奥林匹克及自主招生辅导材料(强烈推荐)第十一讲:三角运算 (1)

合集下载

奥数挑战三角函数的高级运算

奥数挑战三角函数的高级运算

奥数挑战三角函数的高级运算在奥数竞赛中,三角函数的高级运算一直是考察的重点之一。

掌握三角函数的高级运算,不仅可以帮助我们更好地理解数学知识,还能够提高解题的效率和准确性。

在本文中,我将为大家介绍奥数中的三角函数高级运算,并给出一些例题进行详细讲解。

一、三角函数的基本概念在开始介绍三角函数的高级运算之前,我们首先需要明确三角函数的基本概念。

常见的三角函数包括正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)等。

这些函数可以通过对应的特殊角度值来确定,如0度、30度、45度、60度等。

同时,三角函数也可以表示为一个周期性函数,其取值范围在区间[-1, 1]之间。

二、三角函数的高级运算1. 复合角的三角函数运算复合角是由两个角度相加、相减或相乘而成的新角。

在奥数中,我们经常会遇到复合角的运算,这需要灵活运用三角函数的运算性质。

以sin(A + B)为例,我们可以利用三角函数的加法公式进行计算:sin(A + B) = sinAcosB + cosAsinB同样地,我们还可以利用其他三角函数的加法公式计算cos(A + B)和tan(A + B)。

需要注意的是,复合角的三角函数运算可以通过套用不同的公式来实现,所以我们需要灵活选择适合的公式。

2. 幂函数与三角函数的运算在奥数竞赛中,我们常常需要处理幂函数与三角函数的运算。

例如,我们需要计算sin²x、cos²x和tan²x等。

这时候,我们可以利用三角函数的平方公式进行计算:sin²x = 1/2(1 - cos2x)cos²x = 1/2(1 + cos2x)tan²x = (1 - cos2x) / (1 + cos2x)通过利用这些公式,我们可以将幂函数与三角函数的运算转化为幂函数与幂函数的运算,从而更容易求解。

3. 倍角、半角和三角恒等式倍角、半角和三角恒等式是三角函数的高级运算中常见的一类题型。

高中数学奥赛赛前辅导

高中数学奥赛赛前辅导

第一讲 集合与函数综合问题例1、数集M 由2003个不同的实数组成,对于M 中任何两个不同的元素a 和b,数2a +M 中任何一个数a,(2003年俄罗斯数学奥林匹克试题)分析:欲证证明:设a ,b ,c 是数集M 中任意三个两两不同的元素,由题设知2222a b c c ++++都是有理数,于是22((()(1(2)2a b a b a b +-+=-+= 是有理数.22((c c +-+=是有理数,从而1(2)2是有理数,进而11((22=+是有理数.例2、称有限集S 的所有元素的乘积为S 的“积数”.给定数集111,,,.23100M ⎧⎫=⎨⎬⎩⎭求数集M 的所有含偶数个元素的子集的“积数”之和.分析:数集M 的所有子集的积数之和为111(1)(1)(1)1.23100+++- 设数集M 的所有含偶数个元素的子集的积数和为x ,所有含奇数个元素的子集的积数之和为y ,则111(1)(1)(1) 1.23100x y +=+++- 只需再建立一个关于x ,y 的方程,就可解出x ,y .解答:设数集M 的所有含偶数个元素的子集的积数之和为x ,所有含奇数个元素的子集的积数之和为y ,则111(1)(1)(1)1,23100111(1)(1)(1)1,2310099,299.1004851.200x y x y x y x y x +=+++--=----+=-== 又所以解得例3、设集合S n ={1,2,…,n}.若X 是S n 的子集,把X 中的所有数的和称为X 的“容量”(规定空集的容量为0).若X 的容量为奇(偶)数,则称X 为S n 的奇(偶)子集.(1)求证:S n 的奇子集与偶子集个数相等;(2)求证:当n ≥3时,S n 的所有奇子集的容量之和与所有偶子集的容量之和相等; (3)当n ≥3时,求S n 的所有奇子集的容量之和.(1992年全国高中数学联赛试题)分析:要证明两个集合的元素的个数一样多,一种方法是直接把这两个集合的元素个数算出来,另一种方法是在这两个集合之间建立一个一一对应.本题我们将用后一种方法来解.解答:(1)设A 是S n 的任一奇子集,构造映射f 如下:{1},1;{1},1.A A A A A A -∈∉ 若若(注:A —{1}表示从集合A 中去掉1后得到的集合) 所以,映射f 是将奇子集映为偶子集的映射.易知,若A 1,A 2是S n 的两个不同的奇子集,则f (A 1)≠f (A 2),即f 是单射. 又对S n 的每一个偶子集B ,若1∈B ,则存在A =B \{1},使得f (A )=B ;若1B ∉,则存在{1},A B = 使得f (A )=B ,从而f 是满射.所以,f 是S n 的奇子集所组成的集到S n 的偶子集所组成的集之间的一一对应,从而S n 的奇子集与偶子集个数相等,故均为11222n n -= 个.(2)设a n (b n )表示S n 中全体奇(偶)子集容量之和. 若n (≥3)是奇数,则S n 的奇子集由如下两类:(1)S n -1的奇子集;(2)S n -1的偶子集与集{n }的并,于是得a n =a n -1+(b n -1+n ²2n -2), ①又S n 的偶子集可由S n -1的偶子集和S n -1的奇子集与{n }的并构成,所以b n = b n -1+(a n -1+n ²2n -2), ② 由①,②,便得a n = b n . 若n (≥4)是偶数,同上可知a n =a n -1+(a n -1+n ²2n -2),b n = b n -1+(b n -1+n ²2n -2),由于n -1是奇数,由上面已证a n -1= b n -1,从而a n = b n . 综上即知,a n = b n ,n =3,4…(3)由于S n 的每一个元素均在2n -1个S n 的子集中出现,所以,S n 的所有子集容量之和为2n -1(1+2+…+n )=2n -2n (n +1).又由(2)知,a n =b n ,所以2312(1)2(1).2n n n a n n n n --=+=+说明(2)的证明中,建立了递推关系.这也是解决“计数”问题的一个有效方法. 例4、设A 是集合S ={1,2,…1000000}的一个恰有101个元素的子集.证明:在S中存在数t 1,t 2,…t 100,使得集合{|},1,2,,100j j A x t x A j =+∈= 中,每两个的交集为空集.(2003年国际数学奥林匹克试题)证明:考虑集合D ={x -y |x ,y ∈A },则||≤101100110101.D ⨯+=若i j A a ≠∅ ,设i j a A A ∈ ,则a =x +t i ,a=y +t j ,其中x ,y ∈A ,则t i -t j =y -x ∈D .若t i -t j ∈D ,即存在x ,y ∈A ,使得t i -t j =y -x ,从而x +t i = y +t j ,即.i j A A ≠∅ 所以,i j A A ≠∅ 的充要条件是t i -t j ∈D .于是,我们只需在集合S 中取出100个元素,使得其中任意两个差都不属于D .下面用递推方法来取出这100个元素.先在S 中任取一个元素t 1,再从S 中取一个t 2,使得122{|}.t t D t x x D +=+∈∈这是因为取定t 1后,至多有10101个S 中的元素不能作为t 2,从而在S 中存在这样的t 2.若已有k (≤99)个S 中的元素t 1,t 2,…,t k 满足要求,再取t k +1,使得t 1,…,t k 都不属于t k +1+D ={ t k +1+x |x ∈D },这是因为t 1,t 2,…,t k 取定后,至多有10101k ≤999999个S 中的数不能作为t k +1,故在S 中存在满足条件t k +1.所以,在S 中存在t 1,t 2,…,t 100,其中任意两个的差都不属于D .综上所术,命题得证.说明:条件|S |=106可以改小一些.一般地,我们有如下更强的结论:若A 是S ={1,2,…,n }的k 元子集,m 为正整数,满足条件n >(m -1)2(1),KC +则存在S 中的元素t 1,…,t m ,使A j ={x +t j |x ∈A },j =1,…m 中任意两个的交集为空集.例5、求函数y x =+的值域.(2001年全国高中数学联赛试题)≥0y x =-,所以 x 2-3x +2=y 2-2xy +x 2,即(2y -3)x =y 2-2.由上式知232,.223y y x y -≠=-且由222000022000002000002000002≥2332(1)(2)≥0,≥0.23231≤≥ 2.22[2,),,232(2)22≥0,2323≥2,32≥0,231,,,2231y y y x y y y y y y y y y y y x y y x y y x x x y x y y x y x -=--+----<-∈+∞=----=-=---+=-⎡⎫∈=⎪⎢-⎣⎭-得所以或又任取令则故所以且任取令则2200002(1)1≤0,2323y y y y --=-=--故x 0≤1,于是2000032≥0,x x y x -+=+且 综上,所求的函数的值域为31,[2,).2⎡⎫+∞⎪⎢⎣⎭说明:我们先求出了y 的范围31,[2,)2⎡⎫+∞⎪⎢⎣⎭ ,这是不是函数的值域呢?第二部分说明了对于31,[2,)2⎡⎫+∞⎪⎢⎣⎭ 中的任意一个数y 0,总存在一个x 0,使得00y x =+就证明了函数的值域是31,[2,).2⎡⎫+∞⎪⎢⎣⎭例6、求(31)(21)y x x =-+-的图象与x 轴的交点坐标.分析:仔细观察所给的式子,发现(31)(21)y x x =-+-,从而找到了解题途径.解答:因为(31)(21)y x x =-+-,令()1)f t t =,易知f (t )是奇函数,且f (t )是严格递增函数.所以y =f (3x -1)+f (2x -3).当y=0时,f (3x -1)=-f (2x -3)=f (3-2x ),所以3x -1=3-2x ,解得4.5x =故图象与x 轴的交点坐标为(4,05).例7、设a >0,211().ax r x ax x x+==+讨论函数r (x )在(0,+∞)中的单调性、最小值与最大值.解答:先讨论它的单调性. 设0<x 1<x 2<+∞212121211212212112212212212112212111()()()()1()()0≤,1()()()()1()()≤0;,1()()()()1()()≥0,r x r x ax ax x x x x a x x x x r x r x x x a x x x x a x x x r x r x x x a x x x x a x -=+-+=--<<-=--<--<-=-->--当有时有所以,在⎛ ⎝上,r (x )是严格递减的;在⎫+∞⎪⎭上,r (x )是严格递增的. 由此可知,r (x )没有最大值;当且仅当x 时,r (x )取最小值说明:此题的结论非常重要,许多问题最后可化归为讨论函数1()(())ar x ax r x x x x=+=+或的增减性来解.例8、设二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R ,a ≠0)满足条件: (1)当x ∈R 时,f (x -4)=f (2-x ),且f (x )≥x ;(2)当x ∈(0,2)时,21()≤();2x f x +(3)f (x )在R 上的最小值为0.求最大的m (m >1),使得存在t ∈R ,只要x ∈[1,m ],就有f (x +t )≤x .(2002年全国高中数学联赛试题)分析:先根据题设条件(1),(2),(3),把f (x )的解析式求出来,进而再确定m 的最大值.解答:由f (x -4)=f (2-x ),t ∈R ,可知二次函数f (x )的对称轴为x =-1.又由(3)知,二次函数f (x )的开口向上,即a >0,故可设f (x )=a (x +1)2(a >0)由(1)知f (1)≥1,由(2)知f (1)≤211()12+=,所以f (1)=1,故2211(11),.41()(1).4a a f x x =+==+所以因为21()(1)4f x x =+的图象开口向上,而y =f (x +t )的图象是由y =f (x )的图象平移|t |个单位得到.要在区间[1,m ]上,使得y =f (x +t )的图象在y =x 的图象的下方,且m 最大,则1和m 应当是关于x 的方程21(1)①4x t x ++=的两个根. 令x =1代入方程①,得t =0或t =-4.当t =0时,方程①的解为x 1=x 2=1(这与m >1矛盾!);当t =-4时,方程①的解为x 1=1,x 2=9.又当t =-4时,对任意x ∈[1,9],恒有 2(1)(9)≤0,1(41)≤,4x x x x --⇔-+ 即f (x -4)≤x .所以,m 的最大值为9.说明:我们由f (x -4)= f(2-x ),x ∈R 导出f (x )的图象关于x =-1对称.一般地,若f (x -a )=f (b -x ),x ∈R ,则()()()(),2222b a b a b a b a f x f x a f b x f x -++-+=+-=--=-故f (x )的图象关于2b ax -=对称.这个性质在解题中常常用到.例9、设f 为R +→R +的函数,对任意正实数x ,f(3x)=3f(x),且f (x )=1-|x -2|,1≤x ≤3.求最小的实数x ,使得f (x )=f (2004).分析:先用递推关系推出函数f (x )的解析式,然后再求解. 解答:由已知条件得1,1≤≤2,()3,2≤≤ 3.x x f x x x -⎧=⎨-⎩当3≤x ≤6时,令,3xt =则1≤t ≤2,此时 f (x )=f (3t )=3f (t )=3(t -1) =x -3, 即得 f (x )=|x -3|,2≤x ≤6.当6≤x ≤18时,令,3xt =则2≤x ≤6,于是 f (x )=f (3t )=3f (t )=3|t -3|=|x -9|.1,1≤≤2,|3|,2≤≤6,|9|,6≤≤18,|27|,18≤≤54,()|81|,54≤≤162,|243|,162≤≤486,|729|,486≤≤1458,|2187|,1458≤≤4374.x x x x x x x x f x x x x x x x x x -⎧⎪-⎪⎪-⎪-⎪=⎨-⎪⎪-⎪-⎪⎪-⎩所以f (2004)=2187-2004=183.由于162-81<183,486-243>183,而243-162<183,所以,最小的满足f (x )=f (2004)的实数x =243+183=426.说明:请读者自己证明:不存在实数x ∈(0,1),使得f (x )=183.例10、k 是实数,42421()1x kx f x x x ++=++,对任意三个实数a ,b ,c ,存在一个以f (a ),f (b ),f (c )为三边长的三角形,求k 的取值范围.分析:首先,对于任意实数x ,f (x )要恒大于0.在这个前提下,对任意三个实数a ,b ,c ,f (a ),f (b ),f (c )均能构成一个三角形的三边长,只需2f min (x )>f max (x )即可.解答:首先确定k 的范围,使得f (x )恒大于0,即只需x 4+kx 2+1恒大于0即可. 当k ≥0时,x 4+kx 2+1恒大于0;当k <0时,只需 △=k 2-4<0,即-2<k <0.所以,当k >-2时,f (x )恒大于0. (1)当k =1时,f (x )≡1满足题意. (2)当k >1时,有24222422(1)()1≥1(0),1(1)(1)()1≤1132(1),3k x f x x x x k x k x f x x x x k x -=+=++--=+++++==时等号成立当时等号成立所以,max max 2()1,(),3k f x f x +==从而由三角形的两边之和大于第三边的性质,有221,3k +⨯>解得k <4. 故1<k <4满足条件.(3)当-2<k <1时,与(2)类似,有max max 2()1,(),3k f x f x +==由221,3k +⨯>解得1.2k >-故112k-<<满足条件.综上所述,所求的k的取值范围为14. 2k-<<说明:本题的关键是把“对任意实数a,b,c,存在一个以f(a),f(b),f(c)为三边长的三角形”这一条件,转化为“2f min(x)>f max(x)”.例11、设N是非负整数集,f:N→N是一个函数,使得对任一n∈N,都有(f(2n+1))2-(f(2n))2=6f(n)+1,①f(2n)≥f(n).问:f(N)中有多少元素小于2003?解答:由题设(f(2n+1)2-(f(2n))2≥1>0,所以f(2n+1)> f(2n).又(f(2n+1)2=(f(2n))2+6 f(n)+1<(f(2n)2+6 f(2n)+9,所以f(2n+1)< f(2n)+3,故f(2n+1)< f(2n)+1或f(2n)+2.而(f(2n+1)2-(f(2n))2是奇数,所以f(2n+1)与f(2n)的奇偶性不同,从而f(2n+1)= f(2n)+1.代入①式,得f(2n)=3 f(n).令n=0,f(0)=3f(0),所以f(0)=0.令n=0代入①式,得f(1)=1,于是f(2)=3 f(1)=3.下面用数学归纳法证明:f是严格递增函数,即证f(n+1)>f(n).当n=0,1,2时,命题成立.假设对小于等于n的情形命题成立.则当n=2k(k≥1)为偶数时,有f(n+1)=f(2k+1)=f(2k)+1> f(2k)=f(n).当n=2k+1(k≥0)为奇数时,因为0≤k<k+1≤n,所以f(k+1)>f(k),从而f(k+1)≥f(k)+1,于是f(n+1)=f(2k+2)=3 f(k+1)≥3 f(k)+3= f(2k)+1+2= f(2k+1)+2> f(2k+1)= f(n)综上,f(n)是严格单调递增函数.显然,f(27)=3 f(26)=…=37 f(1)=2187>2003,而f(127)= f(126)+1=3 f(63)+4=9 f(31)+4=9 f(30)+13=27 f(15)+13=27 f(14)+40=81 f(7)+40=81 f(6)+121=243 f(3)+121=243 f(2)+364=729 f(1)+364=1093<2003,所以,共有f(0),f(1),f(2),…,f(127)这128个元素不超过2003.第二讲三角函数及反三角函数例1、化简11(,). cos()cos[(1)]nkk kk kβπαβαβ=≠∈+++∑Z分析:本题目的化简是利用一个递推模型来实现的,即找到这个题目的“源生地”.可先由产生分母cos αcos(α+β)的正切函数之和入手.sin tan()tan ,cos cos()11[tan()tan ].cos cos()sin βαβαααβαβαααββ+-=+=+-+考查即得到递推模型:1.c o s ()c o s [(1)]1{t a n [(1)]t a n ()}s i n k k k k αβαβαβαββ+++=++-+再求和,即得原式1{tan[(1)]tan()}sin k k αβαββ=++-+. 解答:略. 例2、不等式22(1)cos (cos 5)3sin 11x x x x θθθ+--+>--+对任何实数x 均成立,求θ.分析:这是一个关于x 的不等式,以解集为全体实数作为背景条件来求参数θ的范围问题.可将θ的正弦(或余弦)值表示成x 的函数f (x ),再利用f (x )的值域,对正弦(或余弦)值的制约去求得θ.解答:将不等式化成222253153sin cos 11153)1.41x x x x x x x x x x x θθπθ++-++-<=+-+-++-<+-+即利用判别式法可求得2531x y x x +=-+的值域为25[1,].3y ∈-)0,4πθ-<从而322,.44k k k πππθπ-<<+∈Z 例3、设,,1,x y z z +∈=R 试求xy +2xz 的最大值.分析:这是一个在限定条件下,求多元函数的最值问题.如何将多元函数在限定的条件中转化成单元函数,是破解这一问题的关键.可用三角法代换及平均值去求解.1,,,,z x y z +=∈R 且故可令22sin cos ,z αα=而x=cos 2αsin β,y =cos 2αcos β,其中,0,.2παβ⎛⎤∈ ⎥⎝⎦于是2222222222222222(2)cos sin (cos sin 2sin )sin (2cos )cos (cos cos 2sin )2cos sin (2cos cos cos )(cos cos 2sin )2cos sin 2cos cos cos cos cos 2sin ≤2cos 2sin .2cos xy xz x y z αβαβαββαβααββαβαβααββαβαβααβββ+=+=+=-+-=-+-⎛⎫-++ ⎪ ⎪-⎝⎭=-222222221tansin ,cos .2112212≤≤1131t t t t t t t t xy xz t tt βββ-===++++==-++令则故当133x y z ===时,取等号.即xy +2xz的最大值为3例4、已知θ1+θ2+…+θn =π,θi ≥0(i =1,2,…,n ),求sin 2θ1+sin 2θ2+…+sin 2θn 的最大值.(1985年IMO 预选题)分析:由于变量多,变式的目标难确定,不妨先将问题简单化,即先退到θ1+θ2为常数时探讨sin 2θ1+sin 2θ2的最大值的情形.这种策略往往在竞赛题解答中时用到.解答:先考查θ1+θ2=常数的情形.因为22212121222121212122212121221212212122112sin sin (sin sin )2sin sin 4sin cos cos()cos()222cos (2sin 1)1cos().22,,2sin 10;22,2sin 10;22,2sin 2θθθθθθθθθθθθθθθθθθθθθθπθθθθπθθθπθθ+=+-+-=--++-+=-+++++<-<++=-=++>上式中当时时时210.2θ->由此可得出,当122πθθ+<时,θ1与θ2有一个为零时,sin 2θ1+sin 2θ2有最大值;当122πθθ+=且|θ1-θ2|越小时,sin 2θ1+sin 2θ2值越大.n =3时,即θ1+θ2+θ3=π时,2221239sin sin sin ≤4θθθ++是容易证明的.而n ≥4时,可知θ1、θ2、θ3、θ4中必有两个角和不超过.2π 由前面的结论知,12≤2πθθ+时,sin 2θ1+sin 2θ2当θ1或θ2=0时,有最大值.于是所求的最大值可转化成三个角的和为π,其正弦值的平方的最大值问题.另一方面n =2时,θ1+θ2=π,sin 2θ1+sin 2θ2≤2.因此,sin 2θ1+sin 2θ2+…+sin 2θn 的最大值为9.4且当12345,03n πθθθθθθ======= 时,取等号.例5、如图2.1,△ABC 中,高AD =h ,BC =a ,AC =b ,AB =c .若a +h =b +c ,求∠BAC 的范围.分析:许多平面几何中的推导过程可用“三角法”进行转换,尤其是几何不等式的证明问题.经常以正、余弦定理及面积公式等结论作为依据.本题目还要从三角变换及不等式的推理中得出角的范围.解答:由,sin b c a h bc BAC ah +=+⎧⎨∠=⎩得出.sin ahbc BAC =∠令∠BAC =a .于是由22222222()2cos 22()1(1)sin 1.22sin 2cos 1cos 2sin ,cot 1.221122b c a b c bc a bc bca h a h ah a a h h h a a aαααααα+-+--==+-=-=+-+===+++得 故作CE ⊥BC ,使CE =2h .在Rt △BCE中,有BE =且AE +AB =b +c =a +h ≥BE .即2≥≤.3h a h a +得出于是41[1,],23h a +∈从而44cot [1,].[2arccot ,].2332BAC απ∈∠∈故例6、n ∈N +,x 0=0,x i >0,i =1,2,…n 且11.ni i x ==∑求证1≤.2ni π=<(1996年CMO 试题)分析:所证不等式左侧部分可用2a b+得出.右侧部分可引用θi =arcsin(x 0+x 1+…+x i ),再利用三角公式得出.解答:因11,ni ==∑由平均值不等式,有011≤ 1.2n x x x ++++=故1ni =成立.令θi =arcsin(x 0+x 1+…+x i ),i =0,1…,n .故101[0,]0.22n ππθθθθ∈=<<<= 且而11111111111sin sin 2cos sin222cos sin.2sin ,[0,],22(cos )()cos .2(1,2,,).cos i i i i i i i i i i i i i i i i i ii i i x x x x x x i n θθθθθθθθθπθθθθθθθθθ-----------+-=-=-<<∈-<=-<-= 利用可知故对上述求和有11101211.cos 2sin ,cos ni n i i i i i x x x x x πθθθθθ-=---<-==++++==∑ 但故代入上式可得出所证不等式右侧成立.例7、如图2.2,锐角△ABC 的外接圆中过A 、B 两点的切线分别与过C 的切线交于V 、T ,且AT ∩BC =P ,BV ∩AC =R .设AP 、BR 的中点分别是Q 、S .求证:∠ABQ =∠BAS ,并求当BC ︰CA ︰AB 取何值时,∠ABQ 取最大值. (第41届IMO 预选题)分析:要证∠ABQ =∠BAS ,由条件中的对称性,只要求得∠ABQ 的三角函数值与已知中的△ABC 边及角建立一个结构式即可.作QN ⊥AB 于N ,从cot BNNBQ QN∠=入手,而作PM ⊥AB 于M ,可用BN =BM +MN =111(cos )sin 222c BP B QN PM BP B +== 且是解决问题的突破点.解答:作PM ⊥AB 于M ,QN ⊥AB 于N .记BC =a ,AB =b ,AB =c ,∠A =∠BAC ,∠B =∠CBA ,∠C =∠ACB .由221sin()sin 2,1sin sin()2ABTACTAB BT C S BP c C c PC S b B b AC CT B ππ-====-又BP +CP =a ,故22211.sin ,22ac BP QN PM BP B b c===+而于是 2222222222221()21()21(cos ),2cot cot cot sin sin cos 2sin sin 3.2sin BN BM MN BM AB BM BM AB c BP B BN c b c ABQ B B QN BP B ac Ba cb ac b c ac B b c ac ac B ab C a b c ab C=+=+-=+=++∠==+=++-++++==+-=同理可得出2223cot 2sin a b c BAS ab C++∠=故∠ABQ =∠BAS .2222222223cot 2sin 3(2cos )2sin 2()43cot ≥3cot .sin sin 43cot ,sin 43cos sin )≤.a b c ABQ ab Ca b a b ab C ab C a b C C ab C C y C CC y C C θθ++∠=+++-=+=---=+=-⎫=由记=于是解得≥,y即≤ABQ ∠当且仅当a =b ,3arccos ,4C ∠=即BC ︰CA ︰AB1时取等号.第三讲 等差数列与等比数列例1、给定正整数n 和正数M ,对于满足条件2211≤n a a M ++的所有等差数列a 1,a 2,a 3,…,试求S= a n +1+a n +2+…+a 2n +1的最大值.分析:本题属于与等差数列相关的条件最值问题,而最值的求解运用的方法灵活多样,针对条件的理解不同,将有不同的解法.解答:方法一(代数法).设公差为d ,a n +1=a ,则1221222211222(1)(1),2,21,≥()41()(43)102104≥(),101n n n n n n S a a a n d nd S n M a a nd nd nd S n αααααα+++++=+++=+++=++=-+=++-+ 所以另一方面由从而有||≤1)S n d α+且当时,(1)2(1)n S n n n ⎛=+⎭=+=+由于此时有22211443,(),101n S nd a a M n α+=+==+故因此max S n =+122112111()(1)21(3)21(3sin cos )21)sin(),n n n n n n S a a a a a n n a a n r n r θθθϕ++++++=+++++=+=-+=-=+- 故其中cos sin()1,rϕϕθϕ==-=因此当时,有max2S n=+方法三(判别式法).设首项为a,公差为d,则221122222222(1)(23).222.①3(1)3≤,()≤.②①②,44109≤0.③1(1)③,444109≥0.1(1),||≤1),10nn andSSnd ana a Ma a nd MS Sa a Mn naS SMn nS nad+++==-++++++-++⎡⎤⎛⎫=-⨯⨯-⎢⎥⎪++⎝⎭⎢⎥⎣⎦+=-=故因为所以将代入得因为不等式关于有解所以解之得且当max,10nS=有方法四(不等式法).因为111112222211111122111111max(1)(1)21(3).2,(3)≤(31)()≤10,3≤1,,,nnnn nnnnna an nS n anna aa a a a Ma aa a Ma aa aS+++++++++-+=+++=--++--=+====由柯西不等式得所以3等号当且仅当时取到即有说明:这是1999年全国高中数学联赛的一道试题,在解答过程中,要分清什么是常量,什么是变量,注意条件和结论的结构形式.解法一通过配方来完成,解法二运用三角代换的方法,解法三运用二次方程根的判别式来完成,解法四则主要运用了柯西不等式.本题入口宽,解法多样,对培养学生的发散思维能力很有好外.例2、n 2(n ≥4)个正整数排成几行几列:a 11 a 12 a 13 a 14 … a 1n a 21 a 22 a 23 a 24 … a 2n a 31 a 32 a 33 a 34 … a 3n … …a n 1 a n 2 a n 3 a n 4 … a nn其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等,已知2442431122131,,,.816nn a a a a a a ===+++ 求分析:由于等差数列可由首项与公差惟一确定,等比数列可由首项与公比惟一确定,如果设a 11=a ,第一行数的公差为d ,第一列数的公比为q ,容易算出a st =[a +(t -1)d ]q s -1,进而由已知条件,建立方程组,求出a ,d ,q .解答:设第一行数列公差为d ,各列数列公比为q ,则第四行数列公差是dq 3.于是可得方程组:24113421134342(3)1,1(),83,16a a d q a a d q a a dq ⎧⎪=+=⎪⎪=+=⎨⎪⎪=+=⎪⎩解此方程组,得111.2a d q ===±由于所给n 2个数都是正数,故必有q >0,从而有111.2a d q ===故对任意的1≤k ≤n ,有111112323412311[(1)].2123,22221123,22222:11111,2222222.22k k kk k k n n n n n n ka a q a k d q nS nS n S n nS --++-==+-==++++=++++=+++++=-- 故又两式相减后可得所以 说明:这是1990年全国高中学数学联赛的一道试题,涉及到等差数列、等比数列、数列求和的有关知识和方法.通过建立方程组确定数列的通项;通项确定后,再选择错位相减的方法进行求和.例3、设{a n }是由正数组成的等比数列,S n 是其前n 项之和.(1)证明:21lg lg lg ;2n n n S S S +++<(2)是否存在常数C >0,使得21lg()lg()lg()2n n n S C S C S C ++-+-=-成立?并证明你分析:对于问题(1),运用对数的性质将所证不等式转化为221,n n n S S S ++<运用等比数列求和公式时,要分q =1和q ≠1两种情况讨论;对于问题(2),充分运用已知条件,进行分析论证,可先假设存在常数C >0,使所证等式成立,然后设法推出矛盾.如果不能推出矛盾,再逆推来考虑常数C >0的存在性.解答:(1)证明:设{a n }的公比为q ,由已知得a 1>0,q >0. (i )当q =1时,S n =na 1,从而2222211111(2)(1)0.n n n S S S na n a n a a ++-=+-+=-<即有221.n n n S S S ++<(ii )当q ≠1时,1(1)1n n a q S q-=-,所以22212221121122(1)(1)(1)0.(1)(1)n n n nn n n a q q a q S S S a q q q ++++----=-=-<--由(i )与(ii )知,221n n n S S S ++<恒成立,又由于S n >0,两边取常用对数即得21lg lg lg .2n n n S S S +++<(2)不存在.要使21lg()lg()lg()2n n n S C S C S C ++-+-=-成立,则有221()()(),0.n n n nS C S C S C S C ++⎧--=-⎪⎨->⎪⎩ 分两种情况讨论: (i )当q =1时221211121()()()()[(2)][(1)]0,n n n S C S C S C na C n a C n a C a ++----=-+--+-=-<即不存在常数C >0使结论成立.(ii )当q ≠1时,若条件(S n -C ) (S n +2-C )= (S n +1-C )2成立,则(S n -C ) (S n +2-C )- (S n +1-C )222111111(1)(1)(1)111[(1)]0,n n n n a q a q a q C C C q q q a q a C q ++⎡⎤⎡⎤⎡⎤---=----⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=--= 因a 1q n ≠0,故只能有a 1-C (1-q )=0,即11a C q=-,此时由于C >0,a 1>0,必有0<q <1.但当0<q <1时,110,11nn n a a q S C S q q--=-=<--不满足S n -C >0,即不存在常数C >0,使结论综合(i )、(ii )可得,不存在常数C >0,使得21lg()lg()lg()2n n n S C S C S C ++-+-=-成立.说明:这是1995年的一道全国高考试题,主要考查等比数列、对数、不等式等基础知识和推理论证能力以及分析和解决问题的能力.其中第(2)问属探索性问题.探索性问题对数学思想方法的运用以及分析问题、解决问题的能力要求更高,探索性问题是高考与竞赛的热点问题.第(2)问还可以用反证法进行如下证明:假设存在常数C >0,使21lg()lg()lg(),2n n n S C S C S C ++-+-=-12221221210,①0,②0,③()()(),④④(2),⑤n n n n n n n n n n n n S C S C S C S C S C S C S S S C S S S ++++++++⎧->⎪->⎪⎨->⎪⎪--=-⎩-=+-则有由得 根据平均值不等式及①、②、③、④知212112()()2()≥2()0,n n n n n n n S S S S C S C S C S C ++++++-=-+----=因为C >0,故⑤式右端非负,而由第(1)问证明知,⑤式左端小于零,矛盾.故不存在常数C >0,使得21lg()lg()lg()2n n n S C S C S C ++-+-=-成立.例4、如图3.1,有一列曲线P 0,P 1,P 2,…,已知P 0所围成的图形是面积为1的等边三角形,P k +1由对P k 进行如下的操作得到:将P k 的每条边三等分,以每边中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉(k =0,1,2,…).记S n 为P n 所围成图形的面积.(1)求数列{S n }的通项公式;(2)求lim .n n S →∞分析:这是一道有关几何图形的操作性问题.采用从特殊到一般的思考方法,便容易入手.解答:如图,对P 0进行操作,容易看出P 0的每条边变成P 1的4条边,故P 1的边数为3³4,同样,对P 1进行操作,P 1的每条边变成P 2的4条边,故P 2的边数为3³42.类似地,容易得到P n 的边数为3³4n .已知P 0的面积为S 0=1,比较P 1与P 0,容易看出P 1在P 0的每条边上增加了一个小等边三角形,其面积为213,故1021131.33S S =+⨯=+再比较P 2与P 1,可知P 2在P 1的每条边上增加了一个小等边三角形,其面积为221133⨯,面P 1有3³4条边,故2143114341.333S S =+⨯⨯=++类似地有22326351144341.3333S S =+⨯⨯=+++于是猜想2135211211114441333343411493441()399144193483411()().①59559n n n kk nn k k k n n n S ----===+++++⎛⎫=+=+ ⎪⎝⎭⎡⎤-⎢⎥⎣⎦=+⨯-⎡⎤=+-=-⨯⎢⎥⎣⎦∑∑ 下面用数学归纳法证明①式.当n =1时,由上面已知①式成立.假设n =k 时,有834().559k k S =- 当n =k +1时,易知第k +1次操作后,比较P k +1与P k ,P k +1在P k 的每条边上增加了一个小等边三角形,其面积为2(1)13k +,而P k 有3³4k 条边,故12(1)12(1)13434834.5593k k k k k kk k S S S ++++=+⨯⨯⎛⎫=+=-⨯ ⎪⎝⎭综上,由数学归纳法①式得证.8348(2)lim lim .5595n n n n S →+∞→+∞⎡⎤⎛⎫=-⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦说明:本题是2002年全国高中数学联赛的第14题,这类问题的一般解题过程是:实验——归纳——猜想——论证,主要考查学生探索能力.例5、设a 0为常数,且a n =3n -1-2a n -1(n ∈N +) (1)证明:对任意n ≥1,101[3(1)2](1)2;5n n n n n n a a -=+-+-(2)假设对任意n ≥1有a n >a n -1,求a 0的取值范围.分析:本题中数列{a n }由递推关系确定,第一问可以用数学归纳法给予证明,也可以将数列{a n }转化为等比数列直接计算,第二问要对n 进行讨论.解答:(1)证法一:(i )当n =1时,由已知a 1=1-2a 0,等式成立; (ii )假设当n =k (k ≥1)等式成立,即101110111101[3(1)2](1)2,53223[3(1)2](1)251[3(1)2](1)2,5k k k k k k k k kk k k k k k k k k k k a a a a a a -+-+++++=+-+-=-=-+---=+-+- 则也就是说,当n =k +1时,等式也成立.根据(i)和(ii),可知等式对任何n ∈N +成立.证法二:如果设a n -λ3n =-2(a n -1-λ3n -1),用a n =3n -1-2a n -1代入,可解出1.5λ=所以135n n a ⎧⎫-⎨⎬⎩⎭ 是公式比为-2,首项为135a -的等比数列.所以10120133(12)(2)(),551[3(1)2](1)2.5n n n n n n n n a a n a a -+--=---∈=+-+-N 即 (2)解法一:由a n 通项公式得11111023(1)32(1)32,5n n n n n n n a a a -----⨯+-⨯⨯-=+-⨯所以a n >a n -1(n ∈N +)等价于1203(1)(51)()()2n n a n --+--<∈N(i )当n =2k -1,k =1,2,…时,①式即为222302303(1)(51)(),2131(),525k k k a a -----<<+即上式对k =1,2,…都成立,故有101311().5253a -<⨯+=(ii )当n =2k ,k =1,2,…时,①式即为212202203(1)(51)(),2131().525k k k a a -----<>-⨯+即为上式对k =1,2,…都成立,有2120131()0.525a ⨯->-⨯+=综上,①式对任意n ∈N +成立,有010,3a <<故a 0的取值范围为1(0,).3解法二:如果a n >a n -1(n ∈N +)成立,特别取n =1、2有a 1-a 0=1-3a 0>0,a 2-a 1=6a 0>0,因此010.3a <<下面证明当0103a <<时,对任意n ∈N +,有a n -a n -1>0.由a n 通项公式知:5(a n -a n -1)=2×3n -1+(-1)n -1³3³2n -1+(-1)n ³5³3³2n -1a 0. (i)当n =2k -1,k =1,2,…时,5(a n -a n -1)=2×3n -1+3³2n -1-5³3³2n -1a 0>2×2n -1+3³2n -1-5³2n -1 =0.(ii)当n =2k ,k =1,2,…时,5(a n -a n -1)=2×3n -1-3³2n -1+5³3³2n -1a 0>2×3n -1-3³2n -1 ≥0.故a 0的取值范围为1(0,).3说明:本题是2003年全国高考的最后一道压轴题,有一定难度.特别是第二问求参数a 0的取值范围,要转化为相关数列的最大值和最小值来进行分析讨论,请读者对这一方法务必理解透彻.例6、设{a n }为等差数列,{b n }为等比数列,且22211223312,,()b a b a b a a a ===<,又12lim ()2,n n b b b →+∞+++= 试求{a n }的首项与公差.分析:题中有两个基本量{a n }中的首项a 1和公差d 是需要求的,利用222123,,a a a 成等比数列和给定极限可列两个方程,但需注意极限存在的条件.解答:设所求数列{a n }的公差为d ,因为a 1<a 2,故d =a 2-a 1>0.又{b n }为等比数列,故2422213213,,b b b a a a == 即即422111()(2),a d a a d +=+化简得2211240a a d d ++=,解得1(2,20,d a =--±<而故a 1<0.若222121(2,1);a d a q a =-==则若222121(2,1),a d a q a =-==-则但12lim ()1n n b b b →+∞+++= 存在,故|q |<1,于是21)q =不可能.从而只有1(2,d a =-于是由212lim ()1,n n b b b →+∞+++== 得21a =111)2,(2 2.a d a ===-+=所以故数列{a n }的首项公差分别为 2.说明:本题是2001年全国高中数学联赛的第13题,涉及到的知识主要是等差数列、等比数列、无穷递缩等比数列所有项的和等知识,用到方程的思想和方法,且在解题过程中要根据题意及时取舍,如由题意推出d >0,a 1<0,|q |<1等,在解题中都非常重要.例7、设S ={1,2,3,…,n },A 为至少含有两项的、公差为正的等差数列,其项都在S 中,且添加S 的其他元素于A 后均不能构成与A 有相同公差的数列,求这种A 的个数(这里只有两项的数列也看作等差数列).[分析]:可先通过对特殊的n (如n =1,2,3),通过列举求出A 的个数,然后总结规律,找出a n 的递推关系,从而解决问题;也可以就A 的公差d =1,2,…,n -1时,讨论A 的个数.解答:解法一:设A 的公差为d ,则1≤d ≥n -1,分两种情况讨论:(i )设n 为偶数,则当1≤≤2n d 时,公差为d 的A 有d 个;当1≤≤12nd n +-时,公差为d 的A 有n -d 个,故当n 为偶数时,这种A 共有2(12){12[(1)]}().224n n n n +++++++-+= 个(ii )当n 为奇数,则当1≤≤2n d 时,公差为d 的A 有d 个;当1≤≤12n d n +-时,公差为d 的A 有n -d 个,故当n 为奇数时,这种A 共有2111(12)(12)().224n n n ---+++++++= 个综合(i )、(ii )可得,所求的A 有2[]4n 个.解法二:设n 元素集S ={1,2,…,n )中满足题设的A 有a n 个,则a 1=0,a 2=1,a 3=2(A ={1,3},A ={1,2,3}),a 4=4(A={1,3},{1,4},{2,4},{1,2,3,4}),故1[].2n n na a -=+事实上,S ={1,2,…,n }比S ={1,2,…,n -1}的A 增加有公差为n -1的1个,公差为n -2的1个,…,公差为2n (n 为偶数)或12n +(n 为奇数)的增加1个,共增加[]2n个.由{a n }的递推式可得2[].4n n a =说明:这是1991年全国高中数学联赛第二试的第一题,主要考查应用等差数列和分类讨论的知识与方法解决综合问题的能力.第四讲 递归数列例1、数列{a n }定义如下:1111,(1416n n a a a +==+求它的通项公式.分析:带根号的部分不好处理,容易想到作代换:令n b =解答:设n b 211, 5.24n n b a b -==于是原递推式可化为2211111(14),241624n n n b b b +---=++ 即(2b n +1)2=(b n +3)2,由于b n 、b n +1非负,所以2b n +1=b n +3,故111222113(3),213(3)(),213(),21111.243322n n n n n n n n n n b b b b b b a +----=--=-=+-==++ 故即故说明:这是1981年IMO 的预选题,解题的关键是换元、转化. 例2、设数列{a n }和{b n }满足a 0=1,b 0=0,且11763,()87 4.n n n n n n a a b n b a b ++=+-⎧∈⎨=+-⎩N 证明: a n (n ∈N )是完全平方数.分析:二元递推式给定二数列,可先消元,化为一元递推式,进而求出通项公式,问题就好办了.证明:由a n +1=7a n +6b n -3,b n +1=8a n +7b n -4可得b n +2-14b n +1+b n =0,其特征方程λ2-14λ+1=0的根为λ1=7+27λ=-因此,(7(7,n n n b A B =++-由a 0=1,b 0=0,得b 1=4,所以0,(7(74,A B A B +=⎧⎪⎨++-=⎪⎩解得66A B ==,故10112220112220(7],1(74)8111(7(744211[(2(2].2211(2(2221[222]21[222(]22n n n n n n n n n n n nn n n n n n n n n n n n n n n n n n n n n b a b b e C C C C C C C C C +----=+--=-+=++-+=+=+=++++-++=+ 从而由于2223,n n n C M -++其中,当n为偶数时,n n n nM C =为整数,当n为奇数时,11n n n n M C --=为整数.从而无论n 为奇数,还是n 为偶数,对n ∈N ,均有e n 为整数,故a n 为完全平方数.说明:如果消去b n 得到a n 的递推关系a n +1=14a n -a n -1-6(n ≥1),则求a n 的过程稍微麻烦一点.本题是2000年全国高中数学联赛二试第二题.这类题型也是二试考查的重点.例3、数列{a n }定义如下:1212110,1,(1)(1)(1),222n n n n na a a na n n a --===+-+--n ≥3.试求1221122123(1)n n n n nn n n n n f a C a C a n C a nC a ----=++++-+ 的最简表达式. 分析:仔细研究所给数列{a n }的递推式和所要化简的f n 的表达式,可以发现通过适当换元就能解决问题.123121111111211112:,0,,,()(1).!232!111(1)!!()!21(1)!()!22(1)!(1)!n n n n n n n nn kn n n k kk k n nn n k kk k k k k n a b b b b b b b n n n k g f n k C a b n n n k n k n k g g b b n k n k n k n k b b n k n k ---==++==-=-=====++--+==-+=--+-+-=-+---+-+=-+--+∑∑∑∑ 解答令则且再令故121122().(1)!n nk n k k k n k b b n k +=+-=-+=-+-∑∑∑令d n =(-2)n(b n -b n -1),则12(1),2!nn n n d d n -=+-所以d 2=2,且3222(1),2!!l nnn t l d l n ==+-=∑1112122112202(1),,!(2)(2)!2(1)(1)!!(1)(1)()!!(1)!!111(1)()(1)().!(1)!1(1)()0,(1)()0,nnnn n n n kn n n k k knn k k n n k k k k nkk k k d b b n n n k g g n k k n k k n k k n n k k n n nn k k -++=+==++===--===---+--=+---=+-+-+=-+-++-=-=∑∑∑∑∑∑因此于是又故11323344311(1)[1(1)]!(1)!11(1)!(1)!42,311!!()(2)!!111!()2!(1).2!3!!n n n n nn n k k g g n n n n n n g b b f n g n g k k n n g n n n +=+==-=----++=--+=+===-+-+=++-=-+∑∑∑ 由于则说明:这是2000年全国数学冬令营的第二题,运算量大,需要进行多次换元,将问题逐步转化.解题过程要求运算准确、细心.例4、设a 1=1,a 2=3,对一切自然数n 有a n +2=(n +3) a n +1-(n +2) a n ,求所有被11整除的a n 的值.解答:设b n +1= a n +1-a n (n ≥1),则由条件有b n +1=(n +1)( a n -a n -1)= (n +1) b n (n ≥2),故b n =nb n -1=n (n -1) b n -2=…= n (n -1)…3b 2=n ! (n ≥2).所以a n =( a n -a n -1)+( a n -1-a n -2)+…+( a 2-a 1)+a 1=b n +b n -1+…+b 2+1=1!.nk k =∑由此可算出:44188110101!33113,!46233114203,!403791311367083.k k k a k a k a k ======⨯===⨯===⨯∑∑∑当n ≥11时,注意到11!n k k =∑可被11整除,因而10111!!nn k k a k k ===+∑∑也可被11整除.故当n =4,n =8或n ≥10时,a n 均可被11整除.说明:这是1990年巴尔干地区的数学奥林匹克试题,本题中换元起了重要的作用.例5、数列{a n }按如下法则定义:1111,,24n n n a a a a +==+证明:对n >然数.分析:因为结论中涉及到根号及2n a项,因而令n b =平方就容易找到解题思路.解答:令2222122221111,,,2442116n n nnn n n na b b a a a b a +===+=++-则因为于是 22122221222211122211111111(),11242416()22(2),2[2(2)2]4(1).①n n nn n n n n n n n n b b b b b b b b b b b b +++---+=++++=+=++=+即所以因为34,24,n b b ====由①式及b 2,b 3∈N 知,当n >1时,b n ∈N .说明:这是1991年全苏数学冬令营的一道试题,通过换元,将关于a n 的问题转化为关于b n 的问题,可使问题得到顺利解决.例6、设数列{a n }满足101262,(≥1)1n n n a a a n a --+==+,求a n .分析:引入待定系数λ,设法将所给问题转化为我们所熟悉的问题.先求得数列{a n }的不动点λ1、λ2,则数列12{}n n a a λλ--为一个等比数列.解答:126(2)626(),1112n n n n n n n a a a a a a λλλλλλλ++-+----=-==++++- 令62λλλ--=-,得λ2-λ-6=0,解之得:λ1=3,λ2=-2,1111100111143(3),2(2),11331,24231{},243311()(),2244342(1)(0,1,2,)4(1)n n n n n n n n n n n n n n n n n n n n na a a a a a a a a a a a a a a a a n ++++++++--=-+=+++--=-++-+--=-=-+++-==+- 所以故即是公比为-的等比数列从而故说明:用待定系数法求一些数列的通项是非常有效的.这类问题的一般情形就是在知识梳理部分提到的第9个问题.例7、(1)已知a 1=0,a 2=4,a n +2=2a n +1-2a n ,n ∈N +,求a n .(2)已知a 1=0,a 2=2,a 3=6,a n +3=2a n +2+a n +1-2a n ,n ∈N +,求a n . (3)已知a 1=1,a 2=2,a 3=8,a n +3=6a n +2-12a n +1+8a n ,n ∈N +,求a n . (4)已知a 1=2,a 2=1,a 3=-13,a n +3=7a n +2-16a n +1+12a n ,n ∈N +,求a n . 分析:本题中四个小题均属于线性递归数列问题,可用特征根的方法来解决. 解答:(1)特征方程x 2=2x -2有两个相异的根x 1=1+i ,x 2=1-i ,则{a n }的通项公式为a n =c 1(1+i)n +c 2(1-i)n ,代入前两项的值,得122221(1)(1)0,(1)(1)4,i c i c i c i c ++-=⎧⎪⎨++-=⎪⎩ 解得c 1=-1-i ,c 2=-1+i .故31121(1)(1)2cos.4n n n n n a i i π++++=-+--=- (2)特征方程x 3=2x 2+x -2有三个相异的根x 1=1,x 2=-1,x 3=2,于是{a n }的通项公式为a n =c 1+c 2(-1)n +c 32n .代入初始值,得12312312320,42,86,c c c c c c c c c -+=⎧⎪++=⎨⎪-+=⎩ 解得c 1=-2,c 2=0,c 3=1,故a n =-2+2n .(3)特征方程x 3=6x 2-12x +8有三重根x =2,故{a n }的通项公式为c n =( c 1+c 2n +c 3n 2)²2n , 其中c 1,c 2,c 3满足方程组1231231232221,48162,824728,c c c c c c c c c -+=⎧⎪++=⎨⎪++=⎩ 解此方程组,得123311,,,44c c c ==-=故。

挑战奥数的三角函数

挑战奥数的三角函数

挑战奥数的三角函数三角函数是数学中的重要概念,广泛应用于各个领域。

它不仅是高中数学的重点内容,也是奥林匹克数学竞赛中的常见考点。

挑战奥数的三角函数,意味着我们需要深入理解三角函数的性质和运用,以更好地应对奥数竞赛中的难题。

三角函数包括正弦函数、余弦函数、正切函数等。

在解决数学问题时,我们通过运用三角函数来描述和分析角的关系。

下面我们将逐一介绍这些函数的基本概念和运算规律。

正弦函数是三角函数中最基本的函数之一。

它的定义域为实数集,值域为[-1, 1]。

我们可以通过单位圆的概念来理解正弦函数的性质。

在单位圆上,角θ对应的点的纵坐标就是正弦函数的值。

正弦函数具有周期性,即sin(θ) = sin(θ + 2kπ),其中k为整数。

利用这一性质,我们可以简化计算过程,并解决一些复杂的三角函数方程。

余弦函数是正弦函数的补函数。

它的定义域和值域与正弦函数相同,也具有周期性。

在单位圆上,角θ对应的点的横坐标就是余弦函数的值。

我们可以利用余弦函数来计算角平分线的性质,求解三角形的边长和角度等问题。

正切函数是正弦函数和余弦函数的商。

它的定义域为所有使余弦函数不为零的实数,值域为实数集。

在单位圆上,角θ的切线斜率就是正切函数的值。

正切函数也具有周期性,并且存在其它函数如反正切函数等与之相关的性质和运算规律。

除了这些常见的三角函数,还有诱导公式、和角公式等其他与三角函数密切相关的概念。

诱导公式指的是根据已知角或函数值,推导其他角或函数值的公式。

和角公式用于描述两个角的和及其函数值之间的关系。

了解这些公式的推导和应用,可以帮助我们更好地理解和运用三角函数。

挑战奥数时,我们需要熟练掌握三角函数的性质和运算规律,并能够灵活运用它们解决各种题目。

此外,我们还需要注意一些常见的技巧和策略。

比如,将复杂的三角函数方程转化为代数方程,利用三角函数的周期性简化计算,利用几何图形辅助分析和推导等等。

综上所述,挑战奥数的三角函数意味着我们需要深入理解三角函数的性质和运用,掌握其相关的公式和技巧,并能够灵活运用它们解决各种复杂的数学问题。

高中数学奥林匹克竞赛讲座:11三角运算及三角不等式

高中数学奥林匹克竞赛讲座:11三角运算及三角不等式

竞赛讲座11――三角运算及三角不等关系三角运算的基本含义是应用同角公式、诱导公式、加法定理(和、差、倍、半角公式等的统称),对三角式作各种有目的的变形(主要指恒等变形),有时表现为计算求值、有时表现为推理证明。

由于三角公式很多,并且存在着联系,因此一定要注意选择公式的目的性与简单性。

三角运算一.三角运算的常规思考三角运算主权涉及3个主要变形:角、函数名称、运算方式。

其中的难点与关键在角。

大量的三角运算技巧都与角的处理有关。

遇到一个三角问题,从角、函数名称、运算方式这3个主要方面去寻找下手地方与前进方向是解题的有效思考。

特别地,对于证明题,从找条件与结论的差异入手,并向着消除差异的方向前进,常能成功。

例1.已知βα,都是钝角,且1312sin =α,53)cos(=-αβ,求βsin例2.设βα,为锐角,且)sin(sin sin 22βαβα+=+,求证:2πβα=+。

二.三角变换与方程数学公式(或条件等式)本身就是一个等量关系,视公式(或等式)中的数学对象为已知值或未知值就成为一个方程。

例3.已知⎩⎨⎧=+=+a b βαβαcos cos sin sin (422≤+b a ),求)sin(βα+,)cos(βα+。

三.三角变换与构造法通过构造对偶式、构造方程、构造函数、构造图形等途径来求解三角问题例5.求54cos 52cosππ+的值。

例6.求值:︒︒-︒+︒80sin 40sin 50cos 10cos 22例7.已知:0cos cos cos 2211=+++n n A A A αααΛ0)1cos()1cos()1cos(2211=++++++n n A A A αααΛ求证:对任意R ∈β,恒有0)cos()cos()cos(2211=++++++βαβαβαn n A A A Λ。

例8 求满足等式4sin 347cos 1215=-+-x x 的锐角x 。

四.三角法引进三角函数,进行三角变形去解决其他代数、几何问题。

奥林匹克数学竞赛辅导资料全等三角形

奥林匹克数学竞赛辅导资料全等三角形

奥林匹克数学竞赛辅导资料全等三角形经验谈:你见过两片完全相同的树叶吗?你见过两个完全相同的事物吗?也许你从未意识到这世界上还有完全相同。

在这里我们将引导你的思路,给你解题技巧:完全相同--全等三角形。

内容综述:三解形是平面几何中最重要的图形,它的有关知识是今后我们学习四边形、多边形乃至立体几何的重要基础。

三角形全等的判定和性质是证明有关三角形问题的基础,必须熟练掌握。

判定两个三角形全等的方法有:SAS,ASA,AAS,SSS。

全等三角形的性质:全等三角形的对应边、对应角及其它对应元素相等。

要点讲解:例1:如图2-7-1,△ABC和△DCE均是等边三角形,B、C、E三点共线,AE交CD于G,BD交AC于F。

求证:①AE=BD②CF=CG思路①证明△ACE≌△BCD。

证明①∵△ABC和△DCE都是等边三角形,∴CB=CA,CD=CE,∠BCA=∠ECD=,∴∠BCD=∠ACE=,∴△BCD≌△ACE,∴AE=BD。

思路②证明△FCD≌△GCE。

证明②由△BCD≌△DCE都是等边三角形可知∴CD=CE,∠BCA=∠ECD=∴∠ACD=-∠BCA-∠ECD=∴△FCD≌△GCE,∴CF=CG说明:证明两条线段相等的重要方法之一就是证明它们所在的两个三角形全等。

例2:如图2-7-2,在正方形ABCD中,M是AB的中点,MN⊥MD,BN平分∠CBE。

求证:MD=MN。

思路:取AD的中点P,连结PM,证明△DMP≌△MNB。

证明:取AD的中点P,连结PM,则有DP=MB。

∵DM⊥MN,∴∠DMA+∠BMN=,又由正方形ABCD 知∠A=,∴∠DMA+∠MDA=,∴∠BMN=∠MDA又∵BN平分∠CBE,∴∠MBN=又由P、M分别为AD、AB的中点,ABCD是正方形,得△PAM是等腰直角三角形,故∠DPM=。

∴∠DPM=∠MBN,∴△DPM≌△MBN,∴DM=MN。

说明:本题中DM和MN所在的三角形不全等,这时就要考虑作出它们所在的新三角形,证明这两个新三角形全等。

奥林匹克及自主招生辅导材料(强烈推荐)第十二讲:三角不等关系 (1)

奥林匹克及自主招生辅导材料(强烈推荐)第十二讲:三角不等关系 (1)
分析:取 , 为一些特殊锐角,如

, , 等,均能构成三角形。因而猜想结论是肯定的。 6 4 3
一般地,在直径为 1 的圆上作 ABC ,使 A , B ,
94
则 BC sin , AC sin , AB sin C sin(180 ) sin( ) 因而能够构成三角形,严格的代数证明是,证任两者之和大于第三者。 证明: sin sin 2sin
本题虽然是不等式,但始终都是三角恒等变形。第一步统一了角,用了两倍角公式与三 倍角公式;第二步是统一括号里的函数号称,用了平方和公式;第三步配方是代数运算,无 需用到三角函数的特征。
探究 1:
已知 0 ,证明 2sin 2 cot

2
,并讨论 为何值时等号成立.
例 2.已知 , (0, ) ,能否以 sin ,sin ,sin( ) 的值为边长,构成三角形? 2
1 1 例 1.如果 0 ,证明: sin sin 2 sin 3 0. 2 3 4 证明:左端 sin sin cos (sin cos sin 2 ) 3 4 2 sin ( cos 2 cos ) 3 3 1 3 2 23 sin [ (2 cos ) ] 0 3 4 48
当 sin x 1 时,函数有极小值但不是最小值,一般地,函数 f ( x) a sin 2 x b sin x c 最 适合用配方法讨论。
探究 4:
求函数 f ( x) a sin 2 x b sin x cos x c cos 2 的最大、最小值 (a c, b 0).
探究 2:

高中数学奥林匹克竞赛讲座 33三角函数

高中数学奥林匹克竞赛讲座 33三角函数

竞赛讲座33-三角函数几何中的两个基本量是:线段的长度和角的大小.三角函数的本质就是用线段长度之比来表示角的大小,从而将两个基本量联系在一起,使我们可以借助三角变换或三角计算来解决一些较难的几何问题.三角函数不仅是一门有趣的学问,而且是解决几何问题的有力工具.1.角函数的计算和证明问题在解三角函数问题之前,除了熟知初三教材中的有关知识外,还应该掌握:(1)三角函数的单调性当a为锐角时,sina与tga的值随a的值增大而增大;cosa与ctga 随a的值增大而减小;当a为钝角时,利用诱导公式转化为锐角三角函数讨论.注意到sin45°=cos45°=,由(1)可知,当时0<a<45°时,cosa>sina;当45°<a<90°时,cosa<sina.(2)三角函数的有界性|sina|≤1,|cosa|≤1,tga、ctga可取任意实数值(这一点可直接利用三角函数定义导出).例1(1986年全国初中数学竞赛备用题)在△ABC中,如果等式sinA+cosA=成立,那么角A是()(A)锐角(B)钝角(C)直角分析对A分类,结合sinA和cosA的单调性用枚举法讨论.解当A=90°时,sinA和cosA=1;当45°<A<90°时sinA>,cosA>0,∴sinA+cosA>当A=45°时,sinA+cosA=当0<A<45°时,sinA>0,cosA>∴sinA+cosA>∵1, 都大于.∴淘汰(A)、(C),选(B).例2(1982年上海初中数学竞赛题)ctg67°30′的值是()(A)-1 (B)2-(C)-1(D)(E)分析构造一个有一锐角恰为67°30′的Rt△,再用余切定义求之.解如图36-1,作等腰Rt△ABC,设∠B=90°,AB=BC=1.延长BA到D使AD=AC,连DC,则AD=AC=,∠D=22.5°,∠DCB=67.5°.这时,ctg67°30′=ctg∠DCB=∴选(A).例3(1990年南昌市初中数学竞赛题)如图,在△ABC中,∠A所对的BC边的边长等于a,旁切圆⊙O的半径为R,且分别切BC及AB、AC的延长线于D,E,F.求证:R≤a·证明作△ABC的内切圆O′,分别切三边于G,H,K.由对称性知GE=KF(如图36-2).设GB=a,BE=x,KC=y,CF=b.则x+a=y+b, ①且BH=a,BD=x,HC=y,DC=b.于是,x-a=y-b. ②①+②得,x=y.从而知a=b.∴GE=BC=a.设⊙O′半径为r.显然R+r≤OO′ (当AB=AC)时取等号.作O′M⊥EO于M,则O′M=GE=a,∠OO′M=∴R+r≤两式相加即得R≤.例4(1985年武汉等四市初中联赛题)凸4n+2边形A1A2A3…A4n+2(n为自然数)各内角都是30°的整数倍,已知关于x的方程:x2+2xsinA1+sinA2=0 ①x2+2xsinA2+sinA3=0 ②x2+2xsinA3+sinA1=0 ③都有实根,求这凸4n+2边形各内角的度数.解∵各内角只能是、、、,∴正弦值只能取当sinA1=时,∵sinA2≥sinA3≥∴方程①的判别式△1=4(sin2A1-sinA2)≤440方程①无实根,与已知矛盾,故sinA1≠.当sinA1=时,sinA2≥,sinA3≥,∴方程①的判别式△1=4(sin2A1-sinA2)=0.方程①无实根,与已知矛盾,故sinA1=.综上所述,可知sinA1=1,A1=.同理,A2=A3=.这样其余4n-1个内角之和为这些角均不大于又n为自然数,∴n=1,凸n边形为6边形,且A4+A5+A6=4×2.解三角形和三角法定理推论设a、b、c、S与a′、b′、c′、S′.若我们在正、余弦定理之前介绍上述定理和推论是为了在解三角形和用三角函数解几何题时有更大的自由.(1)解三角形例5(第37届美国中学生数学竞赛题)在图36-3中,AB是圆的直径,CD是平行于AB的弦,且AC和BD相交于E,∠AED=α,△CDE和△ABE的面积之比是( ).(A)cosα(B)sinα(C)cos2α(D)sin2α(E)1-sinα解如图,因为AB∥DC,AD=CB,且△CDE∽△ABE,BE=AE,因此连结AD,因为AB是直径,所以∠ADB=在直角三角形ADE中,DE=AEcosα.∴应选(C).例6 (1982年上海初中数学竞赛题)如图36-4,已知Rt△斜边AB=c,∠A=α,求内接正方形的边长.解过C作AB的垂线CH,分别与GF、AB交于P、H,则由题意可得又∵△ABC∽△GFC,∴,即(2)三角法.利用三角知识(包括下一讲介绍的正、余弦定理)解几何问题的方法叫三角法.其特点是将几何图形中的线段,面积等用某些角的三角函数表示,通过三角变换来达到计算和证明的目的,思路简单,从而减少几何计算和证明中技巧性很强的作辅助线的困难.例7(1986年全国初中数学竞赛征集题)如图36-5,在△A BC中,BE、CF是高,∠A=,则△AFE和四边形FBCE的面积之比是()(A)1∶2(B)2∶3(C)1∶1(D)3∶4解由BE、CF是高知F、B、C、E四点共圆,得AF·AB=AE·AC.在Rt△ABE中,∠ABE=,∴S△AFE∶S FBCE=1∶1.应选(C).例8 (1981年上海中学生数学竞赛题)在△ABC中∠C为钝角,AB边上的高为h,求证:AB>2h.证明如图36-6,AB=AD+BD=h(ctgA+ctgB) ①∵∠C是钝角,∴∠A+∠B<,∴ctgB>ctg(-A)=tgA.②由①、②和代数基本不等式,得例9 (第18届国际数学竞赛题)已知面积为32cm2的平面凸四边形中一组对边与一条对角线之长的和为16cm.试确定另一条对角线的所有可能的长度.解如图36-7,设四边形ABCD面积S为32cm2,并设AD=y,AC=x,BC=z.则x+y+z=16(cm)由但S=32,∴sinθ=1,sin =1,且x-8=0.故θ==且x=8,y+z=8.这时易知另一条对角线BD的长为此处无图例10 (1964年福建中学数学竞赛题)设a、b、c是直角三角形的三边,c为斜边,整数n≥3,求证:a n+b n<c n.分析如图34-8,注意到Rt△ABC的边角关系:a=csinα>0,b=ccosα>0,可将不等式转化为三角不等式sin nα+cos nα<1来讨论.证明设直角三角形一锐角∠BAC=α(如图),则。

奥林匹克竞赛教程及自主招生辅导材料(强烈推荐)第一讲:技巧方程

奥林匹克竞赛教程及自主招生辅导材料(强烈推荐)第一讲:技巧方程

当然,本题还有另外两个换元解法,我们简单地说一下:
x 2 2 y , 方法一:设 y 2 2 x ,代入原方程即可转化为方程组 y 2 2 x.
方法二:设 x 2 cos , 0 90 , 原方程可转化为 cos cos
x0 2 x0 2 2 x0 2 2 2 x0 2 2 2 2 x0 ,而这与方程根的定义矛盾!
(2) 当 x0 2 时, x0 2 x0 同样推出矛盾:
x0 2 x0 2 2 x0 2 2 2 x0 2 2 2 2 x0 .所以,原方程只根 x 2.
探究 1:
这里有一道第三届北方数学邀请赛的试题,同学们可以思考一下:
1 已知 f ( x) lg(x 1) log3 x . 2
(1)解方程 f ( x) 0; (2)求集合 M {n | f (n2 214n 1998) 0, n Z} 的子集的个数.
例 2.解方程 x 2 2 2 2 x . 解:观察易见,方程 x 2 x 必是原方程的解,因为用 x 2 x 代入根号内的 x 时, 有 x 2 x 2 2 x 2 2 2 x 2 2 2 2 x 1 ○
习题参考答案……………………………………………………… (124) 探究题目参考答案………………………………………………… (146)
第一讲 技巧方程
中学课本中的常规方程已经有成熟的常规解法.“技巧方程”将从两个方面作补充:其一 是对常规方程提供一些非常规的解法; 其二是对非常规的方程提供一些常规或非常规的技巧. 总的目的是从方法的角度去提高分析问题、解决问题的能力.
1 x 1, x 由非负数的性质,得 x 1 1 . x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:由 , 均为钝角知 | | 若 0 ,则 [ 推出

2
. 3 12 sin sin( ). 5 13

2
( )] cos( )

2
( ) ,从而

2
与 为钝角矛盾,故只有 0
解法二(作自身代换构造方程)设 x cos 平方,得 x 2 cos 2
2 4 2 cos cos cos 0, 5 5 5 5
2 4 2 4 cos cos 2 2 cos 5 5 5 5
4 8 sin sin 1 4 1 8 5 5 (1 cos ) (1 cos ) 2 2 4 2 5 2 5 2sin 2sin 5 5 1 1 4 8 (cos cos ) 2 2 5 5 1 1 4 2 (cos cos ) 2 2 5 5 1 1 x, 2 2
86
解法一(构造配对式)设 x cos 配对
y cos
则有 xy cos 2


2 4 cos 2 5 5
1 4 1 8 (1 cos ) (1 cos ) 2 5 2 5
1 4 2 (cos cos ) 2 5 5 1 y. 2 1 约去 y 0, 得 x . 2
2 cos 2 x cos x (1 cos

2
,得
cos
5 4 ,sin( ) , 有 13 5 12 3 5 4 16 ( ) . 13 5 13 5 25
sin sin[ ( )] sin cos( ) cos sin( )
三角运算主要涉及 3 个主要变形:角、函数名称、运算方式.其中的难点与关键在角. 大量的三角运算技巧都与角的处理有关.遇到一个三角问题,从角、函数名称、运算方式这 3 个主要方面去寻找下手地方与前进方向是解题的有效思考.特别地,对于证明题,从找条件 与结论的差异入手,并向着消除差异的方向前进,常能成功.选择出角.三角变换与方程
数学公式(或条件等式)本身就是一个等量关系,视公式(或等式)中的数学对象为已 知条值或未知值就成了一条方程。 例 2.已知 sin sin b , cos cos a. (a 2 b 2 4) ,求 sin( ), cos( ) 的值。 解:本题的角法有很多,从方程的观点来看,就是求两个未知数,而条件中恰好给出了两个 等量关系。要害是由角 , 导出 + . 由已知条件,有
2ab a2 b2 , cos( ) 2 . 2 a b a b2
2
探究 2:
求 sin18 的准确值。
三.三角变换与构造
通过构造对偶式、构造方程、构造函数、构造图形等途径来求解三角问题. 例 3.求 cos
2 4 cos 的值。 5 5 2 4 cos 5 5 2 4 cos 5 5
b sin[( ) ] sin[( ) ] (cos cos ) sin( ) (sin sin ) cos( ) a sin( ) b cos( ).
1 ○ 2 ○
同理可得 a b sin( ) a cos( ) 联立○ 1 ○ 2 解得 sin( )
解方程,得 cos
4 2 1 cos x . 5 5 2 2 4 cos , 5 5
解法三(构造同形方程)设 cos x cos 2 x cos 易知 cos x cos
2 4 , cos 2 x cos 时,上式均成立,代入倍角公式,有 5 5 2 4 cos ) 0. 5 5
第十一讲 三角运算
三角运算的基本含义是应用同角公式、诱导公式、加法定理(和、差、倍、半角公式的 统称) ,对三角式作各种有目的的变形(主要指恒等变形) ,有时表现为计算求值,有时表现 为推理证明.由于三角公式很多,并存在着联系,因此一定要注意选择公式的目的性与简单 性。 本讲首先讲介绍常规思考,然后了解一些竞赛技巧,同时也体现三角工具的应用(三角 法) 。
85
( ) 就明确了解题方向,判定了角 的符号就解决了解题的关键.本题容易
产生的失误是得出两解
16 56 56 或 ,或只得出 一个解. 65 65 65
探究 1:
设 , 为锐角,且 sin
2
sin 2 sin( ) ,求证:
12 3 ,cos( ) . 求 sin . 13 5
分析:条件中的角 , 与结论中的角 ,为了沟通这 3 个角之间的联系,想到恒等式
( ) ,利用 sin sin[ ( )] 进行计算.另外还要看 sin( ) 的符号.
一.三角运算的常规思考
三角运算主要涉及 3 个主要的变形:角、函数名称、运算方式.其中的难点与关键在角。 大量的三角运算技巧都与角的处理有关。如常见的三角运算技巧:化异为同、降高为低、引 进辅助角、1 的代换、和差凑配、万能变换等,大都具有变换角的存在方式的功能。 遇到一个三角问题,应该从角、函数名称、运算方式这 3 个主要方面去寻找下手地方与 前进方向是角题的有效思考。特别地,对于证明题,从找条件与结论的差异入手,并向着消 除差异的方向前进,常能成功。 例 1. 已知 , 都是钝角,且 sin
相关文档
最新文档