24.(12分)如图,平面直角坐标系中,已知点A(0,5),点P(m,5)在第二象限,连接AP、OP.(1)如图1,若OP=6,求m的值;(2)如图2,点C在轴负半轴上,以CP为斜边作直角三角形BCP,∠CBP=90°,且∠BPC=∠APO.取OC的中点D,连接AD、BD,求证:AD=BD;(3)如图3,将△AOP沿直线OP翻折得到△EOP(点A的对应点为点E).若点E到轴的距离不大于3,直接写出m的取值范围(无需解答过程).2017-2018学年湖北省武汉市新洲区八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)如果代数式有意义,那么实数的取值范围是()A.≥0 B.≠5 C.≥5 D.>5【解答】解:由题意可知:﹣5≥0,∴≥5故选:C.2.(3分)下列二次根式中,最简二次根式是()A.B.C.2D.【解答】解:A、被开方数含能开得尽方的因数或因式,故A错误;B、被开方数含分母,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含能开得尽方的因数或因式,故D错误;故选:C.3.(3分)下列函数中,正比例函数是()A.y=B.y=22C.y=D.y=2+1【解答】解:A、符合正比例函数的含义,故本选项正确;B、自变量次数不为1,故本选项错误;C、是反比例函数,故本选项错误;D、是一次函数,故本选项错误.故选:A.4.(3分)如图所示,在▱ABCD中,AC,BD相交于点O,则下列结论中错误的是()A.OA=OC B.∠ABC=∠ADC C.AB=CD D.AC=BD【解答】解:A、∵四边形ABCD是平行四边形,∴OA=OC(平行四边形的对角线互相平分),正确,不符合题意;B、∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,正确,不符合题意;C、∵四边形ABCD是平行四边形,∴CD=AB,正确,不符合题意;D、根据四边形ABCD是平行四边形不能推出AC=BD,错误,符合题意;故选:D.5.(3分)下列说法中不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线互相垂直的平行四边形是菱形C.有一个角是直角的平行四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形【解答】解:A、两组对边分别平行的四边形是平行四边形,正确,不合题意;B、对角线互相垂直的平行四边形是菱形,正确,不合题意;C、有一个角是直角的平行四边形是矩形,正确,不合题意;D、两条对角线互相垂直且相等的平行四边形是正方形,故原命题错误,符合题意.故选:D.6.(3分)某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:)A.85,90 B.85,87.5 C.90,85 D.95,90【解答】解:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选:B.7.(3分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分【解答】解:根据题意得:85×+80×+90×=17+24+45=86(分),故选:D.8.(3分)一架25米长的云梯,斜立在一竖直的墙上,这时梯脚距离墙底端7米.如果梯子的顶端沿墙下滑4米,那么梯脚将水平滑动()A.9米B.15米C.5米D.8米【解答】解:梯子顶端距离墙角地距离为=24m,顶端下滑后梯子低端距离墙角的距离为=15m,15m﹣7m=8m.故选:D.9.(3分)把直线y=3沿着y轴平移后得到直线AB,直线AB经过点(p,q),且3p=q+2,则直线AB的解析式是()A.y=3﹣2 B.y=﹣3+2 C.y=﹣3﹣2 D.y=3+2【解答】解:设直线y=3沿着y轴平移后得到直线AB,则直线AB的解析式可设为y=3+,把点(p,q)代入得q=3p+,则,解得=﹣2.∴直线AB的解析式可设为y=3﹣2.故选:A.10.(3分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S、S2、S3.若S1+S2+S3=60,则S2的值是()1A.12 B.15 C.20 D.30【解答】解:设每个小直角三角形的面积为m,则S1=4m+S2,S3=S2﹣4m,因为S1+S2+S3=60,所以4m+S2+S2+S2﹣4m=60,即3S2=60,解得S2=20.故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)+=3.【解答】解:=2+=3.故答案为:3.12.(3分)已知一组数据:4,﹣1,5,9,7,则这组数据的极差是10 .【解答】解:这组数据的极差是:9﹣(﹣1)=10;故答案为:10.13.(3分)若等边△ABC的边长为6,那么△ABC的面积是9.【解答】解:如图,过A作AD⊥BC于点D,∵△ABC为等边三角形,∴BD=CD=BC=3,且AB=6,在Rt△ABD中,由勾股定理可得AD===3,=BC•AD=×6×3=9,∴S故答案为:9.14.(3分)已知:一次函数y1=+2与函数y2=|﹣1|在同一平面直角坐标系中,若y2>y1,则的取值范围是<﹣或>6 .【解答】解:∵y2>y1∴|﹣1|>+2∴﹣1+2或﹣+1+2∴>6或<﹣故答案为>6或<﹣15.(3分)如图,四边形ABCD中,∠A=∠C=90°,∠ABC=135°,CD=6,AB=2,则四边形ABCD 的面积为16 .【解答】解:延长AB和DC,两线交于O,∵∠C=90°,∠ABC=135°,∴∠OBC=45°,∠BCO=90°,∴∠O=45°,∵∠A=90°,∴∠D=45°,则OB=BC,OD=OA,OA=AD,BC=OC,设BC=OC=,则BO=,∵CD=6,AB=2,∴6+=(+2),解得:=6﹣2,∴OB==6﹣4,BC=OC=6﹣2,OA=AD=2+6﹣4=6﹣2,∴四边形ABCD的面积S=S△OAD﹣S△OBC=×OA×AD﹣=×(6﹣2)×﹣=16,故答案为:16.16.(3分)如图,在平面直角坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.现将菱形OABC沿轴的正方向无滑动翻转,每次翻转60°,连续翻转2018次,点B的落点依次为B1,B2,B3,B4,…,则B2018的坐标为(1346,0).【解答】解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2018=336×6+2,∴点B2向右平移1344(即336×4)到点B2018.∵B2的坐标为(2,0),∴B2018的坐标为(2+1344,0),∴B2018的坐标为(1346,0).故答案为:(1346,0);三、解答题(共8题,共72分)17.(8分)计算:(1)×﹣÷(2)(+2)2【解答】解:(1)×﹣÷==2=;(2)(+2)2=3+4+4=7+4.18.(8分)一次函数y=+b经过点(﹣4,﹣2)和点(2,4),求一次函数y=+b的解析式【解答】解:∵一次函数y=+b经过点(﹣4,﹣2)和点(2,4),∴代入得:,解得:=1,b=2,∴一次函数y=+b的解析式是y=+2.19.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°(1)求证:四边形ABCD是矩形;(2)若DE⊥AC交BC于E,∠ADB:∠CDB=2:3,则∠BDE的度数是多少?【解答】解:(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)∵∠ADC=90°,∠ADB:∠CDB=2:3,∴∠ADB=36°∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ADB=36°,∴∠DOC=72°.∵DE⊥AC,∴∠BDE=90°﹣∠DOC=18°.20.(8分)某同学在本学期的数学成绩如下表所示(成绩均取整数):(2)如果学期的总评成绩是根据图所示的权重计算,那么本学期该同学的期末考试成绩至少为多少分才能保证达到总评成绩90分的最低目标?【解答】解:(1)该学期的平时平均成绩为:(88+70+96+86)÷4=85(分).(2)按照如图所示的权重,依题意得:85×10%+85×30%+60% ≥90.解得:≥93.33,又∵成绩均取整数,∴≥94.答:期末考试成绩至少需要94分.21.(8分)如图,直线AB:y=+2交轴于点A,交y轴正半轴于点B,且S△OAB=3(1)求A、B两点的坐标;(2)将直线AB绕A点顺时针旋转45°,交y轴于点C,求直线AC的解析式.【解答】解:(1)∵直线AB:y=+2,令=0,则y=2,即B(0,2),令y=0,则=﹣2,即A(﹣2,0),∵S△OAB=3,∴×2×2=3,∴2=3,∴A、B两点的坐标为(﹣2,0)、(0,3);(2)如图,过点B作BD⊥BA,交AC的延长线于点D,过点D作DH⊥y轴于H.∵∠BAC=45°,∴△ABD是等腰直角三角形,∴AB=BD,∵∠AOB=∠BHD=90°,∴∠ABO=∠BDH,∴△ABO≌△BDH,∴DH=BO=3,BH=AO=2,∴HO=3﹣2=1,∴D(3,1),设直线AC的解析式为y=a+b,由A、D两点的坐标可得,解得,∴AC的解析式为y=+.22.(10分)某华为手机专卖店销售5台甲型手机和8台乙型手机的利润为1600元,销售15台甲型手机和6台乙型手机的利润为3000元.(1)求每台甲型手机和乙型手机的利润;(2)专卖店计划购进两种型号的华为手机共120台,其中乙型手机的进货量不低于甲型手机的2倍.设购进甲型手机台,这120台手机全部销售的销售总利润为y元.①直接写出y关于的函数关系式y=60+12000 ,的取值范围是0<≤40且为正整数.②该商店如何进货才能使销售总利润最大?说明原因.(3)专卖店预算员按照(2)中的方案准备进货,同时专卖店对甲型手机销售价格下调a元,结果预算员发现无论按照哪种进货方案最后销售总利润不变.请你判断有这种可能性吗?如果有,求出a的值;如果没有,说明理由.【解答】解:(1)设每台甲手机的利润为元,每台乙手机的利润为y元,由题意得:,解得∴每台甲手机的利润为160元,每台乙手机的利润为100元.(2)①y=60+12000,0<≤40且为正整数故答案为:y=60+12000;0<≤40且为正整数②∵y=60+12000,0<≤40且为正整数,∴=60>0,y随的增大而增大,∴当=40时,y=60×40+12000=14400最大.即该商店购进40台A手机,80台B手机才能使销售总利润最大.(3)有这种可能性,理由如下:由题意可知:y=60+12000﹣a,0<≤40且为正整数,∴y=(60﹣a)+12000,当60﹣a=0,即a=60时利润y=12000元与进货方案无关.23.(10分)点E、F分别是▱ABCD的边BC、CD上的点,∠EAF=60°,AF=4.(1)若AB=2,点E与点B、点F与点D分别重合(如图1),求平行四边形ABCD的面积;(2)若AB=BC,∠B=∠EAF=60°(如图2),求证:△AEF为等边三角形;(3)若BE=CE,CF=2DF,AB=3(如图3),直接写出AE的长度(无需解答过程).【解答】(1)解:如图1,过点B作BH⊥AD于H,在Rt△ABH中,∠BAD=60°,∴∠ABH=30°,∵AB=2,∴AH=1,BH=,∴S=AD×BH=AF×BH=4;(2)证明:如图2,连接AC.∵四边形ABCD是平行四边形,∴AD∥BC,∵∠B=∠EAF=60°,∴∠BAD=120°,在▱ABCD中,AB=BC,∴▱ABCD是菱形,∵AC是菱形对角线,∴∠ACD=∠BAC=60°=∠B,∴AB=AC,∴∠BAE=∠CAF,在△ABE和△ACF中,∴△ABE≌△ACF,∴AE=AF,∵∠EAF=60°,∴△AEF为等边三角形;(3)解:如图3,延长AE交DC延长线于P,过点F作FG⊥AP与G.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠C=∠ECP,∵BE=CE,∠AEB=∠PEC,∴△ABE≌△PCE,∴AE=PE,PC=AB=CD=3,CF=2DF,∴CF=2,∴PF=5,在Rt△AFG中,AF=4,∠EAF=60°,∴∠AFG=30°,∴AG=2,FG=2.在Rt△PFG中,PF=5,FG=2,根据勾股定理得,PG=.∴AP=AG+PG=2+,∴AE=PE=AP=.24.(12分)如图,平面直角坐标系中,已知点A(0,5),点P(m,5)在第二象限,连接AP、OP.(1)如图1,若OP=6,求m的值;(2)如图2,点C在轴负半轴上,以CP为斜边作直角三角形BCP,∠CBP=90°,且∠BPC=∠APO.取OC的中点D,连接AD、BD,求证:AD=BD;(3)如图3,将△AOP沿直线OP翻折得到△EOP(点A的对应点为点E).若点E到轴的距离不大于3,直接写出m的取值范围(无需解答过程).【解答】(1)解.由点A(0,5),点P(m,5)可知PA⊥y轴,∵OP=6,OA=5,由勾股定理可求PA==,∴m=﹣;(2)证明:方法一:如图2,取CP、OP中点M、N,连接DM、DN、BM、AN.∵D、M、N分别为OC、PC、PO的中点,∴DM∥PO,DN∥PC,∴四边形PMDN是平行四边形,∴PM=DN,DM=PN,∠PMD=∠PND,又M、N分别为Rt△PBC、Rt△PAO斜边的中点,∴BM=MP,AN=PN,∵∠BPC=∠APO∴∠BMP=∠ANP,∴∠BMP+∠PMD=∠ANP+∠PND,∴∠DNA =∠BMD , ∴△DNA ≌△BMD , ∴AD =BD . 方法二:如图3,延长CB 至M ,使BM =BC ,在y 轴上面取点N 使AN =OA ,连接PM ,PN ,CN ,OM . ∵∠BPC =∠APO ∴∠BPM =∠APN ∴∠CPN =∠MPO ∴△PCN ≌△PMO , ∴CN =OM .∵D 、A 、B 分别为OC 、ON 、CM 的中点,∴BD =OM ,AD =CN , ∴AD =BD .(3)由条件可知点E 的纵坐标大于或等于﹣3小于或等于3.①当点E 的纵坐标为3时,如图4,过点E 作ES ⊥轴于S ,交直线AP 于R , 在Rt △OES 中,OE =OA =5,ES =3,可求OS =AR =4,RE =2, ∵PA =PE =﹣m ,PR =4+m ,在Rt △PRE 中,由22+(4+m )2=(﹣m )2,解得:m =﹣;②当点E 的纵坐标为﹣3时,如图5,过点E 作ES ⊥轴于S ,交直线AP 于R , 在Rt △OES 中,OE =OA =5,ES =3, ∴OS =AR =4, ∴PR =10﹣4=6由勾股定理得:RE ==8,∵PA =PE =﹣m ,PR =﹣4﹣m ,在Rt △△PRE 中,由82+(4+m )2=(﹣m )2, 解得:m =﹣10;综上所述:当﹣10≤m ≤﹣时,点E 到轴的距离不大于3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年湖北省武汉市新洲区八年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)化简的结果是()A.﹣2 B.2 C.±2 D.42.(3分)若二次根式有意义,则a的取值范围是()A.a>3 B.a≥3 C.a≤3 D.a≠33.(3分)下列函数中,表示y是x的正比例函数的是()A.y=﹣0.1x B.y=2x2C.y2=4x D.y=2x+14.(3分)如果四边形ABCD是平行四边形,AB=6,且AB的长是四边形ABCD 周长的,那么BC的长是()A.6 B.8 C.10 D.165.(3分)若平行四边形中两个内角的度数比为1:2,则其中较小的内角是()A.90°B.60°C.120° D.45°6.(3分)为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,统计结果如图所示,则在一次充电后行驶的里程数这组数据中,众数和中位数分别是()A.220,220 B.220,210 C.200,220 D.230,2107.(3分)某校在开展“节约每一滴水”的活动中,从八年级的100名同学中任选20名同学汇总了各自家庭一个月的节水情况,将有关数据(每人上报节水量都是整数)整理如表:请你估计这100名同学的家庭一个月节约用水的总量大约是()A.180t B.230t C.250t D.300t8.(3分)甲、乙两艘客轮同时离开港口,航行的速度都是40m/min,甲客轮用15min到达点A,乙客轮用20min到达点B,若A,B两点的直线距离为1000m,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是()A.北偏西30°B.南偏西30°C.南偏东60°D.南偏西60°9.(3分)如图,在锐角三角形ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.5 C.6 D.1010.(3分)如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是()A.1<x<2 B.0<x<2 C.0<x<1 D.1<x二、填空题(每小题3分,共18分)11.(3分)计算:2﹣6=.12.(3分)一组数据:25,29,20,x,14,它的中位数是24,则这组数据的平均数为.13.(3分)如图,从电线杆离地面12m处向地面拉一条长为13m的钢缆,则地面钢缆固定点A到电线杆底部B的距离为.14.(3分)如图,在矩形ABCD中,E是AB边上的中点,将△BCE沿CE翻折得到△FCE,连接AF.若∠EAF=75°,那么∠BCF的度数为.15.(3分)如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这10个正方形分成面积相等的两部分,则该直线l的解析式为.16.(3分)已知,如图,矩形ABCD边AB=6,BC=8,再沿EF折叠,使D点与B 点重合,C点的对应点为G,将△BEF绕着点B顺时针旋转,旋转角为a(0°<a <180°),记旋转这程中的三角形为△BE′F′,在旋转过程中设直线E′F′与射钱EF、射线ED分别交于点M、N,当EN=MN时,则FM的长为.三、解答题(共8小题,共72分)17.(8分)计算:5÷﹣3+2.18.(8分)已知一次函数的图象过点(3,5)与点(﹣4,﹣9),求这个一次函数的解析式.19.(8分)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.20.(8分)某校240名学生参加植树活动,要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵、B类5棵、C类6棵、D类7棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数和中位数;(3)估计这240名学生共植树多少棵?21.(8分)如图,在平面直角坐标系xOy中,直线y=﹣x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式.22.(10分)某经销商从市场得知如下信息:他计划用4万元资金一次性购进这两种品牌计算器共100台,设该经销商购进A 品牌计算器x台,这两种品牌计算器全部销售完后获得利润为y元.(1)求y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案?(3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元?23.(10分)如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F 在DP的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.(1)求证:△AEG是等腰直角三角形;(2)求证:AG+CG=DG.24.(12分)已知:如图,平面直角坐标系中,A(0,4),B(0,2),点C是x 轴上一点,点D为OC的中点.(1)求证:BD∥AC;(2)若点C在x轴正半轴上,且BD与AC的距离等于1,求点C的坐标;(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.2016-2017学年湖北省武汉市新洲区八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)化简的结果是()A.﹣2 B.2 C.±2 D.4【分析】由于表示4的算术平方根,根据算术平方根的定义即可求出结果.【解答】解:∵2的平方是4,∴4算术平方根为2.故选:B.【点评】此题主要考查了算术平方根的定义,解题时注意算术平方根的概念易与平方根的概念混淆而导致错误.规律总结:弄清概念是解决本题的关键.2.(3分)若二次根式有意义,则a的取值范围是()A.a>3 B.a≥3 C.a≤3 D.a≠3【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得3﹣a≥0,解得a≤3,故选:C.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.3.(3分)下列函数中,表示y是x的正比例函数的是()A.y=﹣0.1x B.y=2x2C.y2=4x D.y=2x+1【分析】根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,判断各选项,即可得出答案.【解答】解:A、y=﹣0.1x,符合正比例函数的含义,故本选项正确.B、y=2x2,自变量次数不为1,故本选项错误;C、y2=4x是x表示y的二次函数,故本选项错误;D、y=2x+1是一次函数,故本选项错误;故选:A.【点评】本题主要考查了正比例函数的定义,难度不大,注意基础概念的掌握.4.(3分)如果四边形ABCD是平行四边形,AB=6,且AB的长是四边形ABCD 周长的,那么BC的长是()A.6 B.8 C.10 D.16【分析】由AB=6,且AB的长是四边形ABCD周长的,即可求得四边形ABCD 周长,又由四边形ABCD是平行四边形,根据平行四边形的对边相等,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵AB=6,且AB的长是四边形ABCD周长的,∴四边形ABCD周长为:6÷=32,∴AB+BC=×32=16,∴BC=10.故选:C.【点评】此题考查了平行四边形的性质.熟记平行四边形的各种性质定理是解此题的关键.5.(3分)若平行四边形中两个内角的度数比为1:2,则其中较小的内角是()A.90°B.60°C.120° D.45°【分析】根据平行四边形的性质得出AB∥CD,推出∠B+∠C=180°,根据∠B:∠C=1:2,求出∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B:∠C=1:2,∴∠B=×180°=60°,故选:B.【点评】本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.6.(3分)为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,统计结果如图所示,则在一次充电后行驶的里程数这组数据中,众数和中位数分别是()A.220,220 B.220,210 C.200,220 D.230,210【分析】根据众数与中位数的定义,找出出现次数最多的数,把这组数据从小到大排列,求出最中间两个数的平均数即可.【解答】解:数据220出现了4次,最多,故众数为220,共1+2+3+4=10个数,排序后位于第5和第6位的数均为220,故中位数为220,故选:A.【点评】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.(3分)某校在开展“节约每一滴水”的活动中,从八年级的100名同学中任选20名同学汇总了各自家庭一个月的节水情况,将有关数据(每人上报节水量都是整数)整理如表:请你估计这100名同学的家庭一个月节约用水的总量大约是()A.180t B.230t C.250t D.300t【分析】利用组中值求样本平均数,即可解决问题.【解答】解:利用组中值求平均数可得:选出20名同学家的平均一个月节约用水量==2.3,∴估计这100名同学的家庭一个月节约用水的总量大约是=2.3×100=230t.故选:B.【点评】本题考查样本平均数、组中值等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(3分)甲、乙两艘客轮同时离开港口,航行的速度都是40m/min,甲客轮用15min到达点A,乙客轮用20min到达点B,若A,B两点的直线距离为1000m,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是()A.北偏西30°B.南偏西30°C.南偏东60°D.南偏西60°【分析】首先根据速度和时间计算出行驶路程,再根据勾股定理逆定理结合路程可判断出甲和乙两艘轮船的行驶路线呈垂直关系,进而可得答案.【解答】解:甲的路程:40×15=600m,乙的路程:20×40=800m,∵6002+8002=10002,∴甲和乙两艘轮船的行驶路线呈垂直关系,∵甲客轮沿着北偏东30°,∴乙客轮的航行方向可能是南偏东60°,故选:C.【点评】此题主要考查了勾股定理逆定理的应用,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.9.(3分)如图,在锐角三角形ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.5 C.6 D.10【分析】因为AD平分∠CAB,所以点B关于AD的对称点B′在线段AC上,作B′N′⊥AB于N′交AD于M′.由BM+MN=B′M+MN,推出当M与M′重合,N与N′重合时,BM+MN的值最小,最小值为B′N′,只要证明△AB′N′是等腰直角三角形即可解决问题.【解答】解:∵AD平分∠CAB,∴点B关于AD的对称点B′在线段AC上,作B′N′⊥AB于N′交AD于M′.∵BM+MN=B′M+MN,∴当M与M′重合,N与N′重合时,BM+MN的值最小,最小值为B′N′,∵AD垂直平分BB′,∴AB′=AB=5,∵∠B′AN′=45°,∴△AB′N′是等腰直角三角形,∴B′N′=5∴BM+MN的最小值为5.故选:B.【点评】本题考查轴对称﹣最短问题、垂线段最短、等腰直角三角形的判定和性质等知识,解题的关键是学会利用对称解决最短问题,属于中考常考题型.10.(3分)如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是()A.1<x<2 B.0<x<2 C.0<x<1 D.1<x【分析】由于一次函数y1同时经过A、P两点,可将它们的坐标分别代入y1的解析式中,即可求得k、b与m的关系,将其代入所求不等式组中,即可求得不等式的解集.【解答】解:由于直线y1=kx+b过点A(0,2),P(1,m),则有:,解得.∴直线y1=(m﹣2)x+2.故所求不等式组可化为:mx>(m﹣2)x+2>mx﹣2,不等号两边同时减去mx得,0>﹣2x+2>﹣2,解得:1<x<2,故选:A.【点评】本题主要考查了根据图形确定k、b与m的关系,从而通过解不等式组得到其解集,难度适中.二、填空题(每小题3分,共18分)11.(3分)计算:2﹣6=﹣4.【分析】合并同类二次根式即可.【解答】解:2﹣6=(2﹣6)=﹣4,故答案为:﹣4.【点评】本题考查的是二次根式的加减法,掌握合并同类二次根式的法则是解题的关键.12.(3分)一组数据:25,29,20,x,14,它的中位数是24,则这组数据的平均数为22.4.【分析】因为一组数据:25,29,20,x,14,它的中位数是24,则这组数据为14,20,23,25,29,所以其平均数可求.【解答】解:∵一组数据:25,29,20,x,14,它的中位数是24,所以x=24,∴这组数据为14,20,24,25,29,∴平均数=(14+20+24+25+29)÷5=22.4.故答案是:22.4.【点评】本题考查了中位数,算术平均数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.13.(3分)如图,从电线杆离地面12m处向地面拉一条长为13m的钢缆,则地面钢缆固定点A到电线杆底部B的距离为5m.【分析】根据勾股定理求出即可.【解答】解:由勾股定理得:AB==5(m),故答案为:5m.【点评】本题考查了勾股定理的应用,能熟记勾股定理的内容是解此题的关键.14.(3分)如图,在矩形ABCD中,E是AB边上的中点,将△BCE沿CE翻折得到△FCE,连接AF.若∠EAF=75°,那么∠BCF的度数为30°.【分析】由矩形的性质得出∠B=90°,由折叠的性质得出∠EFC=∠B=90°,∠FEC=∠CEB,∠FCE=∠BCE,FE=BE,证出AE=FE,由等腰三角形的性质得出∠EFA=∠EAF=75°,由三角形的外角性质求出∠BEF=∠EAF+∠EFA=150°,得出∠CEB=∠FEC=75°,由直角三角形的性质得出∠FCE=∠BCE=15°,即可得出∠BCF的度数.【解答】解:∵四边形ABCD是矩形,∴∠B=90°,∵E为边AB的中点,∴AE=BE,由折叠的性质可得:∠EFC=∠B=90°,∠FEC=∠CEB,∠FCE=∠BCE,FE=BE,∴AE=FE,∴∠EFA=∠EAF=75°,∴∠BEF=∠EAF+∠EFA=150°,∴∠CEB=∠FEC=75°,∴∠FCE=∠BCE=90°﹣75°=15°,∴∠BCF=30°,故答案为:30°.【点评】本题考查了翻折变换的性质、矩形的性质、等腰三角形的性质、直角三角形的性质以及三角形的外角性质;熟练掌握翻折变换和矩形的性质是解决问题的关键.15.(3分)如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这10个正方形分成面积相等的两部分,则该直线l的解析式为y=x.【分析】设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,B过A 作AC⊥OC于C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标即可得到该直线l的解析式.【解答】解:设直线l和10个正方形的最上面交点为A,过A作AB⊥OB于B,过A作AC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这10个正方形分成面积相等的两部分,∴两边分别是5,∴三角形ABO面积是7,∴OB•AB=7,∴AB=,∴OC=AB=,由此可知直线l经过(,3),设直线方程为y=kx(k≠0),则3=k,解得k=∴直线l解析式为y=x.故答案为:y=x.【点评】此题考查的是用待定系数法求一次函数的解析式,了面积相等问题及正方形的性质,此题难度较大,解题的关键是作AB⊥y轴,作AC⊥x轴,根据题意即得到:直角三角形ABO,利用三角形的面积公式求出AB的长.16.(3分)已知,如图,矩形ABCD边AB=6,BC=8,再沿EF折叠,使D点与B 点重合,C点的对应点为G,将△BEF绕着点B顺时针旋转,旋转角为a(0°<a<180°),记旋转这程中的三角形为△BE′F′,在旋转过程中设直线E′F′与射钱EF、射线ED分别交于点M、N,当EN=MN时,则FM的长为.【分析】设AE=x=FC=FG,则BE=ED=8﹣x,由勾股定理得:AB2+AE2=BE2,即62+x2=(8﹣x)2,解得:x=,BE=,EF=,由折叠性质得:∠BEF=∠DEF=∠BFE,得出∠DEF=∠NME=∠F′,证得四边形BEMF′为平行四边形,由BE=BF′,证得平行四边形BEMF′为菱形,得出EM=BE=,即可得出结果.【解答】解:如图所示:由折叠性质得:设AE=x=FC=FG,则BE=ED=8﹣x,在Rt△ABE中,由勾股定理得:AB2+AE2=BE2,即62+x2=(8﹣x)2,解得:x=,∴BE=8﹣=,EF===,由折叠性质得:∠BEF=∠DEF=∠BFE,∵EN=NM,∴∠DEF=∠NME=∠F′,∴EM∥BF′,BE∥E′F′,∴四边形BEMF′为平行四边形,由旋转性质得:BF′=BF=8﹣x,∴BE=BF′,∴平行四边形BEMF′为菱形,∴EM=BE=,∴FM=EF﹣EM=﹣=.故答案为:.【点评】本题考查了旋转的性质、勾股定理、矩形的性质、菱形的判定、平行四边形的判定等知识;本题综合性强,有一定难度,证出四边形BEMF′是菱形是解决问题的关键.三、解答题(共8小题,共72分)17.(8分)计算:5÷﹣3+2.【分析】根据二次根式的除法和加减法可以解答本题.【解答】解:5÷﹣3+2=﹣+4=8.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.18.(8分)已知一次函数的图象过点(3,5)与点(﹣4,﹣9),求这个一次函数的解析式.【分析】一次函数解析式为y=kx+b,把两个已知点的坐标代入得到b、c的方程组,然后解方程组即可.【解答】解:设一次函数解析式为y=kx+b,根据题意得,解得,所以一次函数的解析式为y=2x﹣1.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.19.(8分)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.【分析】(1)根据AB=CD,BE=DF,利用HL即可证明.(2)只要证明四边形ABCD是平行四边形即可解决问题.【解答】证明:(1)∵BF=DE,∴BF﹣EF=DE﹣EF,即BE=DF.∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵AB=CD,BE=DF,∴Rt△ABE≌Rt△CDF(HL).(2)∵△ABE≌△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∴AO=CO.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,利用特殊四边形的性质解决问题.20.(8分)某校240名学生参加植树活动,要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵、B类5棵、C类6棵、D类7棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数和中位数;(3)估计这240名学生共植树多少棵?【分析】(1)根据抽查人数减去A、B、C类人数,求出D类的人数,然后补全统计图即可;(2)根据众数的定义解答,根据中位数的定义,找出第10人和第11人植树的平均棵树,然后解答即可;(3)求出20人植树的平均棵树,然后乘以总人数240计算即可得解.【解答】解:(1)D类的人数为:20﹣4﹣8﹣6=20﹣18=2人,补全统计图如图所示:;(2)由图可知,植树5棵的人数最多,是8人,所以,众数为5,按照植树的棵树从少到多排列,第10人与第11人都是植5棵数,所以,中位数是5;(3)==5.3(棵),240×5.3=1272(棵).答:估计这240名学生共植树1272棵.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(8分)如图,在平面直角坐标系xOy中,直线y=﹣x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式.【分析】(1)先根据A、B两点是直线与两坐标轴的交点求出两点坐标,再由勾股定理求出AB的长,由图形翻折变换的性质得出AC=AB,故可得出C点坐标;(2)设点D的坐标为D(0,y),由图形翻折变换的性质可知CD=BD,在Rt△OCD中由勾股定理可求出y的值,进而得出D点坐标,利用待定系数法即可求出直线CD的解析式.【解答】解:(1)∵直线y=﹣x+8与x轴,y轴分别交于点A,点B,∴A(6,0),B(0,8),在Rt△OAB中,∠AOB=90°,OA=6,OB=8,∴AB==10,∵△DAB沿直线AD折叠后的对应三角形为△DAC,∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上,∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0),由题意可知CD=BD,CD2=BD2,在Rt△OCD中,由勾股定理得162+y2=(8﹣y)2,解得y=﹣12.∴点D的坐标为D(0,﹣12),可设直线CD的解析式为y=kx﹣12(k≠0)∵点C(16,0)在直线y=kx﹣12上,∴16k﹣12=0,解得k=,∴直线CD的解析式为y=x﹣12.【点评】本题考查的是一次函数综合题,涉及到图形翻折变换的性质、勾股定理及用待定系数法求一次函数的解析式,难度适中.22.(10分)某经销商从市场得知如下信息:他计划用4万元资金一次性购进这两种品牌计算器共100台,设该经销商购进A 品牌计算器x台,这两种品牌计算器全部销售完后获得利润为y元.(1)求y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案?(3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元?【分析】(1)根据利润y=(A售价﹣A进价)×A手表的数量+(B售价﹣B进价)×B手表的数量,根据总资金不超过4万元得出x的取值范围,列式整理即可;(2)全部销售后利润不少于1.26万元.得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【解答】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000,其中700x+100(100﹣x)≤40000,得x≤50,即y=140x+6000,(0<x≤50);(2)令y≥12600,则140x+6000≥12600,∴x≥47.1,又∵x≤50,∴47.1≤x≤50∴经销商有以下三种进货方案:(3)∵y=140x+6000,140>0,∴y随x的增大而增大,∴x=50时,y取得最大值,又∵140×50+6000=13000,∴选择方案③进货时,经销商可获利最大,最大利润是13000元.【点评】本题主要考查了一次函数和一元一次不等式组的实际应用,难度适中,得出商场获得的利润y与购进空调x的函数关系式是解题的关键.在解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.23.(10分)如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F在DP的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.(1)求证:△AEG是等腰直角三角形;(2)求证:AG+CG=DG.【分析】(1)根据线段垂直平分线的定义得到AF=AD,根据等腰三角形的性质、角平分线的定义证明即可;(2)作CH⊥DP,交DP于H点,证明△ADE≌△DCH(AAS),得到CH=DE,DH=AE=EG,证明CG=GH,AG=DH,计算即可.【解答】(1)证明:∵DE=EF,AE⊥DP,∴AF=AD,∴∠AFD=∠ADF,∵∠ADF+∠DAE=∠PAE+∠DAE=90°,∴∠AFD=∠PAE,∵AG平分∠BAF,∴∠FAG=∠GAP.∵∠AFD+∠FAE=90°,∴∠AFD+∠PAE+∠FAP=90°∴2∠GAP+2∠PAE=90°,即∠GAE=45°,∴△AGE为等腰直角三角形;(2)证明:作CH⊥DP,交DP于H点,∴∠DHC=90°.∵AE⊥DP,∴∠AED=90°,∴∠AED=∠DHC.∵∠ADE+∠CDH=90°,∠CDH+∠DCH=90°,∴∠ADE=∠DCH.∵在△ADE和△DCH中,,∴△ADE≌△DCH(AAS),∴CH=DE,DH=AE=EG.∴EH+EG=EH+HD,即GH=ED,∴GH=CH.∴CG=GH.∵AG=EG,∴AG=DH,∴CG+AG=GH+HD,∴CG+AG=(GH+HD),即CG+AG=DG.【点评】本题考查的是正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质,掌握正方形的性质、全等三角形的判定定理和性质定理是解题的关键.24.(12分)已知:如图,平面直角坐标系中,A(0,4),B(0,2),点C是x 轴上一点,点D为OC的中点.(1)求证:BD∥AC;(2)若点C在x轴正半轴上,且BD与AC的距离等于1,求点C的坐标;(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.【分析】(1)由A与B的坐标求出OA与OB的长,进而得到B为OA的中点,而D为OC的中点,利用中位线定理即可得证;(2)如图1,作BF⊥AC于点F,取AB的中点G,确定出G坐标,由平行线间的距离相等求出BF的长,在直角三角形ABF中,利用斜边上的中线等于斜边的一半求出FG的长,进而确定出三角形BFG为等边三角形,即∠BAC=30°,设OC=x,则有AC=2x,利用勾股定理表示出OA,根据OA的长求出x的值,即可确定出C 坐标;(3)如图2,当四边形ABDE为平行四边形时,AB∥DE,进而得到DE垂直于OC,再由D为OC中点,得到OE=CE,再由OE垂直于AC,得到三角形AOC为等腰直角三角形,求出OC的长,确定出C坐标,设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,即可确定出AC解析式.【解答】解:(1)∵A(0,4),B(0,2),∴OA=4,OB=2,点B为线段OA的中点,又点D为OC的中点,即BD为△AOC的中位线,∴BD∥AC;(2)如图1,作BF⊥AC于点F,取AB的中点G,则G(0,3),∵BD∥AC,BD与AC的距离等于1,∴BF=1,∵在Rt△ABF中,∠AFB=90°,AB=2,点G为AB的中点,∴FG=BG=AB=1,∴△BFG是等边三角形,∠ABF=60°.∴∠BAC=30°,设OC=x,则AC=2x,根据勾股定理得:OA==x,∵OA=4,∴x=∵点C在x轴的正半轴上,∴点C的坐标为(,0);(3)如图2,当四边形ABDE为平行四边形时,AB∥DE,∴DE⊥OC,∵点D为OC的中点,∴OE=EC,∵OE⊥AC,∴∠OCA=45°,∴OC=OA=4,∵点C在x轴的正半轴上,∴点C的坐标为(4,0),设直线AC的解析式为y=kx+b(k≠0).将A(0,4),C(4,0)代入AC的解析式得:解得:∴直线AC的解析式为y=﹣x+4.【点评】此题属于一次函数综合题,涉及的知识有:三角形中位线定理,坐标与图形性质,待定系数法求一次函数解析式,平行四边形的性质,等边三角形的性质,勾股定理,含30度直角三角形的性质,熟练掌握定理及性质是解本题的关键.。

相关文档
最新文档