2009届高考数学高考复习(基础知识、常见结论)
2009年全国各地高考数学试题及解答分类汇编大全(03函数的性质及其应用)

2009年全国各地高考数学试题及解答分类汇编大全(03函数的性质及其应用)、选择题1 . (2009北京文、理)为了得到函数y的图像,只需把函数 10A .向左平移3个单位长度,再向上平移B .向右平移3个单位长度,再向上平移C .向左平移3个单位长度,再向下平移 1个单位长度D .向右平移3个单位长度,再向下平移 1个单位长度 1.【解析】本题主要考查函数图象的平移变换 .属于基础知识、基本运算的考查A y =lg x 3 1 =lg10 x 3 ,B . y =lg x 「3iT=lg10 x -3C .x +3 y -lg x 3 -1 一 lg 10D.x —3y =lg x -3 -1 =lg故应选C.12. (2009福建文)下列函数中,与函数 y有相同定义域的是J x1XA .f(x)=lnxB. f (x)C. f(x)=|x|D. f (x)二 ex112.解析 解析 由y可得定义域是x • 0. f (x) =ln x 的定义域x 0 ; f (x) 的定义域是xV x x丰0; f (x) =| x |的定义域是 x R ;f(x)=e x 定义域是R 。
故选A.3. (2009福建文)定义在R 上的偶函数f x 的部分图像如右图所示,则在-2,0上,下列函数中与f x 的单调性不同的是2A . y =x 1 B. y =| x | 12x 1,x — 0e x ,x _oC. y =3D . y x[x 3+1,x v 0[e ,xv03.解析解析根据偶函数在关于原点对称的区间上单调性相反, 故可知求在-2,0上单调递减,注意到要与f x 的单调性不同, 故所求的函数在 -2,0上应单调递增。
而函数 y =x 2,1在(-°°,1】上递减;函数y = x +1在(—°°,0】时单调递减;函数 y =递减,理由如下y'=3x 2>0(x<0),故函数单调递增,显然符合题意;而函数y =lg x 的图像上所有的点1个单位长度一1个单位长度 N+1,xA 0,有在―,0]上单调y'=-e"x<0(x<0),故其在(-°°,0]上单调递减,不符合题意,综上选C。
2009高考数学解答题专题攻略——解析几何打

(6)数列与《解析几何》问题的携手是一种值得关注的动向.
求曲线方程、求弦长、求角、求面积、求特征量、求最值、证明某种关系、证明定值、求轨迹、 1 2
高考数学解答题专题攻略——解析几何
一、08高考真题精典回顾:
x2y2
1.(安徽卷22).设椭圆C:2?2?1(a?b?
0)过点M
,且着焦点为F1( ab
(Ⅰ)求椭圆C的方程;
(Ⅱ)当过点P(4,1)的动直线l与椭圆C相交与两不同点A,B时,在线段AB上取点Q,满足??????????APQB?,证明:点Q总在某定直线上 2(辽宁卷20).在直角坐标系xOy中,点P
(1)直线与圆锥曲线的位置关系(含各种对称、切线)的研究与讨论仍然是重中之重. 由于导数的介入,抛物线的切线问题将有可能进一步“升温”.
(2)抛物线、椭圆与双曲线之间关系的研究与讨论也将有所体现.
(3)与平面向量的关系将进一步密切,许多问题会“披着”向量的“外衣”.
(4)函数、方程与不等式与《解析几何》问题的有机结合将继续成为数学高考的“重头戏”.
(I)证明:点P(x0,0)的所有“相关弦”的中点的横坐标相同;
(II) 试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?
若存在,求其最大值(用x0表示):若不存在,请说明理由.
二、高考解析几何分析与预测:
解析几何是代数与几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向量等知识,形成了轨迹、最值、对称、范围、参系数等多种问题,因而成为高中数学综合能力要求最高的内容之一.直线和圆锥曲线位置关系问题是解析几何问题大题的难点问题,通常学生在解决直线和圆锥曲线问题上,往往要做三步,一就是联立方程组,二就是求判别式,并且判别符号..第三,运用韦达定理,如果这三步做完了,就是解不等式,或者求函数的值域或定义域的问题了. 具体如下:
2009年江苏省高考数学重点内容分类精析

2009年江苏省高考数学重点内容分类精析一.集合(集合及其表示A ;子集B ,交集、并集、补集B )1. 满足{}1234,,,M a a a a ⊆,且{}123,,M a a a {}12,a a =的集合M 的个数是 2 2. 设P 是一个数集,且至少含有两个数,若对任意,a b P ∈都有,,,aa b a b ab P b+-∈(除数0b ≠),则称P 是一个数域,例如有理数Q 是数域。
有下列命题:①数域必含有0,1两个数;②整数集是数域;③若有理数Q M ⊆,则数集M 必为数域;④数域必为无限集。
其正确的命题的序号是 ①④ (把你认为正确的命题的序号都填上)二.函数概念与基本初等函数Ⅰ(函数的概念B ;函数的基本性质B ) 3. 若函数()y f x =的定义域是[]0,2,则函数()()21f xg x x =-的定义域是 [0,1] 4. 定义在R 上的函数()f x 满足()()()2(,)f x y f x f y xy x y R +=++∈,()12f =,则()3f -等于 65. 设函数()221,12,1x x f x x x x ⎧-≤=⎨+->⎩,则()12f f ⎛⎫ ⎪ ⎪⎝⎭的值为 1516三.函数概念与基本初等函数Ⅰ(指数与对数B ;指数与对数的图象和性质B ;对数函数的图象和性质B ;幂函数A ;函数与方程A ;函数模型及其应用B ))6.则下列四个结论正确的是 ③ (填正确序号)①;a b c >> ②;b a c >> ③c a b >>; ④b c a >> 7.已知函数()()1212123,23(,,x p x p f x f x x R p p --==⋅∈为常当选),函数()f x 的定义为:对每一个给定的实数x ,()()()()()()()112212,f x f x f x f x f x f x f x ≤⎧⎪=⎨>⎪⎩若,若(1) 求()()1f x f x =对所有实数x 成立的充分必要条件(用12,p p 表示) (2) 设,a b 是两个实数,满足a b <且()12,,p p a b ∈,若()()f a f b =,求证:函数()f x 在区间[],a b 上的单调增区间的长度之和为2b a-(闭区间[],m n 的长度定义为n m -) 解:(1)由()f x 的定义可知,1()()f x f x =(对所有实数x )等价于()()12f x f x ≤(对所有实数x )这又等价于12323x p x p --≤ ,即123log 2332x p x p ---≤=对所有实数x 均成立. (*)由于121212()()()x p x p x p x p p p x R ---≤---=-∈的最大值为12p p -, 故(*)等价于1232p p -≤,即123log 2p p -≤,这就是所求的充分必要条件(2)分两种情形讨论(i )当1232p p log -≤时,由(1)知1()()f x f x =(对所有实数[,]x a b ∈)则由()()f a f b =及1a p b <<易知12a bp +=,再由111113,()3,p x x p x p f x x p --⎧<⎪=⎨≥⎪⎩的单调性可知,函数()f x 在区间[,]a b 上的单调增区间的长度为22a b b ab +--=(参见示意图1) (ii )1232p p log ->时,不妨设12,p p <,则213log 2p p ->,于是 当1x p ≤时,有1212()33()p xp x f x f x --=<<,从而1()()f x f x =;当2x p ≥时,有312122122log 212()333333()x p p p x p p p x p x p f x f x --+----===>=从而 2()()f x f x = ; 当12p x p <<时,11()3x p f x -=,及22()23p xf x -=⋅,由方程12323x p p x --=⋅解得12()()f x f x 与图象交点的横坐标为12031log 222p p x +=+ ⑴ 显然10221321[()log 2]2p x p p p p <=---<,这表明0x 在1p 与2p 之间。
2009年高考浙江数学(理科)试题和参考答案

初中数学知识点归纳总结一、基本运算方法1、配方法所谓配方,就是把一个分析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的使用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和分析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且使用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法和韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的使用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和和积,求这两个数等简单使用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
2009年高考数学试题分类汇编——集合与逻辑

A.充分而不必要条件 C.充分必要条件
B.必要而不充分条件 .
D.既不充分也不必要条件
答案:C
【解析】对于“ a > 0 且 b > 0 ”可以推出“ a + b > 0 且 ab > 0 ”,反之也是成立的
6.(2009 浙江理)设U = R , A = {x | x > 0}, B = {x | x > 1},则 A ∩ ðU B = ( )
2009 年高考数学试题分类汇编——集合与逻辑
一、填空题
{ } 1.(2009 年广东卷文)已知全集U = R ,则正确表示集合 M = {−1, 0,1}和 N = x | x2 + x = 0
关系的韦恩(Venn)图是
【答案】B
{ } 【解析】由 N = x | x2 + x = 0 ,得 N = {−1, 0} ,则 N ⊂ M ,选 B.
答案:B
{ } 【解析】 对于 CU B = x x ≤ 1 ,因此 A ∩ ðU B = {x | 0 < x ≤ 1}.
4.(2009 浙江理)已知 a,b 是实数,则“ a > 0 且 b > 0 ”是“ a + b > 0 且 ab > 0 ”的 ( )
A.充分而不必要条件
B.必要而不充分条件
A.{x | 0 ≤ x < 1} B.{x | 0 < x ≤ 1} C.{x | x < 0}
D.{x | x > 1}
答案:B .
{ } 【解析】 对于 CU B = x x ≤ 1 ,因此 A ∩ ðU B = {x | 0 < x ≤ 1}.
7.(2009 浙江文)设U = R , A = {x | x > 0}, B = {x | x > 1},则 A ∩ ðU B = ( )
2009高考数学解答题专题攻略——解析几何-推荐下载

(Ⅱ)若 OA OB ,求 k 的值;
(Ⅲ)若点 A 在第一象限,证明:当 k>0 时,恒有| OA |>| OB |
本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考 查综合运用解析几何知识解决问题的能力.满分 12 分.
解:(Ⅰ)设 P(x,y),由椭圆定义可知,点 P 的轨迹 C 是以 (0,,, 3) (0 3) 为焦点,
2 ym
.从而 AB 的垂直平分线 l 的方程为
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2009-2013年高考数学考点汇总

函数性质: 数形结合
函数性质: 数形结合、对数函 数
函数性质: 周期性、图象交 点、数形结合 向量运算: 垂直、求参数
数列: 已知递推关系求 和 导数的几何意 义: 切线方程
函数性质: 数形结合
13
导数的几何意 义: 切线方程
解析几何: 圆的方程
向量运算: 求参数
14
圆锥曲线: 抛物线
统计: 随机模拟、样本推 断总体
统计与概率: 分段函数、分布
立体几何: 线线垂直证明
-6-
反证法
线面角
二面角
列
线面角
19
统计与概率: 独立重复试验 概率、分布列
统计与概率: 卡方检验
统计与概率: 频数分布表、 分布 列
立体几何: 线线垂直证明 二面角
统计与概率: 独立重复试验 概率、分布列
20
解析几何: 椭圆方程 (待定 系数法) 、韦达定 理
求参数的值
求参数的取值范 围
-8-
解析几何: 椭圆、韦达定理
解析几何: 轨迹方程 (直接 法) 、基本不等式
解析几何: 抛物线、圆、基 本量计算;
解析几何: 轨迹方程 (定义 法) 、韦达定理
21
导数:
导数:
导数: 切线、求参数; 不等式、 分类讨论 求参数取值范围
导数: 单调区间 不等式、 综合转化
导数: 切线、求参数; 不等式、分类讨 论求参数取值范 围
8
三角函数: 图象、求参数
9
函数性质: 奇偶性、数形结 合
三角函数: 化简求值
定积分: 面积
三角函数: 单调性、 的范 围
二项式: 系数、求参数的 值
10
程序框图 补全判断框
2009年高考数学试题

2009年高考数学试题2009年高考数学试题是中国高考中的一套数学试题,该试题对考生的数学知识和解题能力进行了全面考察。
下面将对2009年高考数学试题进行逐题分析和解答,以帮助考生更好地理解和应对类似的数学考试题目。
一、选择题1. 设函数f(x) = 3x^2 + 2x - 1,若f(ax^2 - bx + 1) = 0恰好有一个实数根,则实数a和b的乘积为多少?解答:首先代入f(ax^2 - bx + 1) = 0,得到3(ax^2 - bx + 1)^2 +2(ax^2 - bx + 1) - 1 = 0。
展开并整理得到3a^2x^4 - (6ab - 2a)x^3 + (2a^2 - 2)b^2x^2 + (2a^2 - 2b - 2)x + (3a^2 + 2a - 1) = 0。
由于方程有一个实数根,根据实根系数定理可知系数a^2大于等于0,故3a^2 + 2a - 1 = 0。
解此方程得到a = 1/3或a = -1。
考虑a = 1/3的情况,将3ax^2 - bx + 1带入f(x) = 0得到3(1/3x^2 -bx + 1)^2+ 2(1/3x^2 - bx + 1) - 1 = 0,化简后得到x^2 - 9bx + 25 = 0。
由于方程有一个实数根,根据判别式可知b^2 - 4ac = (-9b)^2 - 4(1)(25) =81b^2 - 100 ≥ 0。
解此不等式得到 -10/9 ≤ b ≤ 10/9。
因此,当a = 1/3时,b的取值范围为[-10/9, 10/9]。
考虑a = -1的情况,将-3x^2 - bx + 1带入f(x) = 0得到3(-x^2 - bx + 1)^2 + 2(-x^2 - bx + 1) - 1 = 0,化简后得到x^2 + 5bx + 6 = 0。
由于方程有一个实数根,根据判别式可知b^2 - 4ac = (5b)^2 - 4(1)(6) = 25b^2 - 24≥ 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009届高考数学高考复习(基础知识、常见结论)请同学们对照课本和笔记填写,相信你一定能做到一、集合与简易逻辑:一、理解集合中的有关概念(1)集合中元素的特征: , , 。
集合元素的互异性:如:)}lg(,,{xy xy x A =,}|,|,0{y x B ,求A ;(2)集合与元素的关系用符号∈,∉表示。
(3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集 。
(4)集合的表示法: 列举法 , 描述法 , 韦恩图 。
注意:区分集合中元素的形式:如:}12|{2++==x x y x A ;}12|{2++==x x y y B ;}12|),{(2++==x x y y x C ;}12|{2++==x x x x D ;},,12|),{(2Z y Z x x x y y x E ∈∈++==;}12|)',{(2++==x x y y x F ;},12|{2xy z x x y z G =++== (5)空集是指不含任何元素的集合。
(}0{、φ和}{φ的区别;0与三者间的关系) 空集是任何集合的子集,是任何非空集合的真子集。
注意:条件为B A ⊆,在讨论的时候不要遗忘了φ=A 的情况。
如:}012|{2=--=x ax x A ,如果φ=+R A ,求a 的取值。
二、集合间的关系及其运算(1)符号“∉∈,”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关系 ; 符号“⊄⊂,”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 。
(2)_}__________{_________=B A ;____}__________{_________=B A ; _}__________{_________=A C U(3)对于任意集合B A ,,则:①A B B A ___;A B B A ___;B A B A ___;②⇔=A B A ;⇔=A B A ;⇔=U B A C U ;⇔=φB A C U ;③=B C A C U U ; )(B A C U =;(4)①若n 为偶数,则=n ;若n 为奇数,则=n ;②若n 被3除余0,则=n ;若n 被3除余1,则=n ;若n 被3除余2,则=n ;三、集合中元素的个数的计算:(1)若集合A 中有n 个元素,则集合A 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。
(2)B A 中元素的个数的计算公式为:=)(B A Card ;(3)韦恩图的运用:四、x x A |{=满足条件}p ,x x B |{=满足条件}q ,若 ;则p 是q 的充分非必要条件B A _____⇔;若 ;则p 是q 的必要非充分条件B A _____⇔;若 ;则p 是q 的充要条件B A _____⇔;若 ;则p 是q 的既非充分又非必要条件___________⇔;五、原命题与逆否命题,否命题与逆命题具有相同的 ; 注意:“若q p ⌝⇒⌝,则q p ⇒”在解题中的运用,如:“βαsin sin ≠”是“βα≠”的 条件。
六、反证法:当证明“若p ,则q ”感到困难时,改证它的等价命题“若q ⌝则p ⌝”成立, 步骤:1、假设结论反面成立;2、从这个假设出发,推理论证,得出矛盾;3、由矛盾判断假设不成立,从而肯定结论正确。
矛盾的来源:1、与原命题的条件矛盾;2、导出与假设相矛盾的命题;3、导出一个恒假命题。
适用与待证命题的结论涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼时。
二、函数一、映射与函数:(1)映射的概念: (2)一一映射:(3)函数的概念:如:若}4,3,2,1{=A ,},,{c b a B =;问:A 到B 的映射有 个,B 到A 的映射有 个;A 到B 的函数有 个,若}3,2,1{=A ,则A 到B 的一一映射有 个。
函数)(x y ϕ=的图象与直线a x =交点的个数为 个。
二、函数的三要素: , , 。
相同函数的判断方法:① ;② (两点必须同时具备)(1)函数解析式的求法:①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法:①)()(x g x f y =,则 ; ②)()(*2N n x f y n ∈=则 ; ③0)]([x f y =,则 ; ④如:)(log )(x g y x f =,则 ;⑤含参问题的定义域要分类讨论;如:已知函数)(x f y =的定义域是]1,0[,求)()()(a x f a x f x -++=ϕ的定义域。
⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。
如:已知扇形的周长为20,半径为r ,扇形面积为S ,则==)(r f S ;定义域为 。
(3)函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:),(,)(2n m x c bx ax x f ∈++=的形式; ②逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常用来解,型如:),(,n m x dcx b ax y ∈++=; ④换元法:通过变量代换转化为能求值域的函数,化归思想; ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如:)0(>+=k xk x y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
求下列函数的值域:①])1,1[,,0,0(-∈>>>-+=x b a b a bxa bx a y (2种方法); ②)0,(,32-∞∈+-=x x x x y (2种方法);③)0,(,132-∞∈-+-=x x x x y (2种方法); 三、函数的性质:函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)导数法(适用于多项式函数)复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。
f(x) -f(-x)=0⇔ f(x) =f(-x)⇔f(x)为偶函数;f(x)+f(-x)=0⇔ f(x) =-f(-x) ⇔f(x)为奇函数。
判别方法:定义法, 图像法 ,复合函数法应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x 满足:f(x+T)=f(x),则T 为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x 满足:f(x+a)=f(x -a),则2a 为函数f(x)的周期.应用:求函数值和某个区间上的函数解析式。
四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。
常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考) 平移变换 y=f(x)→y=f(x+a),y=f(x)+b注意:(ⅰ)有系数,要先提取系数。
如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。
(ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。
对称变换 y=f(x)→y=f(-x),关于y轴对称y=f(x)→y=-f(x) ,关于x轴对称y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。
(注意:它是一个偶函数)伸缩变换:y=f(x)→y=f(ωx),y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。
一个重要结论:若f(a -x)=f(a+x),则函数y=f(x)的图像关于直线x=a 对称;如:)(x f y =的图象如图,作出下列函数图象:(1))(x f y -=;(2))(x f y -=;(3)|)(|x f y =;(4)|)(|x f y =;(5))2(x f y =;(6))1(+=x f y ;(7)1)(+=x f y ;(8))(x f y --=;(9))(1x f y -=。
五、反函数:(1)定义:(2)函数存在反函数的条件: ;(3)互为反函数的定义域与值域的关系: ;(4)求反函数的步骤:①将)(x f y =看成关于x 的方程,解出)(1y f x -=,若有两解,要注意解的选择;②将y x ,互换,得)(1x f y -=;③写出反函数的定义域(即)(x f y =的值域)。
(5)互为反函数的图象间的关系: ;(6)原函数与反函数具有相同的单调性;(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。
如:求下列函数的反函数:)0(32)(2≤+-=x x x x f ;122)(-=x x x f ;)0(21log )(2>-+=x x x x f 七、常用的初等函数:(1)一元一次函数:)0(≠+=a b ax y ,当0>a 时,是增函数;当0<a 时,是减函数;(2)一元二次函数:一般式:)0(2≠++=a c bx ax y ;对称轴方程是 ;顶点为 ;两点式:))((21x x x x a y --=;对称轴方程是 ;与x 轴的交点为 ;顶点式:h k x a y +-=2)(;对称轴方程是 ;顶点为 ;①一元二次函数的单调性:当0>a 时: 为增函数; 为减函数;当0<a 时: 为增函数; 为减函数; ②二次函数求最值问题:首先要采用配方法,化为h k x a y +-=2)(的形式,Ⅰ、若顶点的横坐标在给定的区间上,则 0>a 时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得;0<a 时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得;Ⅱ、若顶点的横坐标不在给定的区间上,则0>a 时:最小值在距离对称轴较近的端点处取得,最大值在距离对称轴较远的端点处取得;0<a 时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得;有三个类型题型:(1)顶点固定,区间也固定。
如:]1,1[,12-∈++=x x x y(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。
(3)顶点固定,区间变动,这时要讨论区间中的参数.]1,[,12+∈++=a a x x x y ③二次方程实数根的分布问题: 设实系数一元二次方程0)(2=++=c bx ax x f 的两根为21,x x ;则:注意:若在闭区间],[n m 讨论方程0)(=x f 有实数解的情况,可先利用在开区间),(n m 上实根分布的情况,得出结果,在令n x =和m x =检查端点的情况。