第18讲5_4.pdf
第18讲 化学反应速率(讲)-2023年高考化学一轮复习讲练测(解析版)

第18讲化学反应速率1.了解化学反应速率的概念和定量表示方法。
2.了解反应活化能的概念,了解催化剂的重要作用。
3.理解外界条件(浓度、温度、压强、催化剂等)对反应速率的影响,能用相关理论解释其一般规律。
4.了解化学反应速率的调控在生活、生产和科学研究领域中的重要作用。
【核心素养分析】变化观念与平衡思想:能认识化学反应速率是变化的,知道化学反应速率与外界条件有关,并遵循一定规律;能多角度。
动态地分析化学反应速率,运用化学反应原理解决实际问题。
证据推理与模型认知:建立观点、结论和证据之间的逻辑关系,知道可以通过分析、推理等方法认识化学反应速率的本质特征及其相互关系,建立模型。
能运用模型解释化学现象,揭示现象的本质和规律。
科学探究与创新意识:能发现和提出有关化学反应速的有探究价值的问题;通过控制变量来探究影响化学反应速率的外界条件。
知识点一化学反应速率的概念及计算1.化学反应速率2.化学反应速率计算的万能方法——三段式法对于反应m A(g)+n B(g)p C(g)+q D(g),起始时A的浓度为a mol·L-1,B的浓度为b mol·L-1,反应进行至t1s时,A消耗了x mol·L-1,则化学反应速率可计算如下:m A(g)+n B(g)p C(g)+q D(g)起始/(mol·L-1)a b00转化/(mol·L-1)x nxmpxmqxmt1/(mol·L-1)a-x b-nxm pxmqxm则:v(A)=xt1mol·L-1·s-1,v(B)=nxmt1mol·L-1·s-1,v(C)=pxmt1mol·L-1·s-1,v(D)=qxmt1mol·L-1·s-1。
3.化学反应速率与化学计量数的关系对于已知反应m A(g)+n B(g)===p C(g)+q D(g),其化学反应速率可用不同的反应物或生成物来表示,当单位相同时,化学反应速率的数值之比等于化学计量数之比,即v(A)∶v(B)∶v(C)∶v(D)=m∶n∶p∶q。
平新乔微观经济学第18讲

者绿色上凸区域加黄色缺角矩形区域面积);
(张五常 佃农理论 商务印书馆 第三章)
而事实上,当以上的每项契约的达成都是需要交易成本的,比如商定和执行合约条款 的费用、对条款中的数值标准的测定、以及双方在商定之前收集信息所需要的费用、在合 约中的产权的全部或者是部分转让、以及在生产中各种投入要素的相互协调所要的花费成 本等等;
3、生产总成本为企业所有员工(人数×每人工资)的工资与每单位产量的平均成本:
18-10-6 12/13/2005 9:48:54 PM
第十八讲 企业的性质、边界与产权
m
∑ C(Q) = si−1 ⋅ (β m−iwO ) + γ ⋅ Q i =1
m
∑ C(Q) = wO ⋅ si−1 ⋅ β m−i + γ ⋅ Q i =1
此时,无论地主是完全自己耕作还是完全给佃农耕作,或者两者结合,其结果都是会得到蓝色半
凸区域的地租总额,这一地租额等于定额租约条件下的地租额;
而当地主实行分成合约时,佃农的工资总额为绿色半凸区域加上绿色矩形区域,而地主的地租总
额为蓝色双凸区域,因为此时的佃农工资总额超过了他从事其他的经济活动的所得;在“均衡”
其中( β > 1; 1 ≤ i ≤ m );
β m−1 ⋅ wO β m−2 ⋅ wO β m−i ⋅ wO
•
•
... • ...
•
• ... • ... • • ... • ... • • ... • ... •
1
i
s1
i
s1
i
s
... • ...
... • ...
... • ...
1
1
2
s
i
2021年初级会计师-第18讲_大题精析·消费税(2)

消费税二、小汽车4【大题 ·不定项选择题】甲公司为增值税一般纳税人,主要从事小汽车的制造和销售业务。
20207年 月有关经营情况如下:1123800033900( )销售 辆定制的自产小汽车,取得含增值税价款 元,另收取手续费 元。
21010/( )将 辆自产小汽车对外投资,小汽车生产成本 万元 辆,甲公司同类小汽车不含增18/15/12/值税最高销售价格 万元 辆、平均销售价格 万元 辆、最低销售价格 万元 辆。
( )采取预收货款方式销售给 店一批自产小汽车, 日签订合同, 日收到预收款, 34S61118 25日发出小汽车, 日开具发票。
( )生产中轻型商用客车 辆,其中 辆用于销售、 辆用于广告、 辆用于本公司管4180168534理部门、 辆用于赞助。
13%5%已知:销售小汽车增值税税率为 ,消费税税率为 。
要求:根据上述资料,不考虑其他因素,分析回答下列小题。
1.计算甲公司当月销售定制的自产小汽车应缴纳消费税税额的下列算式中,正确的是( )。
1+13%×5%A.238000÷( )B.238000×5%238000+33900×5%C.( )238000+33900÷1+13%×5%D.( ) ( )【答案】 D1【解析】( )销售货物同时收取的手续费属于价外费用,不论增值税还是消费税,价外费用AB2C均应依法计税,选项 错误;( )价外费用属于含税收入,应当价税分离,选项 错误,选D项 正确。
2.计算甲公司当月以自产小汽车对外投资应缴纳消费税税额的下列算式中,正确的是( )。
A.10×18×5%B.10×15×5%C.10×12×5%D.10×10×5%【答案】 A【解析】纳税人用于换取生产资料和消费资料、投资入股和抵偿债务等方面的应税消费品,应“”18/当以纳税人同类应税消费品的 最高 销售价格( 万元 辆)作为计税依据计算消费税。
第18讲流量测井方法

(2)速度剖面校正 V Cv Va , Cv为速度校正系数
(3)计算体积流量
q C p V , C p为管子系数 C p 1440 dc2 / 4 360 dc2 , dc为管道直径
2.涡轮流量计测井 导流式(集流)涡轮流量计 仪器特点:带机械导流装置,测井时仪器封隔 流道,迫使井内流体全部或部分混合,加速流过 一定内径的导流喉道,作用于涡轮传感器。
目前应用最广泛的是涡轮流量计与核流量计;
其次是放射示踪测井和氧活化测井,电磁流量计
和热导流量计只是在特殊情况下才使用。
流量测井的特点是通过测量与流动速度有关的 物理量,间接求出井内流体的流量或相对流量。 要精确的测量的流量,必须明确测井信息与流 量之间的理论或实验关系。
2.涡轮流量计测井
涡轮流量计的传感器由装
2.涡轮流量计测井 当涡轮转速稳定时,得到状态方程:
Mi 1 1 V f tg 3 r 2 f V f r r
r—叶轮的平均半径;
a—叶片倾角;
r—叶片厚度; f—流体体积密度; Vf—流体沿叶轮旋转轴方向的流速。
2.涡轮流量计测井
涡轮流量计的频率响应方程:
量流体由间隙流过,所
求的流量误差较大。
伞式流量计
2.涡轮流量计测井 胀式流量计:在伞式流
量计的金属伞的外面又增
加了一个胀式密封圈,克
服了封隔器的易损和密封
问题,能够用于气流和液
流,对于多层油气层的井
进行测试特别有用,能够 准确求取流量。
胀式流量计
2.涡轮流量计测井 涡轮流量计是目前获取油水井内流量剖面的主 要手段。 涡轮流量计的种类较多,需要根据井的类型和 流动条件,选取合适的仪器进行测量。 注入井:一般选用敞流式流量计测井。 生产井:流量较高的井优先选择敞流式流量计 测井;流量较低的井则选择导流式流量计测井; 特别重要的井可以同时选用两种仪器。 对于抽油井,需要选用小直径的测井仪器。
2023高考数学一轮复习第18讲 导数中的同构系列(教师版)

第19讲导数中同构与放缩的应用思维导图-----知识梳理同构法是将不同的代数式(或不等式、方程)通过变形,转化为形式结构相同或者相近的式子,通过整体思想或换元等将问题转化的方法,这体现了转化思想.此方法常用于求解具有对数、指数等混合式子结构的等式或不等式问题.当然,用同构法解题,除了要有同构法的思想意识外,对观察能力,对代数式的变形能力的要求也是比较高的,脑洞(常见考法):浮光掠影,抑或醍醐灌顶考法一部分同构携手放缩法(同构放缩需有方,切放同构一起上)思维导图-----方法梳理在学习指对数的运算时,曾经提到过两个这样的恒等式:(1)当a >0且a ≠1时,有log a x xa ,(2)当a >0且a ≠1时,有log xax a再结合指数与对数运算法则,可以得到下述结论(其中x >0)(“e x ”三兄弟与“ln x ”三姐妹)(3)ln xx xxee,ln ln ()x x x xe(4)ln xx xxee,ln lnx x x xe(5)ln x x xxee,ln lnxxx x e再结合常用的切线不等式:1x x e,e x x e,l n 1x x ,ln xx e等,可以得到更多的结论(6)ln ln 1xx xxx x ee,ln ln ()e 1xxx x x x e.ln (ln )xx xx x x eee,1eln ln ()xxx x x x xx e=ee.(7)ln ln 1xx xx x xee,ln ln x x x x x x ee-1,ln (ln )x x xx x x eee,1ln ln x x x x x xee(8)ln ln 1x x xxx x ee,ln lnx x xx x x-1ee,ln (ln )x xx x x x eee,1ln ln x x x xx x ee围观(典型例题):一叶障目,抑或胸有成竹例1.已知f(x)=ln x +x −x ex+1,则函数()f x 的最大值为________.解析1ln 1()ln ln ln (ln 2)2x x x f x x x x xx xx x xee.(当且仅当x +ln x +1=0取等号).例2.函数ln 1()xxf x xe的最小值是________.解析ln ln 1ln 1ln 1ln 1ln 1()1xx xxxx x x x x x f x xx x xeee(当且仅当x +ln x =0取等号).例3.函数22ln ()1xx xf x xe的最小值是________.解析22ln 2ln 2ln 2ln 12ln ()1111xx xx x x x x xf x x x xee(当且仅当x +2ln x =0取等号).例4.不等式ln 10xxa x x e恒成立,则实数a 的最大值是________.解析m ineln 1eln 1ln 10()xxx x x x x x a x x a xxe恒成立ln eln 1x xx xln 1ln 11xx x x,当且仅当x +ln x =0等号成立.例5.不等式x ex−a(x +ln x +1)≥0恒成立,则正数a 的取值范围是________.解析ln (ln 1)0(ln 1)0(ln 1)xx x x x a x x x a x x a x x eee,当x +ln x +1≤0时,原不等式恒成立,当x +ln x +1>0时,ln ln 1x xa x x e,由于ln ln 1=1ln 1ln 1x x x x x x x x e,当且仅当x +ln x =1等号成立,所以a 1,故0a <1.例6.已知函数()ln 1(1)b xf x x a x x x e,其中b >0,若()0f x 恒成立,则实数a 与b 的大小关系是________.解析ln ln 1()0ln 11ln ln x b xbxx b xx f x x a x x x a x a xeee,由于ln 1ln 11ln ln x b xx xb x x b xxe,当且仅当x +b ln x =0等号成立,所以ab.例7.已知函数()ln 1xf x a x e,若()0f x 恒成立,则实数a 的取值范围是________.解析ln 1ln 10xxxa x aee,由于ln x +1≤x ,e x ≥e x ,两者都是当且仅当x =1等号成立,则ln 11e e xxx xe,所以a 1e.例8.已知不等式1ln xk x x e,对任意的正数x 恒成立,则实数k 的取值范围是________.解析elne 1ln xxxk x x k xxe,由于e x≥e x ,lne x ≤x ,两者都是当且仅当x =1等号成立,所以xxee,lne 1xx则elne 1xxxxe,所以k ≤e-1.例9.已知不等式ln 10a x a x xx e,对任意的正数x 恒成立,则实数a 的取值范围是________.解析ln ln 1ln 1ln 1ln 10a xa x xx a x x a x x a x x a x x ee,当且仅当-a x +ln x =0,即ln xa x时等号成立,由ln xa x有解,易得1ae.例10.已知函数()(ln )xf x x a x x e有两个零点,则实数a 的取值范围是________.解析f(x)=x ex−a(x +ln x)=ex+ln x−a(x +ln x),令ln ,t x x t R ,显然该函数单调递增,即e 0ta t 有两个根,即eta t有两个根,令e()tg t t,()g t 在(-∞,1)单调递减,在(1,+∞)单调递增.m i n ()(1)e g t g ,e a .例11.(2020届太原二模)已知函数()ln 1f x x a x .(1)若函数()f x 有两个零点,求实数a 的取值范围;(2)若()e xf x x 恒成立,求实数a 的取值范围.解析(1)()f x 定义域是(0,) ,1()f x a x,①当0a 时,()0f x ,()f x 在定义域上单调递增,不可能有两个零点;②当0a 时,由1()0f x a x,得10x a,当1(0,)x a时,()0f x ,()f x 在定义域上单调递增,当1(,+)x a时,()0f x ,()f x 在定义域上单调递减,所以当1xa时,()f x 取得极大值.当0x 时,()f x ,当x 时,()f x ,因为()f x 有两个零点,所以1()0f a,解得10a .(2)要使()e xf x x 恒成立,只要ln x +ax +1e xx 恒成立,只要eln 1xx x a x恒成立,令eln 1()xx x g x x,则eln 1xx x xln eln 1ln 1ln 11x xx xx x xx,当且仅当时取等号.所以()e xf x x 恒成立,实数a 的取值范围为1a .套路(举一反三):手足无措,抑或从容不迫1.函数f(x)=x ex−x−ln x 的最小值为________.解析f(x)=x ex −x−ln x =ex+ln x−x−ln x ≥x +ln x +1−x−ln x =1,当且仅当x +ln x =0等号成立.2.函数ln ()1xx xf x x e的最小值为________.解析ln ln ln ln 1ln ()1111xx xx x x x x xf x x x xee,当且仅当x +ln x =0等号成立.3.函数()(ln 1)x f x x x x e的最大值是________.解析ln ln 1ln 1()(ln 1)x x xxx xxx x x x f x x x x eeeeeln 1(ln 1)0x x x x x e(当且仅当x +ln x =0取等号).4.已知不等式x ex−a(x +1)≥ln x ,对任意正数x 恒成立,则实数a 的取值范围是________.解析ln (1)ln 1xxx x x a x x a xee,由于ln ln ln 11x x xx x x x x eeln 1ln 11x x xx ,所以a 1.5.已知函数()(ln 1)xf x x a x x ee,若()0f x 恒成立,则实数a 的取值范围是________.解析f(x)≥0⇔x ex +e≥a(x +ln x +1)⇔ex+ln x+e≥a(x +ln x +1),当x +ln x +1≤0时,原不等式恒成立,当x +ln x +1>0时,ln ln 1x xa x x ee,由于ln (ln )=ln 1ln 1x x x x x x x x eeeee,当且仅当x +ln x =1等号成立,所以a ≤e,故0<a ≤e.6.已知函数f(x)=a e2x−ln x−1,若()0f x 恒成立,则实数a 的取值范围是________.解析f(x)=a e2x−ln x−1⇔a ≥ln x+1e2x,由于ln x +1≤x ,e 2x≥2e x ,两者都是当且仅当x =1等号成立,则2ln 112e 2ex xx xe,所以2a1e.7.已知a ,b 分别满足ae a=e 2,b(ln b−1)=e 3,则ab =________.解析同构化处理,并利用函数的单调性.222ln 232e e e e e e e ln e (ln 1)eln e e e e ea a a ba a ab b b b b ,ln e e ln e e b a b a ,令()e xf x x ,显然该函数单调递增,即()(ln)eb f a f,即ln eba,则ab =e 3.8.已知x 0是函数f(x)=x 2e x−2+ln x−2的零点,则e2−x 0+ln x 0=________.解析22222222eeeeeln 2e2ln e lnln ln (ln ())ln ()x x xx x xx x x x xxxx=0,所以2eln ()x x,即2−ln x =x ,或e2−x =x ,则e 2−x 0+ln x 0=x 0+ln x 0=2.考点二整体同构携手脱衣法在成立或恒成立命题中,很有一部分题是命题者利用函数单调性构造出来的,如果我们能找到这个函数模型(即不等式两边对应的同一个函数),无疑大大加快解决问题的速度,找到这个函数模型的方法,我们就称为整体同构法.如,若F (x )≥0能等价变形为f [g (x )]≥f [h (x )],然后利用f (x )的单调性,如递增,再转化为g (x )≥h (x ),这种方法我们就可以称为同构不等式(等号成立时,称为同构方程),简称同构法.1.地位同等同构(主要针对双变量,合二为一泰山移)(1)f x 1 -f x 2x 1-x 2>k (x 1<x 2) f (x 1)-f (x 2)<k x 1-k x 2 f (x 1)-k x 1<f (x 2)-k x 2 y =f (x )-k x 为增函数;(2)f x 1 -f x 2 x 1-x 2<k x 1x 2(x 1<x 2) f (x 1)-f (x 2)>k (x 1-x 2)x 1x 2=k x 2-k x 1 f (x 1)+k x 1>f (x 2)+k x 2 y =f (x )+k x为减函数;含有地位同等的两个变x 1,x 2或p ,q 等的不等式,进行“尘化尘,土化土”式的整理,是一种常见变形,如果整理(即同构)后不等式两边具有结构的一致性,往往暗示单调性(需要预先设定两个变量的大小)2.指对跨阶同构(主要针对单变量,左同右同取对数)(1)积型:ln e(ln )e ()e eln e ln eln ()ln ln ln ln (ln )()ln abx aaaa b f x x a b b b bf x x xaa b b f x x x构造函数三种同构方式构造函数构造函数同左同右取对如,322222ln ln eln ln m mm mxxxxm xxme xxxxe xe,后面的转化同(1)说明;在对“积型”进行同构时,取对数是最快捷的,同构出的函数,其单调性一看便知.(2)商型:ln eee()ln ee()ln ln eln ln ln ln ln (ln )()ln abxaaaf x abx bbxf x abbxaa b b f x x x构造函数三种同构方式构造函数构造函数同左同右取对(3)和差:ln e e ln ()e eln eln e ln ()ln a b x aaa ab f x xa b b b b f x x x构造函数两种同构方式构造函数同左同右如;ln (1)ln (1)1ln (1)ln (1)a x a xx a x x x a x x a x x eee.3.无中生有同构(主要针对非上型,凑好形式是关键)(1)eln e ln 21a xx a x a x a x x x 同乘(无中生有),后面的转化同();(2)ln ln 1e ln ()eln (1)1e ln ln (1)1e +ln xxx a x x aa a x a a a x a x x a a同加(无中生有)ln (1)ln (1)1ln (1)ln ln (1)x xx x xa xe+;(3)a x >log a x⇔exln a>ln x ln a⇔(xln a)e xln a>xln x ,后面的转化同2(1).围观(典型例题):一叶障目,抑或胸有成竹例1.若1201x x ,则()A .2121ee ln ln x x x x B .2121ee ln ln x x x x C .1221ee x xx x D .1221ee x xx x 解析设()e ln xf x x ,则1()e xf x x,故()f x 在(0,1)上有一个极值点,即()f x 在(0,1)上不是单调函数,无法判断1()f x 与2()f x 的大小,故A 、B 错;构造函数()xeg x x,2(1)()xe xg x x,故()g x 在(0,1)上单调递减,所以12g x g x,选C .例2.若120x x a,都有211212ln ln x x x x x x 成立,则a 的最大值为()A .21B .1C .eD .2e解析121221ln ln 11x x x x x x,即121122ln ln 11x x x x x x,令ln 1()xf x xx,则()f x 在(0,)a 上为增函数,()0f x 在(0,)a 上恒成立,2ln ()xf x x,令()0f x ,解得x =1,()f x 在(0,1)上为增函数,在(1,) 上为减函数,1a,a 的最大值为1,选B .例3.已知f(x)=a ln (x +1)−x 2,在区间(1,2)内任取两实数p ,q ,且p ≠q ,不等式(1)(1)1f pf q p q恒成立,则实数a 的取值范围为________.解析①当p >q 时,(1)(1)(1)(1)f pf qp q即(1)(1)(1)(1)f pp f qq,令()(1)(1)g x f xx,则(1)(1)g p g q ,()g x 在(1,2)递减,即2()ln (2)(1)(1)g x a x x x ,在(1,2)递减,()0x g在(1,2)上恒成立,()2(1)102a x x xg在上恒成立,2276a x x 在(1,2)上恒成立,∴a ≤(2x 2+7x +6)min .②当p <q 时,同理可得出28a ,综上所述(,15][28,)a 例4.对下列不等式或方程进行同构变形,并写出相应的一个同构函数(1)log 2x −k ⋅2kx≥0解析log 2x−k ⋅2kx≥0⇔xlog 2x ≥kx ⋅2kx⇔(log 2x)⋅2log 2x≥kx ⋅2kx,()2x f x x .(2)x 2ln x −m em x≥0解析x 2ln x−m emx≥0⇔xln x ≥m x em x ⇔ln x +ln (ln x)≥m x +ln mx,f(x)=x +ln x .(3)a(eax+1)≥2(x +1x)ln x 解析22221(1)2()ln 2ln 2ln ln ln a xa x a xa x xa x a x x x x a x a x x x x xeee22ln 2ln ln ()a x xx a x a x x x f x x xee,e(4)x +a ln x +e−x≥x a(x >1)解析x +aln x +e−x≥x a ⇔x +e−x≥x a −ln x a ⇔e−x −ln e−x≥x a −ln x a,()ln f x x x .(5)x 2ex+ln x =0解析2ln 1111ln 0lnln lnxx x x x xx x x x xxxxxeeeee,()ln f x x x .例5.已知不等式log (0,1)x a a x aa,对任意正数x 恒成立,则实数a 的取值范围是________.解析ln ln ln log e (ln )e ln ln xx a x a a x ax x a x x aln ln ln ln (ln )e (ln )e ()e (1)e ln eln ()ln (2)ln ln (ln )ln ln (ln )()ln (3)x a x x x ax ax a x f x x x x f x x x x a x a x x f x x x(三种模式,只要写一种),由(3)得,xln a >ln x ,即ln ln xax,由导数法可得1ln ae,从而所以a >e 1e .例6.已知函数()ln (1)33f x m x x ,若不等式()3e x f x m x 在(0,) 上恒成立,则实数m 的取值范围是()A .0≤m ≤3B .m ≥3C .m ≤3D .m ≤0解析mln (x +1)−3(x +1)>mx−3e x=mln e x−3e x(同构),令()ln 3g x m x x ,由(1)(e )x g x g ,且11e x x ,知()g x 在(1,) 为减函数,所以()3033m g x m x m x.故选C .例7.对任意x >0,不等式2a e 2x−ln x +ln a ≥0恒成立,则实数a 的最小值为________.解析2222eln ln 02e ln2e ln2ln 2ln ln (ln)xx x x x x x x a x a a x x x aaa aa(积型同构取对数),令()ln f x x x ,则()f x 为增函数,由(2)(ln)x f x f a,得2lnx xa,即2x xae恒成立,令2()x xg xe,则212()xx g xe,易得m a x 11()()22e g x g ,所以实数a 的最小值为12e.例8.已知函数f(x)=ex−a ln (ax−a)−a(a >0),若关于x 的不等式()0f x 恒成立,则实数a 的取值范围是()A .2(0,e ]B .2(0,e )C .2[1,e ]D .2(1,e ]解析f(x)=ex −aln (ax−a)−a >0⇔1aex>ln a(x−1)−1⇔ex−ln a −ln a >ln (x−1)−1⇔ex−ln a +x−ln a >eln (x−1)+ln (x−1)(和差型同构),令g(x)=e x+x ,显然()g x 为增函数,则原命题等价于g(x−ln a)>g(ln (x−1))⇔x−ln a >ln (x−1)⇔ln a <x−ln (x−1),由于ln (1)(2)x x x x ,所以ln a <2,即得0<a <e 2.例9.对任意0x,不等式1(e 1)2()ln a xa x x x恒成立,则实数a 的最小值为________.解析22221(e1)2()ln (e 1)(1)ln (e 1)ln e (1)ln a xa x a x a x a x xa x x x x x x(积型同构),令()(1)ln f x x x ,则1()ln xf x x x,22111()=xf x xxx,易知()f x 在(0,1)上递减,在(1,)上递增,所以()(1)20f x f ,所以()f x 在(0,) 上单调递增,则22(e 1)ln e(1)ln (e )a xa xa xx x f 222ln ()e 2ln a x xf x x a x x a x,由导数法易证2ln 2exx,所以2ea.例10.已知不等式1ln ea xx a x x 对任意的(1,)x 恒成立,则实数a 的最小值为()A .eB .e 2C .eD .2e解析11ln ln ln e ln e ln eea a a a x x a a xxxa x x x x a x x x x x,令()ln f x x x ,则1()xf x x,易知()f x 在(0,1)上递减,在(1,) 上递增,所以(e)()xaf f x,(1,)x ,1e (0,)e x.根据选项只讨论a <0的情况,当a <0时,(0,1)a x ,∴e−x≤x a,ln xa x.令()ln xh x x,则21ln ()(ln )xh x x,所以()h x 在(1,e )上递增,在(e ,) 上递减,则m a x ()(e )e h x h ,即e a ,故选C .例11.已知函数ln (1)()xf x x.(1)判断()f x 在(0,) 上的单调性;(2)若x >0,证明:(e x−1)ln (x +1)>x 2.解析(1)2ln (1)1()xx xf x x,令()ln (1)1x g x x x,2()0(1)xg x x,()g x 在(0,) 上单调递减,()(0)0g x g ,即()0f x ,()f x 在(0,) 上单调递减.(2)要证2(e 1)ln (1)x x x ,即证:2ln (1)e1xx x即证:ln (1)e1xxx x即证:ln (1)ln (e11)e 1xxxx,令ln (1)()xh x x,即证:ℎ(x)>ℎ(e x−1),由(1),()h x 在(0,) 上单调递减,即证:e 1x x .令s(x)=e x−x−1,s '(x)=e x−1>0,()s x 在(0,) 上单调递增,∴s(x)>s(0)=0,∴e x −x−1>0,即x <e x−1.例12.(2020·新高考Ⅰ)已知函数f (x )=a e x -1-ln x +ln a .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积;(2)若f (x )≥1,求a 的取值范围.解析(1)当a =e 时,f (x )=e x -ln x +1,∴f ′(x )=e x -1x ,∴f ′(1)=e -1.∵f (1)=e +1,∴切点坐标为(1,1+e ),∴曲线y =f (x )在点(1,f (1))处的切线方程为y -e -1=(e -1)·(x -1),即y =(e -1)x +2,∴切线与两坐标轴的交点坐标分别为(0,2),-2e -1,0(),∴所求三角形面积为12×2×-2e -1||=2e -1.(2)解法一:∵f (x )=a e x -1-ln x +ln a ,∴f ′(x )=a e x -1-1x,且a >0.设g (x )=f ′(x ),则g ′(x )=a e x -1+1x 2>0,∴g (x )在(0,+∞)上单调递增,即f ′(x )在(0,+∞)上单调递增,当a =1时,f ′(1)=0,则f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴f (x )min =f (1)=1,∴f (x )≥1成立;当a >1时,1a <1,∴11e a<1,∴f ′1a()f ′(1)=11(e 1)(1)0a a a ,∴存在唯一x 0>0,使得f ′(x 0)=a e x 0-1-1x 0=0,且当x ∈(0,x 0)时f ′(x )<0,当x ∈(x 0,+∞)时f ′(x )>0,∴a e x 0-1=1x 0,∴ln a +x 0-1=-ln x 0,因此f (x )min =f (x 0)=a e x 0-1-ln x 0+ln a =1x 0+ln a +x 0-1+ln a ≥2ln a -1+21x 0·x 0=2ln a +1>1,∴f (x )>1,∴f (x )≥1恒成立;当0<a <1时,f (1)=a +ln a <a <1,∴f (1)<1,f (x )≥1不恒成立.综上所述,a 的取值范围是[1,+∞).解法二:f (x )=a e x -1-ln x +ln a =e ln a +x -1-ln x +ln a ≥1等价于e ln a +x -1+ln a +x -1≥ln x +x =e ln x +ln x ,令g (x )=e x +x ,上述不等式等价于g (ln a +x -1)≥g (ln x ),显然g (x )为单调递增函数,∴又等价于ln a +x -1≥ln x ,即ln a ≥ln x -x +1,令h (x )=ln x -x +1,则h ′(x )=1x -1=1-xx,在(0,1)上h ′(x )>0,h (x )单调递增;在(1,+∞)上h ′(x )<0,h (x )单调递减,∴h (x )ma x =h (1)=0,ln a ≥0,即a ≥1,∴a 的取值范围是[1,+∞).套路(举一反三):手足无措,抑或从容不迫1.已知函数()ln()xf x m x m R e,若对任意正数x 1,x 2,当x 1>x 2时,都有1212()()f x f x x x成立,则实数m 的取值范围是________.解析由1212()()f x f x x x得,1122()()f x x f x x,令()()g x f x x,12()()g x g x ,()g x 在(0,) 单调递增,又()()xg x f x x m x xe,()10xm g x xe,在(0,) 上恒成立,即(1e)xm x,令()(1e )x h x x ,则()e (1)10x h x x ,()h x 在(0,) 单调递减,m a x ()0h x (但取不到). m ≥0.2.已知函数()xf x a x xe,(0,)x ,当x 2>x 1时,不等式1221()()0f x f x x x恒成立,则实数a的取值范围是()A .(,e ]B .(,e )C .e (,)2D .e (,]2解析由1221()()0f x f x x x,得1122()()x f x x f x ,令()()g x x f x ,则()g x 在(0,) 上单调递增,又2()xg x a x e,()20xg x a x e在(0,) 上恒成立,即e2xa x,令e()2xh x x,则2e (1)()2xx h x x,令()0h x ,则()h x 在(0,1)单调递减,在(1,) 单调递增,m i n e ()(1)2h x h ,选D .3.对不等式21ln 0xxe进行同构变形,并写出相应的一个同构函数.解析2222ln 11ln0ln 2ln 2(ln )2xxx x xxxx x x x xeeeee4.对方程2ln 0xx x e进行同构变形,并写出相应的一个同构函数.解析2ln 0ln ln ln x x x xx x x x x x x -eeee.5.对不等式ln (1)2(1)2xa x x a x e进行同构变形,并写出相应的一个同构函数.解析ln (1)2(1)2ln (1)2(1)ln 2x x xa xx a x a x x a eee6.设实数0 ,若对任意的(0,)x ,不等式ln 0xxe恒成立,则 的最小值为________.解析ln ln 0ln 0ln ln xx x xxx x x x x x xeeee,令()e xf x x ,易知()f x 在(0,) 上递增,所以()(ln )f x f x,ln x x ,ln xx.令ln ()xh x x,则21ln ()xh x x,所以()h x 在(0,e )上递增,在(e ,) 上递减,则m a x 1()(e )eh x h,即1e.7.已知函数1()ln (0)x f x a a x a a e,若关于x 的不等式()0f x 恒成立,则实数a 的取值范围是________.解析1111()ln 0ln (ln 1)x x x x f x a a x a a a x a a a x x eeee(lna x 1)a xeln 1(ln 1)e a x a x,ln 1e >(ln 1)e xa x x a x,令()e x g x x ,显然()g x 为增函数,则原命题等价于()g x (ln 1)ln 1ln ln 1g a xx a x a x x ,令()ln 1h x x x ,则1()xh x x,所以()h x 在(0,1)上递减,在(1,) 上递增,则m i n ()(1)2h x h ,所以ln 2a ,即得20e a .8.已知对任意0x,不等式1(e 1)(1)ln 0k x k xx恒成立,则实数k 的取值范围为________.解析1(e1)(1)ln 0(e 1)(1)ln e ln k xk x k x k xk x x x k x k x x x x x,即ln e ln e ln k x x k x k x x x .令()e xf x x x ,则()f x 在(0,) 上递增,所以()(ln )f k x f x,所以ln k x x ,则ln xk x,由导数法易证ln 1exx,所以1ek.9.已知0a ,不等式1ln 0a xxa x e,对任意的实数1x恒成立,则实数a 的最小值是()A .12eB .1eC .eD .2e解析1ln ln 0ln a x xaaaa xxa x x x xxee,即ln ln e axa x xx e,令()e xf x x ,则()f x 在(1,) 单调递增,即()(ln )af x f x,即ln a x x ,ln xa x.令()ln xg x x,由导数法知m i n ()(e )e g x g ,e a .故选C .10.已知函数13()2ln ()m xf x xxm x e,当e x时,()0f x 恒成立,则实数m 的取值范围为()A .(,4e ]B .(,3e ]C .(,2e ]D .3e (,]2解析1113222()02ln ()2ln (1)ln (1)m m mxxxm m f x xxm x xxx xxxeee,即12ln ln e(1)mxx m xxe,令()e x g x x ,则()g x 在[e ,) 单调递增,即2(ln )(1)m g x g x,当0m 时,12ln ln e(1)mxx m xxe恒成立,当0m 时,2ln 12ln m x m x x x x,令()2ln h x x x x ,则()2ln 30h x x ,()h x 在[e ,) 上单调递增,m i n ()(e )3e h x h .故选B .考点三分离含参式同构思维导图-----方法梳理参变分离法是将不等式变形成一个一端是f (a ),另一端是变量表达式g (x )的不等式后,若f (a )≥g (x )在x ∈D 上恒成立,则f (a )≥g (x )ma x ;若f (a )≤g (x )在x ∈D 上恒成立,则f (a )≤g (x )min .特别地,经常将不等式变形成一个一端是参数a ,另一端是变量表达式g (x )的不等式后,若a ≥g (x )在x ∈D 上恒成立,则a ≥g (x )ma x ;若a ≤g (x )在x ∈D 上恒成立,则a ≤g (x )min .利用分离参数法来确定不等式f (x ,a )≥0(x ∈D ,a 为实参数)恒成立问题中参数取值范围的基本步骤:(1)将参数与变量分离,化为f 1(a )≥f 2(x )或f 1(a )≤f 2(x )的形式.(2)求f 2(x )在x ∈D 时的最大值或最小值.(3)解不等式f 1(a )≥f 2(x )ma x 或f 1(a )≤f 2(x )min ,得到a 的取值范围.围观(典型例题):一叶障目,抑或胸有成竹例1.(2020·新高考Ⅰ)已知函数f (x )=a e x -1-ln x +ln a .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积;(2)若f (x )≥1,求a 的取值范围.解析(1)当a =e 时,f (x )=e x -ln x +1,∴f ′(x )=e x -1x ,∴f ′(1)=e -1.∵f (1)=e +1,∴切点坐标为(1,1+e ),∴曲线y =f (x )在点(1,f (1))处的切线方程为y -e -1=(e -1)·(x -1),即y =(e -1)x +2,∴切线与两坐标轴的交点坐标分别为(0,2),-2e -1,0(),∴所求三角形面积为12×2×-2e -1||=2e -1.(2)解法一(同构后参变分离)f (x )=a e x -1-ln x +ln a =e ln a +x -1-ln x +ln a ≥1等价于e ln a +x -1+ln a +x -1≥ln x +x =e ln x +ln x ,令g (x )=e x +x ,上述不等式等价于g (ln a +x -1)≥g (ln x ),显然g (x )为单调递增函数,∴又等价于ln a +x -1≥ln x ,即ln a ≥ln x -x +1,令h (x )=ln x -x +1,则h ′(x )=1x -1=1-xx,在(0,1)上h ′(x )>0,h (x )单调递增;在(1,+∞)上h ′(x )<0,h (x )单调递减,∴h (x )ma x =h (1)=0,ln a ≥0,即a ≥1,∴a 的取值范围是[1,+∞).解法二(最值分析法+隐零点法)∵f (x )=a e x -1-ln x +ln a ,∴f ′(x )=a e x -1-1x,且a >0.设g (x )=f ′(x ),则g ′(x )=a e x -1+1x 2>0,∴g (x )在(0,+∞)上单调递增,即f ′(x )在(0,+∞)上单调递增,当a =1时,f ′(1)=0,则f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴f (x )min =f (1)=1,∴f (x )≥1成立;当a >1时,1a <1,∴11e a <1,∴f ′1a()f ′(1)=11(e 1)(1)0a a a ,∴存在唯一x 0>0,使得f ′(x 0)=a e x 0-1-1x 0=0,且当x ∈(0,x 0)时f ′(x )<0,当x ∈(x 0,+∞)时f ′(x )>0,∴a e x 0-1=1x 0,∴ln a +x 0-1=-ln x 0,因此f (x )min =f (x 0)=a e x 0-1-ln x 0+ln a =1x 0+ln a +x 0-1+ln a ≥2ln a -1+21x 0·x 0=2ln a +1>1,∴f (x )>1,∴f (x )≥1恒成立;当0<a <1时,f (1)=a +ln a <a <1,∴f (1)<1,f (x )≥1不恒成立.综上所述,a 的取值范围是[1,+∞).例2.已知函数f (x )=x -a ln x .(1)若曲线y =f (x )+b (a ,b ∈R )在x =1处的切线方程为x +y -3=0,求a ,b 的值;(2)求函数g (x )=f (x )+a +1x(a ∈R )的极值点;(3)设h (x )=1a f (x )+a e x -xa+ln a (a >0),若当x >a 时,不等式h (x )≥0恒成立,求a 的最小值.解析(1)由f (x )=x -a ln x ,得y =x -a ln x +b ,∴y ′=f ′(x )=1-ax .由已知可得f ′(1)=-1,f (1)+b =2,{即1-a =-1,1+b =2,{∴a =2,b =1.(2)g (x )=f (x )+a +1x =x -a ln x +a +1x ,∴g ′(x )=1-a x-a +1x 2=(x +1)[x -(a +1)]x 2(x >0),当a +1≤0,即a ≤-1时,g ′(x )>0,g (x )在(0,+∞)上为增函数,无极值点.当a +1>0,即a >-1时,则有,当0<x <a +1时,g ′(x )<0,当x >a +1时,g ′(x )>0,∴g (x )在(0,a +1)上为减函数,在(a +1,+∞)上为增函数,∴x =a +1是g (x )的极小值点,无极大值点.综上可知,当a ≤-1时,函数g (x )无极值点,当a >-1时,函数g (x )的极小值点是a +1,无极大值点.(3)(同构后参变分离)h (x )=1a f (x )+a e x -xa+ln a =a e x -ln x +ln a (a >0),由题意知,当x >a 时,a e x -ln x +ln a ≥0恒成立,又不等式a e x -ln x +ln a ≥0等价于a e x ≥ln x a ,即e x ≥1a ln x a ,即x e x ≥x a ln xa.①①式等价于x e x ≥ln x a ·eln x a ,由x >a >0知,x a >1,ln xa >0.令φ(x )=x e x (x >0),则原不等式即为φ(x )≥φlnxa(),又φ(x )=x e x (x >0)在(0,+∞)上为增函数,∴原不等式等价于x ≥lnxa,②又②式等价于e x ≥x a,即a ≥xe x (x >a >0),设F (x )=x e x (x >0),则F ′(x )=1-xex ,∴F (x )在(0,1)上为增函数,在(1,+∞)上为减函数,又x >a >0,∴当0<a <1时,F (x )在(a ,1)上为增函数,在(1,+∞)上为减函数.∴F (x )≤F (1)=1e .要使原不等式恒成立,须使1e ≤a <1,当a ≥1时,F (x )在(a ,+∞)上为减函数,F (x )<F (1)=1e.要使原不等式恒成立,须使a ≥1e ,∴当a ≥1时,原不等式恒成立.综上可知,a 的取值范围是[1e ,+∞),a 的最小值为1e .例3.已知实数a ∈R ,设函数f (x )=ln x -a x +1.(1)求函数f (x )的单调区间;(2)若f (x )≥a (x +1-x 2)x+1恒成立,求实数a 的取值范围.解析(1)由题意得定义域为(0,+∞),f ′(x )=1x -a =1-a x x.当a ≤0时,f ′(x )>0恒成立,所以函数f (x )在(0,+∞)上单调递增;当a >0时,令f ′(x )=0,解得x =1a,所以当0,1a ()时,f ′(x )>0,函数f (x )单调递增;当1a,+∞()时,f ′(x )<0,函数f (x )单调递减.(2)因为x >0,所以f (x )≥a (x +1-x 2)x+1恒成立等价于x ln x ≥a x +1恒成立.设h (x )=ln x -1-1x(),则h ′(x )=1x -1x 2=x -1x 2,所以函数h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以h (x )min =h (1)=0.即ln x ≥1-1x ,所以x ln x ≥x 1-1x()=x -1恒成立,问题等价于x -1-a x +1≥0恒成立,分离参数得a ≤x -1x +1恒成立.设t =x +1∈(1,+∞),函数g (t )=t 2-2t,则g ′(t )=1+2t 2>0,所以函数g (t )在(1,+∞)上单调递增,所以g (t )>g (1)=-1,所以a ≤-1,故实数a 的取值范围为(-∞,-1].套路(举一反三):手足无措,抑或从容不迫1.已知函数f (x )=e a x -x .(1)若曲线y =f (x )在点(0,f (0))处切线的斜率为1,求f (x )的单调区间;(2)若不等式f (x )≥e a x ln x -a x 2对x ∈(0,e ]恒成立,求a 的取值范围.解析(1)f ′(x )=a e a x -1,则f ′(0)=a -1=1,即a =2.∴f ′(x )=2e 2x -1,令f ′(x )=0,得x =-ln 22.当x <-ln 22时,f ′(x )<0;当x >-ln 22时,f ′(x )>0.故f (x )的单调递减区间为-∞,-ln 22(),单调递增区间为-ln 22,+∞().(2)(同构后参变分离)由f (x )≥e a x ln x -a x 2,即a x 2-x ≥e a x (ln x -1),有a x -1ea x≥ln x -1x ,故仅需ln e a x-1ea x≥ln x -1x 即可.设函数g (x )=ln x -1x ,则ln e a x-1ea x≥ln x -1x 等价于g (e a x )≥g (x ).∵g ′(x )=2-ln xx 2,∴当x ∈(0,e ]时,g ′(x )>0,则g (x )在(0,e ]上单调递增,∴当x ∈(0,e ]时,g (e a x )≥g (x )等价于e a x ≥x ,即a ≥ln xx恒成立.设函数h (x )=ln x x,x ∈(0,e ],则h ′(x )=1-ln xx 2≥0,即h (x )在(0,e ]上单调递增,∴h (x )ma x =h (e )=1e ,则a ≥1e 即可,∴a 的取值范围为1e ,+∞[).2.已知函数f (x )=1+a e x ln x .(1)当a =1时,讨论函数f (x )的单调性;(2)若不等式f (x )≥e x (x a -x )(a <0),对x ∈(1,+∞)恒成立,求实数a 的取值范围.解析(1)f (x )的定义域为(0,+∞),当a =1时,f ′(x )=e x ln x +1x (),令g (x )=ln x +1x ,则g ′(x )=1x-1x 2=x -1x 2,当x ∈(0,1)时,g ′(x )<0,g (x )单调递减,当x ∈(1,+∞)时,g ′(x )>0,g (x )单调递增,∴当x =1时,g (x )取得极小值即最小值g (1)=1,∴f ′(x )>0在(0,+∞)上恒成立,∴f (x )在(0,+∞)上单调递增.(2)(同构后参变分离)不等式f (x )≥e x (x a -x )⇔e -x +x ≥x a -a ln x ⇔e -x -ln e -x ≥x a -ln x a ,设k (t )=t -ln t ,即k (e -x )≥k (x a ),(*)∵k ′(t )=1-1t =t -1t ,∴当t ∈(0,1)时,k ′(t )<0,k (t )在(0,1)上单调递减;当t ∈(1,+∞)时,k ′(t )>0,k (t )在(1,+∞)上单调递增,∵x∈(1,+∞),0<e-x<e-1<1,当a<0时,0<x a<1,且k(t)在(0,1)上单调递减,则(*)式⇔e-x≤x a⇒-a≤xln x ,令h(x)=xln x(x>1),则h′(x)=lnx-1(ln x)2,当x∈(1,e)时,h′(x)<0,h(x)单调递减;当x∈(e,+∞)时,h′(x)>0,h(x)单调递增,∴h(x)min=h(e)=e,则-a≤e,∴a≥-e,又a<0,∴a的取值范围是[-e,0).3.已知函数f(x)=e-x-a x,g(x)=ln(x+m)+a x+1.(1)当a=-1时,求函数f(x)的最小值;(2)若对任意的x∈(-m,+∞),恒有f(-x)≥g(x)成立,求实数m的取值范围.解析(1)当a=-1时,f(x)=e-x+x,则f′(x)=-1e x+1.令f′(x)=0,得x=0.当x<0时,f′(x)<0,当x>0时,f′(x)>0,∴函数f(x)在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增.∴当x=0时,函数f(x)取得最小值,最小值为f(0)=1.(2)由(1)得e x≥x+1恒成立.f(-x)≥g(x)⇔e x+a x≥ln(x+m)+a x+1⇔e x≥ln(x+m)+1.故x+1≥ln(x+m)+1,即m≤e x-x在(-m,+∞)上恒成立.当m>0时,在(-m,+∞)上,e x-x≥1,得0<m≤1;当m≤0时,在(-m,+∞)上,e x-x>1,m≤e x-x恒成立.于是m≤1.∴实数m的取值范围为(-∞,1].考点四双变量问题之转化同构思维导图-----方法梳理若问题的不等式或等式中含有1x ,2x 两个变量,我们称这类题型为双变量问题,双变量问题有若干细分题型,本节先分析其中一种:若对任意的1x ,2x 在区间D 上,某关于1x 和2x 的具有轮换对称性的不等式恒成立,求参数取值范围.这类问题一般将原不等式等价转化为12f x f x这种同构形式,根据函数f x 的单调性来研究参数的取值范围.围观(典型例题):一叶障目,抑或胸有成竹例1.已知函数12ln f x x x.(1)求曲线yf x在点1,1f 处的切线方程;(2)若对任意的 12,0,x x ,不等式121211f x f x mx x恒成立,求实数m 的取值范围.【解析】(1)由题意, 221f x xx,所以 13f ,11f ,故所求切线方程为 131y x ,整理得:34yx .(2)由(1)知 2210f x x x,所以f x 在 0, 上单调递增,不妨设120x x ,则12f x f x,所以121211f x f x mx x等价于2112m m f x f x x x,即1212m m f x f x x x①,令m g x f x x,则由①知g x 在 0, 上单调递增,所以 22210m g x xxx恒成立,从而21mx ,故1m ,所以实数m 的取值范围为 ,1 .【反思】本题的不等式121211f x f x mx x具有轮换对称性,这种情况一般考虑将1x ,2x 分离到不等号两侧,化为同构形式,运用函数的单调性解决问题.例2.已知函数 xf x e ,其中 2.71828e 为自然对数的底数.(1)设函数223g x x a x a f x ,a R ,试讨论函数 g x 的单调性;(2)设函数2h x f x m x x,m R ,若121,,22x x且12x x ,都有21121221x h x x h x x x x x 成立,求实数m 的取值范围.【解析】(1)由题意, 22313x xg x e x a x a e x x a ,当4a 时, 210x g x e x 在R 上恒成立,所以 g x 在R 上单调递增;当4a 时, 03g x x a 或1x , 031g x a x ,所以 g x 在 ,3a 上单调递增,在 3,1a 上单调递减,在 1, 上单调递增;当4a 时, 01g x x 或3x a , 013g x x a ,所以 g x 在 ,1 上单调递增,在 1,3a 上单调递减,在 3,a 上单调递增.(2)由题意,22x h x f x m x x e m x x,当1x 、21,22x时, 21121221x h x x h x x x x x 等价于121212h x h x x x x x ,因为12x x ,令11xh x eF x x m x xx,则问题等价于Fx 在1,22上单调递增,所以2110xe xF x m x在1,22上恒成立,从而211xe x m x,令211xe xHx x122x,则 23110xex H x x,所以H x 在1,22上单调递增,从而 m i n1122Hx H e,故实数m 的取值范围为 ,12e.套路(举一反三):手足无措,抑或从容不迫1.(多选)若正实数a 、b 满足ln ln s i n s i n b a b a b a ,则下列不等式可能成立的有()A .01a bB .1b a C .01b a D .01a b 【答案】AD 【解析】ln ln ln ln s i n s i n s i n s i n b b a aba b a b a b b a a,设 ln 0f x x x x , s i n g x x x 0x ,则 1xf x x,所以 001f x x , 01f x x ,从而f x 在 0,1上 ,在 1, 上 ,而 1co s 0g x x ,所以 g x 在 0, 上 ,因为s i n s i n b b a a ,所以 g b g a ,故b a ,又ln ln b b a a ,所以f b f a,A 项,作出f x 的大致图象如图,由图可知A 项正确;B 项,若1b a ,则f b f a,故B 项错误;C 项,因为b a ,所以C 项错误;D 项,若01a b ,则 f b f a ,故D 项正确.2.已知函数s i n f x x a x ,若对任意12,x x R 且12x x,不等式1212f x f x a x x恒成立,则实数a 的取值范围为()A .1,2B .1,2C .1,2D .1,2。
(中考数学复习)第18讲-二次函数综合应用-课件-解析

基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 (2)当h=2.6时,球能否越过球网?球会不会出界?请说明理 由; (3)若球一定能越过球网,又不出边界,求h的取值范围. 解:(1)把x=0,y=2,及h=2.6代入到y=a(x-6)2+h中,
B.4 s
C.3 s
D.2 s
B
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 B
图18-1
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
4.(2013·宁波)如图18-2所示,二次函数y=ax2+bx+c的图象
开口向上,对称轴为直线x=1,图象经过(3,0),下列结论
中,正确的一项是
( D )
图18-2 A.abc<0 B.2a+b<0 C.a-b-c<0 D.4ac-b2<0
基础知识 · 自主学习 题组分类 · 深度剖
课堂回顾 · 巩固提升
浙派名师中考
5.某公园草坪的防护栏是由100段形状相同的抛物线组成 的.为了牢固起见,每段护栏需要间距0.4 m加设一根不锈 钢的支柱,防护栏的最高点距底部0.5 m(如图18-3所示), 则这条防护栏需要不锈钢支柱的总长度至少为 ( C )
函数图象得
∴函数关系式为y=-x+180.
基础知识 · 自主学习 题组分类 · 深度剖
课堂回顾 · 巩固提升
浙派名师中考
(2)写出每天的利润W与销售单价x之间的函数关系式;若你是 商场负责人,会将售价定为多少,来保证每天获得的利润最 大,最大利润是多少? 解: W=(x-100)y=(x-100)(-x+180) =-x2+280x-18 000 =-(x-140) 2+1 600, 当售价定为140元,W最大=1 600. ∴售价定为140元/件时,每天最大利润W=1 600元.
一建【建筑】精讲-第18讲-主体结构工程施工5

2020 一级建造师《建筑工程管理与实务》考点精讲1A415044装配式混凝土结构工程施工一、施工准备(1) 装配式混凝土建筑应结合设计、生产、装配一体化的原则整体策划,协同建筑、结构、机电、装饰装修等专业要求,制定施工组织设计。
(2) 装配式混凝土结构施工应制定专项方案,内容宜包括工程概况、编制依据、进度计划、施工场地布置、预制构件运输与存放、安装与连接施工、绿色施工、安全管理、质量管理、信息化管理、应急预案等。
(3) 装配式混凝土建筑施工宜采用工具化、标准化的工装系统;采用建筑信息模型技术对施工过程及关键工艺进行信息化模拟。
(4) 安装准备工作应做到:1)合理规划构件运输通道、临时堆放场地和成品保护措施;2)核对已完成结构的混凝土强度、外观质量、尺寸偏差等是否符合标准要求;3)核对预制构件的混凝土强度,构配件的型号、规格、数量等是否符合设计要求;4)进行测量放线、设置构件安装定位标识;5)复核构件装配位置、节点连接构造及临时支撑方案;6)检查吊装设备及吊具处于安全状态;7)核实现场环境、天气、道路状况等满足要求。
二、预制构件生产、吊运与存放(1) 吊装要求1)根据预制构件的形状、尺寸、重量和作业半径等要求选择吊具和起重设备;2)吊点数量、位置应经计算确定,应采取保证起重设备的主钩位置、吊具及构件重心在竖直4)5)吊装大型构件、薄壁构件和形状复杂的构件时,应使用分配梁或分配桁类吊具,并应采取避免构件变形和损伤的临时加固措施。
(2) 运输要求1)运输中做好安全与成品保护措施;2)对于超高、超宽、形状特殊的大型预制构件的运输和存放应制定专门的质量安全保证措施;3)根据构件特点采用不同的运输方式,托架、靠放架、插放架应进行专门设计,并进行强度、稳定性和高度验算:①④3.(1) 存放场地应平整坚实,并有排水措施;(2) 存放库区已实行分区管理和信息化台账管理;(3) 应按产品品种、规格型号、检验状态分类存放,产品标识应明确耐久,预埋吊件朝上,标示向外;(4) 合理设置支点位置,并宜与起吊点位置一致;(5) 与清水混凝土面接触的垫块采取防污染措施;(6) 预制构件多层叠放时,每层构件间的垫块应上下对齐;预制楼板、叠合板、阳台板和空调板等构件宜平放,叠放层数不宜超过6层;(7) 预制柱、梁等细长构件应平放,且用两条垫木支撑;(8) 预制内外墙板、挂板宜采用专用支架直立存放,构件薄弱部位和门窗洞口应采取防止变形开裂的临时加固措施。
平新乔微观经济学第18讲

土地平均产量 平均产量 土地
从一开始,随着地主分割给佃农的土地 h 增大, 其土地的边际产量大于其平均产量,所以土地的平 均产量会上升,而最终,会由于土地的边际产量递 减会使得其平均产量下降;
最终的土地边际产量递减会造就土地平均产量 的图中的形状;
佃农的平均固定耕作成本
平均固定耕作成本
我们暂且假设,所有非土地的耕作投入 f 都由佃 农来承担且其数值保持不变,曲线 f/h 是除土地之外 的总成本除以各佃户的土地面积;总成本包括生产 作业期间使用的劳力、种子、肥料和农具等成本;
r* = AB = (q − f ) h = q − f
AC q h
q
而事实上, f = W ⋅ t ,即 f 为生产要素的总成本,而在数学推导中我们也只是假设
佃农只有一种生产投入;所以两个解是一致的;
定额地租、分成合约与劳动租之间有什么差别? 两者的区别在于:为了达到相同的目标而采取的不同资源配置方式; 定额地租是为了达到地主的最大地租的目标,规定好每单位土地的地租;由佃农决定
力市场上的工资率),因此,这也就意味着资源使用的效率是相同的。 (张五常 佃农理论 商务印书馆 第二章)
新古典经济学的错误观点
劳动边际产量
劳动边际产量
∂q
(1 − r) ⋅ ∂q
∂t
∂t
∂q
(1 − r) ⋅ ∂q
∂t
∂t
A
•
W
••
W
• 劳动
• 劳动
当地主实行定额地租时,佃农所得的工资总额为黄色区域;地主的地租总额为蓝色半凸区域;
时,佃农的边际产出大于其边际成本,因此,分成租佃制是无效率的(绿色半凸区域的面积是经
济上的浪费);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) vC(t)从0-的-E充电到E;
t
O
E
(2) 在求vC(t)时,其0-和0+的 符合换路定则,采用 0和0+均可。
9
2011-02
Copyright @ Hubei Normal University 2006-2009
机电与控制工程学院
DEPARTMENT OF M-E & CONTROL ENGINEERING, HUBEI NORMAL UNIVERSITY
列时域微分方程,用微积分性质求拉氏变换; 直接按电路的s域模型建立代数方程。
求解s域方程。 F ( s ) f ( t ),得到时域解答。
时域模型 取变换 S域模型 解S域方程 反变换 时域响应
2011-02
Copyright @ Hubei Normal University 2006-2009
5.4.2 电路的s域模型
5、电路定律的s域方程
KCL、KVL方程
i (t ) 0 u(t ) 0
I (s) 0 U (s) 0
2011-02
Copyright @ Hubei Normal University 2006-2009
15
机电与控制工程学院
DEPARTMENT OF M-E & CONTROL ENGINEERING, HUBEI NORMAL UNIVERSITY
用拉普拉斯变换分析动态电路是如何解决时域
分析动态电路时所存在的问题呢?
与正弦稳态电路中的相量法相似。 先找出R、L、C在复频域的模型,称为S域模型。 推导出电路定律的复频域形式,引出阻抗和导纳
的概念。
这种分析方法称为复频域法。 与正弦稳态电路
的相量法完全类似。
2011-02
Copyright @ Hubei Normal University 2006-2009
DEPARTMENT OF M-E & CONTROL ENGINEERING, HUBEI NORMAL UNIVERSITY
连续系统的复频域分析
系统的复频域分析 4-
3 t 例5.4-1 设有方程 y(t ) 3 y(t ) 2 y(t ) e , 且 y(0 ) 1, y(0 ) 2, 求y(t )。
i(t) + L u(t)
-
I(s) sL + U(s)
Li(0-)
-
+
-
U(s)
sL
i(0-) s
-
+
I(s)
U (s ) sL I (s ) Li (0 ) i (0 ) 1 I (s ) U (s ) sL s
2011-02
其中: sL, 1 sL 称电感的 s域阻抗 和 s域导纳
t 0
解: 对方程取拉氏变换,得
[s 2Y (s ) sy(0 ) y(0 )] 3[sY (s ) y(0 )] 2Y (s ) 1 s 3 2 K3 K1 K 2 8 6 s s 即 Y (s ) (s 1)(s 2)(s 3) s 1 s 2 s 3
连续系统的复频域分析
系统的复频域分析 4-
5.4.2 电路的s域模型
2、电容元件 du(t ) i (t ) C I (s ) C sU (s ) C u(0 ) dt
i(t)
C
u(t)
-
+
I (s )
U (s )
-
+
1 sC
u(0-) 1 I (s ) s C + s
-
+
Cu(0-)
机电与控制工程学院
DEPARTMENT OF M-E & CONTROL ENGINEERING, HUBEI NORMAL UNIVERSITY
连续系统的复频域分析
机电与控制工程学院
第 18 讲 系统的复频域分析
2011年2月
机电与控制工程学院
DEPARTMENT OF M-E & CONTROL ENGINEERING, HUBEI NORMAL UNIVERSITY
5
机电与控制工程学院
DEPARTMENT OF M-E & CONTROL ENGINEERING, HUBEI NORMAL UNIVERSITY
连续系统的复频域分析
系统的复频域分析 4-
微分方程的拉氏变换
d f (t ) L sF (s ) f (0 ) dt d 2 f (t ) s sF ( s ) f (0 ) f (0 ) L 2 dt
10
机电与控制工程学院
DEPARTMENT OF M-E & CONTROL ENGINEERING, HUBEI NORMAL UNIVERSITY
连续系统的复频域分析
系统的复频域分析 4-
5.4.2 电路的s域模型
1、电阻元件
u( t ) R i ( t ) U ( s ) R I ( s )
连续系统的复频域分析
系统的复频域分析 4-
例5.4-2 如右图所示电路,求vC(t)。
E t 0 已知 e(t ) E t 0
v R (t )
R
iC ( t )
vC ( t )
e( t )
C
(1)确定起始状态 vC (0 ) E dv (t ) (2)列方程(t>0) RC C vC (t ) e(t ) E dt (3)等式两边取单边拉氏变换 RC sVC (s ) vC (0 ) VC (s ) E s
(4)求反变换
E RCv (0 ) E 1 s C RC 1 2 VC (s ) s E s 1 RCs 1 1 s s s RC RC
所以 vC (t ) ( E 2 Ee
vC ( t )
E
t RC
)
(t 0)
i(t) +
R
u(t)
-
I(s) +
R U(s)
-
时域模型
复频域模型
2011-02
Copyright @ Hubei Normal University 2006-2009
11
机电与控制工程学院
DEPARTMENT OF M-E & CONTROL ENGINEERING, HUBEI NORMAL UNIVERSITY
连续系统的复频域分析
系统的复频域分析 4-
5.4 系统的复频域分析
学习要点
用拉氏变换法分析电路的步骤 微分方程的拉氏变换 利用元件的S域模型分析电路
2011-02
Copyright @ Hubei Normal University 2006-2009
2
机电与控制工程学院
DEPARTMENT OF M-E & CONTROL ENGINEERING, HUBEI NORMAL UNIVERSITY
2011-02 Copyright @ Hubei Normal University 2006-2009 14
机电与控制工程学院
DEPARTMENT OF M-E & CONTROL ENGINEERING, HUBEI NORMAL UNIVERSITY
连续系统的复频域分析
系统的复频域分析 4-
4
机电与控制工程学院
DEPARTMENT OF M-E & CONTROL ENGINEERING, HUBEI NORMAL UNIVERSITY
连续系统的复频域分析
系统的复频域分析 4-
5.4.1 微分方程的拉普拉斯变换解法 微分方程拉氏变换解法的一般步骤:
列s域方程(可以从两方面入手)
2011-02 Copyright @ Hubei Normal University 2006-2009 16
2011-02 Copyright @ Hubei Normal University 2006-2009 8
机电与控制工程学院
DEPARTMENT OF M-E & CONTROL ENGINEERING, HUBEI NORMAL UNIVERSITY
连续系统的复频域分析
系统的复频域分析 4-
确定系数:K1=4.5, K2= -4, K3=0.5 所以可得 y(t) = L1[Y(s)]=4.5et 4e2t + 0.5e3t ( t 0 )
2011-02 Copyright @ Hubei Normal University 2006-2009 7
机电与控制工程学院
DEPARTMENT OF M-E & CONTROL ENGINEERING, HUBEI NORMAL UNIVERSITY
连续系统的复频域分析
系统的复频域分析 4-
对于一般动态电路的时域分析,存在以下问题
对一般的二阶或二阶以上的电路,建立微分方
程困难。
确定微分方程所需要的初始条件,以及确定微
分方程解中的积分常数也很烦琐。
动态电路的分析方法无法与电阻性电路和正弦
稳态电路的分析统一起来。
当激励源是任意函数时,求解也不方便。
U (s )
-
I (s ) s CU (s ) C u(0 ) u(0 ) 1 U (s ) I (s ) sC s
2011-02
其中: sC ,
1 sC 称电容的 s域导纳 和 s域阻抗
12