北京市西城区2016-2017八年级上学期期末考试数学试题汇编

合集下载

北京市西城区-学年度第一学期期末试卷八年级数学A卷及答案

北京市西城区-学年度第一学期期末试卷八年级数学A卷及答案

北京市西城区2016~2017学年度第一学期期末试卷(北区)八年级数学(A卷)2012.1(时间100分钟,满分100分)题号一二三四五总分得分一、精心选一选(本题共30分,每小题3分)1.下列四个汽车标志图中,不是..轴对称图形的是( ).A. B.C.D.2.计算33-的结果是().A.9-B.27-C.271D.271-3.下列说法中,正确的是( ).A.16的算术平方根是4- B.25的平方根是5C.1的立方根是1±D.27-的立方根是3-4.下列各式中,正确的是().A.2121+=++ababB.21422-=--aaaC.22)2(422--=-+aaaaD.abab--=--115.下列关于正比例函数5y x=-的说法中,正确的是().A.当1x=时,5y=B.它的图象是一条经过原点的直线C.y随x的增大而增大D.它的图象经过第一、三象限6.如右图,在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E. 若∠CBD:∠DBA =3:1,则∠A为().A.18° B.20° C.22.5° D.30°7.如下图,在边长为a的正方形中,剪去一个边长为b的小正方形(ba>),将余下部分剪开后拼成一个梯形,根据两个图形阴影面积的关系,可以得到一个关于a,b的恒等式为( ).EDCBANMaA .2222)(b ab a b a +-=- B.2222)(b ab a b a ++=+ C .))((22b a b a b a -+=- D.)(2b a a ab a +=+ 8.下列条件中,不能..判定两个直角三角形全等的是( ). A.两锐角对应相等 B .斜边和一条直角边对应相等 C .两直角边对应相等 D.一个锐角和斜边对应相等 9.若一次函数y kx b =+不等式0≥+b kx 的解集为( ). A.0≥x B.1≥x C.2≥x D.2≤x 10.在直线2121+=x y A.4个 B.3个 二、细心填一填(本题共16分,每小题2分)11.在54,11-,•7.0,π2,38.12.函数1+=x y 中,自变量x 的取值范围是______________.13.如右图,△ABC 为等边三角形,DC ∥AB ,AD ⊥CD 于D .若△ABC 的周长为12 c m,则CD =________ cm.14.点(1-,2)关于x 轴对称的点的坐标为___________________.15.如右图,在△A BC中,AC = BC ,D 是BC 边上一点,且AB =AD =D C,则∠C =_________°.16.若将直线)0(≠=k kx y 的图象向下平移1个单位长度后经过点(1,5),则平移后直线的解析式为______________________.17.如右图,在△ABC 中,∠C =90°,BD 平分∠CBA交AC 于点D .若AB=a ,C D=b ,则△ADB 的面 积为______________ .18.下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,拼搭第3个图案需18根小木棒,……,依此规律,拼搭第8个图案需__________根小木棒.ABCA D CBC DAB第1个 第2个 第3个 第4个 ……三、耐心算一算(本题共19分,第19题6分,第20题3分,第21、22题各5分) 19.因式分解:(1)2225a b -; (2)2816ax ax a -+. 解: 解:20.计算:23259-+-.解:21.先化简,再求值:21)21441(22++÷++++x x x x x x ,其中x =3. 解:22.解分式方程:45251=+-++xx x . 解:四、认真做一做(本题共17分,第23题6分,第24题5分,第25题6分) 23.已知:如图,CB =DE ,∠B =∠E ,∠BA E=∠C AD .求证:∠ACD =∠ADC .证明:A CD……24.已知:如图1,长方形A BC D中,AB =2,动点P在长方形的边BC ,CD ,DA 上沿AD C B →→→的方向运动,且点P 与点A ,B 都不重合.图2是此运动过程中,△ABP 的面积y 与点P 经过的路程x 之间的函数图象的一部分. 请结合以上信息回答下列问题:(1)长方形ABCD 中,边BC 的长为________;(2)若长方形AB CD 中,M 为CD 边的中点,当点P 运动到与点M 重合时,x =________,y =________;(3)当106<≤x 时,y 与x 之间的函数关系式是___________________; (4)利用第(3)问求得的结论,在图2中将相应的y 与x 的函数图象补充完整. 图125.已知:直线321+-=x y 与x (1)分别求出A,B 两点的坐标;(2)过A 点作直线AP 与y 轴交于点P,且使OP =2OB , 求△ABP 的面积.解:(1)(2)五、仔细想一想(本题共18分,每小题6分)26.已知:如图,在△ABC 中,AB =AC ,∠BA C=30°.点D为△ABC 内一点,且DB =DC ,∠DCB =30°,点E 为BD 延长线上一点,且AE =AB .(1)求∠AD E的度数;(2)若点M 在DE 上,且DM =DA ,求证:ME =DC . CMBDAE27.有一个装有进水管和出水管的容器,水管的所有阀门都处于关闭状态.初始时,打开容器的进水管,只进水;到5分钟时,打开容器的出水管,此时既进水又出水; 到15分钟时,关闭容器的进水管,只出水; 到t 分钟时,容器内的水全部排空.已知此容器每分钟的进水量与出水量均为常数,容器内的水量y (单位:升)与时间x (单位:分)之间的函数关系如图所示,请根据图象回答下列问题: (1)此容器的进水管每分钟进水______升;(2)求515x ≤≤时,容器内的水量y 与时间x 的函数关系式; (3)此容器的出水管每分钟出水多少升?t 的值为多少? 解:(2)28.已知:△ABC 中,A D平分∠BA C交BC 于点D,且∠AD C=60°.问题1:如图1,若∠ACB=90°,AC =m AB ,BD =nD C, 则m 的值为_________,n 的值为__________.问题2:如图2,若∠ACB 为钝角,且A B>A C,BD >DC . (1)求证:AC AB DC BD -<-;(2)若点E 在AD 上,且DE =DB ,延长CE 交AB 于点F ,求∠BF C的度数. 证明:(1) 图1ABDCA BCDEF北京市西城区2011 — 2012学年度第一学期期末试卷(北区)八年级数学(A 卷)参考答案及评分标准二、细心填一填(本题共16分,每小题2分)11.11-,π2;(答对1个给1分) 12.x ≥1-; 13.2; 14.(1-,2-); 15.36; 16.16-=x y ; 17.ab 21; 18.88.三、耐心算一算(本题共19分,第19题6分,第20题3分,第21、22题每题5分) 19.(1)解:2225b a -=)5)(5(b a b a -+. -----------------------------------------------------------------2分(2)解:a ax ax 1682+-=)168(2+-x x a ---------------------------------------------------------------------4分=2)4(-x a . ---------------------------------------------------------------------------6分20.解:23259-+-=23253-+- ----------------------------------------------------------------------1分=23253-+- -----------------------------------------------------------------------2分=266-. --------------------------------------------------------------------------------3分 21.解:21)21441(22++÷++++x x x x x x=21])2(1)2(1[2++÷+++x x x x x =21)2(222++÷++x x x x x ----------------------------------------------------------------------2分=22(1)2(2)1x x x x x ++⋅++ =222x x+. ---------------------------------------------------------------------------------4分当3=x 时,原式=22323+⨯=152. --------------------------------------------------5分22.解:方程两边同乘(5)x +,得 20421+=-+x x . --------------------------------2分 解得 7-=x . ---------------------------------------------------------------------------4分检验:7-=x 时50x +≠,7-=x 是原分式方程的解. ---------------------5分四、认真做一做(本题共17分,第23题6分,第24题5分,第25题6分)23.证明:如图1.∵∠BAE =∠C AD , ∴∠BA E-∠CA E =∠CA D-∠CAE ,即∠BA C=∠EAD . -------------------------------------1分在△ABC 和△AED 中,∠BAC =∠EA D,∠B =∠E ,BC =ED ,∴△A BC ≌△AE D. ------------------------------------------------------------------4分∴AC =AD . -----------------------------------------------------------------------------5分∴∠A CD =∠A DC . -------------------------------------------------------------------6分24.解:(1)4; --------------------------- (2)5,4;(每空1分) ----------------E A C D 图1(3)10+-=x y ; -----------------------------4分 (4)如图2. --------------------------------------5分25.解:(1)令0=y ,则6=x ;∴点A的坐标为A(6,0); ------------令0=x ,则3=y ;∴点B 的坐标为B (0,3). ---------------2分(2)如图3.∵OB =3,且O P=2OB , ∴OP =6.∵点P 在y 轴上,∴点P 的坐标为(0,6)或(0,6-).(两个坐标各1分) ------4分 若点P 的坐标为(0,6),则OA BP S ABP ⋅=∆21=6)36(21⨯-⨯=9; --------------------------------5分若点P 的坐标为(0,6-),则OA BP S ABP ⋅=∆21=6)63(21⨯+⨯=27. -------------------------------6分 ∴△ABP 的面积为9或27.五、仔细想一想(本题共18分,每小题6分) 26.解:(1)如图4.∵△AB C中,AB =AC ,∠B AC =30°,∴∠ABC =∠AC B=2)30180(÷-=75°.∵DB =DC ,∠D CB =30°, ∴∠DBC =∠DCB =30°. ∴∠1=∠ABC -∠DBC =75°-30°=45°. -------------------1分∵AB =AC ,DB =DC ,∴AD 所在直线垂直平分BC. ∴AD 平分∠BAC .∴∠2=21∠BAC =3021⨯=15°. -----------------------------------------------2分∴∠ADE =∠1+∠2 =45°+15°=60°. -----------------------------------------3分证明:(2)证法一:取B E的中点N ,连接AN .(如图5)∵△ADM 中,DM =DA,∠ADE =60°, ∴△ADM 为等边三角形. ------------∵△AB E中,AB =AE,N 为BE 的中点,B∴DN =NM . -----------------------------------5分 ∴BN-D N =NE -NM, 即 BD =M E. ∵DB =DC,∴ME = DC . ---------------------------------------------------------------------6分证法二:如图6.∵△AD M中,DM =DA ,∠ADE =60°, ∴△ADM 为等边三角形. ------------∴∠3=60°. ∵AE =A B, ∴∠E =∠1=45°.∴∠4=∠3-∠E =60°-45°=15°. ∴∠2=∠4. 在△A BD 和△AE M中,∠1 =∠E , AB =A E, ∠2 =∠4,∴△ABD ≌△AE M. ------------------------------------------------------------5分∴BD =EM . ∵DB = DC ,∴M E = DC . ---------------------------------------------------------------------6分阅卷说明:其他正确解法相应给分.27.解:(1) 8 ; ----------------------------------------------------------------------------------1分(2)设当5≤x ≤15时,函数解析式为(0)y kx b k =+≠.∵点(5,40),(15,60)在此线段上,则 4056015.k b k b =+⎧⎨=+⎩, -----------------------------------------------------------------2分解得 230.k b =⎧⎨=⎩,∴230y x =+. --------------------------------------------------------------------3分∴当5≤x ≤15时,230y x =+.B8(6040)(155)6--÷-=(升). ------------------------------------------4分15分钟后排空容器内的水所需时间为:60610÷=(分) -------------5分则 151025t =+=(分). -----------------------------------------------------6分答:此容器的出水管每分钟出水6升,t 的值为25.28.解:问题1:21,2 ;(每空1分) -------------------------------------------------------2分 问题2:(1)在AB 上截取AG ,使AG =A C,连接GD .(如图7) ∵AD 平分∠BAC ,∴∠1=∠2. 在△AGD 和△ACD 中, AG =A C,∠1 =∠2, AD =AD,∴△AGD ≌△A CD .∴DG =DC . -------------------------------------------------------------------------3分∵△BGD 中,BD -DG <BG , ∴BD -DC <BG .∵BG = AB -AG = AB -AC ,∴BD -DC <AB -AC . ------------------------------------------------------------4分(2)∵由(1)知△AG D≌△ACD ,∴GD =CD ,∠4 =∠3=60°. ∴∠5 =180°-∠3-∠4=180°-60°-60°=60°. ∴∠5 =∠3.在△BGD 和△ECD 中,DB =DE ,∠5 =∠3, DG =DC ,∴△BG D≌△ECD . --------------------------------------------------------------5分∴∠B =∠6.∵△BFC 中,∠B FC =180°-∠B -∠7 =180°-∠6-∠7 =∠3, ∴∠BFC =60°. ---------------------------------------------------------------------6分阅卷说明:其他正确解法相应给分.图7 7654321GF EDC B A。

2016-2017年 北京西城区初二数学上学期期末试题(含答案word直接打印)

2016-2017年 北京西城区初二数学上学期期末试题(含答案word直接打印)

北京市西城区2016-2017学年度第一学期期末试卷八 年 级 数 学 2017.1一、选择题(本题共30分,每小题3分)各题有四个选项,只有一个..是符合题意的. 1.下列二次根式中,最简二次根式是( ).A.B.18 2. 2015年9月14日,意大利物理学家马尔科•德拉戈收到来自激光干涉引力波天文台(LIGO )的系统自动提示邮件,一股宇宙深处的引力波到达地球,在位于美国华盛顿和烈文斯顿的两个LIGO 探测器上产生了-18410⨯米的空间畸变(如图中的引力波信号图像所示),也被称作“时空中的涟漪”,人类第一次探测到了引力波的存在,“天空和以前不同了……你也听得到了.”这次引力波的信号显著性极其大,探测结果只有三百五十万分之一的误差. 三百五十万分之一约为0.000 000 285 7.将0.000 000 285 7用科学记数法表示应为( ). A .-82.85710⨯ B. -72.85710⨯ C . -62.85710⨯ D. -60.285 710⨯ 3.以下图形中,不是..轴对称图形的是( ).4. 如图,在△ABC 中,∠B =∠C =60︒,点D 在AB 边上,DE ⊥AB ,并与AC 边交于点E . 如果AD=1,BC=6,那么CE 等于( ). A. 5B. 4C. 3D. 2 5.下列各式正确的是( ). A. 6212121= x x x x --⋅= B. 62331 x x x x --÷== C. 323322 () x xy x y y --== D. 13223y x x y -⎛⎫= ⎪⎝⎭6.化简211x x --正确的是( ).A. 221(1)1111x x x x x --==--- B. 221(1)111x x x x x --==--- C. 21(1)(1)111x x x x x x -+-==+-- D.21(1)(1)1111x x x x x x -+-==--+7. 在△ABD 与△ACD 中,∠BAD =∠CAD ,且B 点,C 点在AD 边两侧,则不一定...能使△ABD 和△ACD 全等的条件是( ). A. BD =CD B. ∠B =∠C C. AB =AC D. ∠BDA =∠CDA8.下列判断错误的是( ).A. 当a ≠0时,分式2a有意义B. 当3a =-时,分式239a a +-有意义 C. 当12a =-时,分式2a +1a 的值为0 D. 当1a =时,分式21a a-的值为19. 如图,AD 是△ABC 的角平分线,∠C =20︒,AB BD AC +=,将△ABD 沿AD 所在直线翻折,点B 在AC 边上的落点记为点E ,那么∠AED 等于( ). A. 80︒ B.60︒ C. 40︒ D. 30︒10. 在课堂上,张老师布置了一道画图题:画一个Rt △ABC ,使∠B =90°,它的两条边分别等于两条已知线段.小刘和小赵同学先画出了∠MBN =90°之后,后续画图的主要过程分别如下图所示.那么小刘和小赵同学作图确定三角形的依据分别是( ).A. SAS ,HLB. HL ,SASC. SAS ,AASD. AAS ,HL小刘同学小赵同学二、填空题(本题共18分,每小题3分)11. 0(π-3)=________.12.在实数范围内有意义,那么x的取值范围是_________.13. 在平面直角坐标系xOy中,点(5,1)-关于y轴对称的点的坐标为_________.14. 中国新闻网报道:2022年北京冬奥会的配套设施——“京张高铁”(北京至张家口高速铁路)将于2019年底全线通车,届时,北京至张家口高铁将实现1小时直达. 目前,北京至张家口的列车里程约200千米,列车的平均时速为v千米/时,那么北京至张家口“京张高铁”运行的时间比现在列车运行的时间少________小时.(用含v的式子表示)15. 如图所示的“钻石”型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂..黑一个...小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.(1)画出其中一种涂色方式并画出此时的对称轴;(2)满足题意的涂色方式有_____种.16. 对于实数p,我们规定:用<p>表示不小于p的最小整数,例如:<4>=4,<3>=2. 现对72进行如下操作:(1)对36只需进行_______次操作后变为2;(2)只需进行3次操作后变为2的所有正整数中,最大的是________.三、解答题(本题共52分) 17. (本题6分,每小题3分)分解因式:(1)3225a b a b -; (2)231212a a -+.解: 解:18. (本题6分)化简并求值:222142442a a a a a a a a ---⎛⎫-÷ ⎪++++⎝⎭,其中1a =-.19. (本题6分)解方程:2217111x x x +=-+-. 解:小华在学习二次根式时遇到如下计算题,他是这样做的:请你先把他在第一步中出现的其它错误圈画出来(不必改正),再.完成此题的解答.......过程...解:21. (本题6分)如图,△P AO和△PBQ是等边三角形,连接AB,OQ.求证:AB =OQ.证明:阅读下列材料:小铭和小雨在学习过程中有如下一段对话:小铭:“我知道一般当m ≠n 时,2m n +≠2m n +.可是我见到有这样一个神奇的等式:2()a b a b b -+=2()a b a b b-+(其中a ,b 为任意实数,且b ≠0).你相信它成立吗?”小雨:“我可以先给a ,b 取几组特殊值验证一下看看.” 完成下列任务:(1)请选择两组你喜欢的、合适的a ,b 的值,分别代入阅读材料中的等式,写出代入后得到的具体等式并验证它们是否成立(在相应方框内打勾);① 当a = ,b = 时,等式 (□成立;□不成立);② 当a = ,b = 时,等式 (□成立;□不成立).(2)对于任意实数a ,b (b ≠0),通过计算说明2()ab a b b -+=2()a b a b b-+是否成立. 解:23. (本题5分)阅读下列材料:为了了解学校初二年级学生的阅读情况,小廉所在实践小组的同学们设计了相应的调查问卷,他们共发放问卷300张,收回有效问卷290张,并利用统计表整理了每一个问题的数据,绘制了统计图.他们的调查问卷中,有关“阅读载体的选择”和“阅读过书的类型”两个问题的统计情况如下表所示.表1:表2:根据以上材料解答下列问题:(1)根据表1中的统计数据,选择合适的统计图对其进行数据的描述;(2)通过表2中统计出的数据你能得到哪些结论?请你说出其中的一条即可.解:(1)(2)24. 先阅读以下材料,再从24.1、24.2两题中任选一题....作答(若两题都做以第一题为准).............24.1题5分(此时卷面满分100分),24.2题7分(卷面总分不超过100分).请先在以下相应方框内打勾,再解答相应题目.24.1解决下列两个问题:(1)如图2,在△ABC中,AB=3,AC=4,BC=5,EF垂直且平分BC,点P在直线EF上,直接写出P A+PB的最小值,回答P A+PB取最小值时点P的位置并在图中标出来......;解:P A+PB的最小值为,P A+PB取最小值时点P的位置是;(2)如图3,点M,N分别在直线AB两侧,在直线AB上找一点P,使得MPB NPB∠=∠.要求画图,并简要叙述确定点P位置的步骤.(无需尺规作图,保留画图痕迹,无需证明)解:确定点P位置的简要步骤:.24.2借鉴阅读材料中解决问题的三个步骤完成以下尺规作图....: 已知三条线段h ,m ,c ,求作△ABC ,使其BC 边上的高AH =h ,中线AD =m ,AB = c .(1)请先画草图(画出一个即可),并叙述简要的作图思路(即实现目标图的大致作图步骤);(4分) 解:(2)完成尺规作图(不要求写作法.......,作出一个满足条件的三角形即可).(3分)25. (本题6分)在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE =DA(如图1). (1)求证:∠BAD=∠EDC;(2)点E关于直线BC的对称点为M,连接DM,AM.①依题意将图2补全;②小姚通过观察、实验提出猜想:在点D运动的过程中,始终有DA=AM.小姚把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明DA=AM,只需证△ADM错误!未找到引用源。

2016北京西城八年级上期末数学试卷

2016北京西城八年级上期末数学试卷

2021北京西城八年级上期末数学试卷一、选择题1.计算22-的成果是〔 〕.A .14B .14-C .4D .4-2.以下剪纸作品中,不是..轴对称图形的是〔 〕. A . B .C .D .3.在以下分解因式的过程中,分解因式正确的选项是〔 〕. A .()xz yz z x y -+=-+ B .2232(32)a b ab ab ab a b -+=- C .232682(34)xy y y x y -=-D .234(2)(2)3x x x x x +-=+-+4.以下分式中,是最简分式的是〔 〕. A .2xy x B .222x y-C .22x yx y +-D .22xx + 5.一次函数(2)3y m x =-+的图象颠末第一、二、四象限,那么m 的取值范围是〔 〕. A .0m < B .0m >C .2m <D .2m >6.分式11x --可变形为〔 〕. A .11x + B .11x -+ C .11x -- D .11x -7.假设一个等腰三角形的两边长别离为2和4,那么这个等腰三角形的周长是为〔 〕. A .8 B .10 C .8或10D .6或128.如图,B ,D ,E ,C 四点共线,且ABD △≌ACE △,假设105AEC ∠=︒,那么DAE ∠的度数等于〔 〕.A .30︒B .40︒C .50︒D .65︒9.如图,在ABC △中,BD 等分ABC ∠,与AC 交于点D ,DE AB ⊥于点E ,假设5BC =,BCD △的面积为5,那么ED 的长为〔 〕.A .12 B .1 C .2 D .510.如图,直线y x m =-+与直线5y nx n =+〔0n ≠〕的交点的横坐标为2-,那么关于x 的不等式50x m nx n -+>+>的整数解为〔 〕. A .5-,4-,3- B .4-,3- C .4-,3-,2-D .3-,2-二、填空题11.假设分式11x -在实数范围内有意义,那么x 的取值范围是__________.12.分解因式224x y -=__________.13.在平面直角坐标系xOy 中,点(2,3)P -关于y 轴的对称点的坐标是__________.14.如图,点B 在线段AD 上,ABC D ∠=∠,AB ED =.要使ABC △≌EDB △,那么需要再添加的一个条件是__________〔只需填一个条件即可〕.15.如图,在ABC △中,ABC ACB ∠=∠,AB 的垂直等分线交AC 于点M ,交AB 于点N .连接MB ,假设8AB =,MBC △的周长是14,那么BC 的长为__________.16.对于一次函数21y x =-+,当23x -≤≤时,函数值y 的取值范围是__________.17.如图,要测量一条小河的宽度AB 的长,可以在小河的岸边作AB 的垂线MN ,然后在MN 上取两点C ,D ,使BC CD =,再画出MN 的垂线DE ,并使点E 与点A ,C 在一条直线上,这时测得的长就是AB 的长,此顶用到的数学道理是:__________.18.甲、乙两人都从光明学校出发,去距离光明学校1500m 远的篮球馆打球,他们沿同一条道路匀速行走,乙比甲晚出发4min .设甲行走的时间为t (单元:min ),甲、乙两人相距y (单元:m ),暗示y 与t 的函数关系的图象如下图,按照 图中提供的信息,以下说法: ①甲行走的速度为30m/min②乙在距光明学校500m 处追上了甲 ③甲、乙两人的最远距离是480m ④甲从光明学校到篮球馆走了30min正确的选项是__________〔填写正确结论的序号〕. 三、解答题 19.分解因式:〔1〕2()3()a b a b -+-.〔2〕221218ax ax a -+. 20.计算: 〔1〕42223248515a b a b c c ÷. 〔2〕24()221x x x x x x -⋅+++. 21.2a b -=,求222()2ab a a a ab b a b÷--+-的值. 22.解分式方程2242111x x x x x -+=-+.23.:如图,A ,O ,B 三点在同一条直线上,A C ∠=∠,12∠=∠,OD OB =.求证:AD CB =. 24.列方程解应用题中国地大物博,过去由于交通不便,一些地域的经济开展受到了制约,自从“高铁网络〞在全国陆续延伸以后,许多地域的经济和旅游发生了翻天覆地的变化,高铁列车也成为人们外出旅行的重要交通东西.李老师从北京到某地去旅游,从北京到该地普快列车行驶的路程约为1352km ,高铁列车比普快列车行驶的路程少52km ,高铁列车比普快列车行驶的时间少8h .高铁列车的平均时速是普快列车平均时速的2.5倍,求高铁列车的平均时速.25.在平面直角坐标系xOy中,将正比例函数2=-的图象沿y轴向上平移4个单元长度后与y轴交y x于点B,与x轴交于点C.〔1〕画正比例函数2=-的图象,并直接写出直线BC的解析式;y x〔2〕如果一条直线颠末点C且与正比例函数2P m,求m的值及直线CP的解=-的图象交于点(,2)y x析式.26.阅读以下材料:操纵完全平方公式,可以将多项式2(0)ax bx c a ++≠变形为2()a x m n ++的形式,我们把这样的变形方法叫做多项式2ax bx c ++的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:22221111112411()()2422x x x x ++=++-+按照 以上材料,解答以下问题:〔1〕用多项式的配方法将281x x +-化成2()x m n ++的形式;〔2〕下面是某位同学用配方法及平方差公式把多项式2340x x --进行分解因式的解答过程: 老师说,这位同学的解答过程中有错误,请你找出该同学解答中开始呈现错误的处所,并用“〞标画出来,然后写出完整的、正确的解答过程:〔3〕求证:x ,y 取任何实数时,多项式222416x y x y +--+的值总为正数. 27.:ABC △是等边三角形.〔1〕如图1,点D 在AB 边上,点E 在AC 边上,BD CE =,BE 与CD 交于点F .试判断BF 与CF 的数量关系,并加以证明; 〔2〕点D 是AB 边上的一个动点,点E 是AC 边上的一个动点,且BD CE =,BE 与CD 交于点F .假设BFD △是等腰三角形,求FBD ∠的度数.2021北京西城八年级上期末数学试卷附加题 一、填空题1.〔1〕32a b a +=,那么ba =__________. 〔2〕115ab -=,那么3533a ab ba ab b--=--__________.二、解答题 2.不雅察以下各等式:(8.1)(9)(8.1)(9)---=-÷-,11()(1)()(1)22---=-÷-, 4242-=÷,993322-=÷, ┅┅按照 上面这些等式反映的规律,解答以下问题:〔1〕上面等式反映的规律用文字语言可描述如下:存在两个实数,使得这两个实数的 ____________等于它们的____________;〔2〕填空:____________4-=____________4÷; 〔3〕请你再写两个实数,使它们具有上述等式的特征: ____________-____________=____________÷____________;〔4〕如果用y 暗示等式左边第一个实数,用x 暗示等式左边第二个实数〔0x ≠且1x ≠〕,①x与y之间的关系可以暗示为:____________〔用x的式子暗示y〕;x ,当x____________时,y有最____________值(填“大〞或“小〞),这个最值为②假设1____________.3.如图1,在平面直角坐标系xOy 中,点A 在y 轴上,点B 是第一象限的点,且AB y ⊥轴,且AB OA =,点C 是线段OA 上任意一点,连接BC ,作BD BC ⊥,交x 轴于点D . 〔1〕依题意补全图1;〔2〕①用等式暗示线段OA ,AC 与OD 之间的数量关系,并证明;②连接CD ,作CBD ∠的等分线,交CD 边于点H ,连接AH ,求BAH ∠的度数.2021北京西城八年级上期末数学试卷答案一、选择题19.〔1〕解:2()3()a b a b -+-()(3)a b a b =--+.〔2〕解:221218ax ax a -+ 22(3)a x =-.20.〔1〕解:42223248515a b a b c c ÷232a c =. 〔2〕解:24()221x x x x x x -⋅+++ 21x x -=+. 21.解:222()2ab a a a ab b a b÷---- 1a b=-. 当2a b -=时,原式12=. 22.解:方程两边都乘以(1)(1)x x +-,约去分母,得22412(1)x x x x x -+-=-.解这个整式方程,得12x =-.经查验12x =-是原分式方程的解.所以,原分式方程的解为12x =-.23.证明:∵点A ,O ,B 三点在同一条直线上,∴1 =180COB ∠+∠︒,2180AOD ∠+∠=︒. ∵12∠=∠, ∴COB AOD ∠=∠. 在AOD △和COB △中, ∴AOD △≌COB △. ∴AD CB =.24.解:设普快列车的平均时速为km/h x ,那么高铁列车的平均时速为2.5km/h x . 由题意,得135213525282.5x x--=. 解得:104x =.经查验,104x =是原分式方程的解,且符合题意. 那么2.5260x =.答:高铁列车的平均时速为260km/h . 25.解:〔1〕列表:作出函数图像: 24y x =-+.直线BC 的解析式为〔2〕∵直线与正比例函数2y x =-的图象 交于点(,2)P m , ∴22m =-. 解得1m =-.∴点P 的坐标为(1,2)-.由〔1〕直线BC 与x 轴交于点C , ∴点C 的坐标为(2,0).设直线CP 的解析式为y kx b =+〔0k ≠〕, ∴220k b k b -+=⎧⎨+=⎩解这个方程组得2343k b ⎧=-⎪⎪⎨⎪=⎪⎩.∴直线CP 的解析式为2433y x =-+.26.解:〔1〕281x x +-2(4)17x =+-.〔2〕2340x x --x0 1y2-解: 2340x x -- =22233340x x -+-- =2(3)49x --〔3〕证明:222416x y x y +--+ ∵2(1)0x -≥,2(2)0y -≥, ∴22(1)(2)110x y -+-+>.∴x ,y 取任何实数时,多项式222416x y x y +--+的值总是正数. 27.〔1〕BF CF =.证明:如图1,ABC △是等边三角形, ∴60ABC ACB ∠=∠=︒. 在DBC △和ECB △中, BD CEABC ACB BC CB =⎧⎪∠=∠⎨⎪=⎩, ∴DBC △≌ECB △. ∴DCB EBC ∠=∠. ∴BF CF =.〔2〕由〔1〕FBC FCB ∠=∠,60ABC ∠=︒. 设FBC FCB α∠=∠=, ∴60DBF α∠=︒-. 当BFD △是等腰三角形时,①假设FD FB =,那么FBD FDB A ∠=∠>∠. ∴60FBD FDB ∠=∠>︒, 但FBD ABC ∠<∠, ∴60FBD ∠<︒.∴FD FB =的情况不存在.②如图2,假设DB DF =,那么2FBD BFD α∠=∠=. ∴602αα∠︒-=. ∴20α=︒. ∴40FBD ∠=︒.③如图3,假设BD BF =,那么2BDF BFD α∠=∠=. 在BDF △中,180DBF BDF BFD ∠+∠+∠=︒. ∴6022180ααα︒-++=︒. ∴40α=︒. ∴ 20FBD ∠=︒.综上,FBD ∠的度数是20︒或40︒.2021北京西城八年级上期末数学试卷附加题答案一、填空题1.〔1〕由32a b a +=,得到132ba+⋅=, 那么13b a =.〔2〕由115a b -=,得到5b aab-=,即5a b ab -=-, 那么原式3()515553532a b ab ab ab a b ab ab ab ----===----. 故答案为:〔1〕13;〔2〕52.二、解:〔1〕按照 运算法那么,存在两个数相减等于它们相除,故答案为:差、商. 〔2〕设要填的数为x ,∴44xx -=,解得:163,故答案为:163,163.〔3〕993322-=÷.〔4〕①按照 〔1〕中规律,存在两个数相减等于它们相除, x y x y -=÷,故答案为:x y x y -=÷. ②由①得:x y x y -=÷, ∴20y xy x +=-,由判别式可知(4)0x x -≥,解得0x ≤〔舍去〕或4x ≥. 再由求根公式得242x x xy ±-=;由于4x ≥,故y 有最小值,即min 4022y -==. 故答案为:4=,小,2. 3.解:〔1〕如下图:〔2〕①OD OA AC =+;证明:作BE x ⊥轴于点E ,∵AB y ⊥轴,∴90CAB DEB ∠=∠=︒.∵AB OA =,∴OE BE AB OA ===.∵BC BD ⊥,∴90DBC ∠=︒.在四边形OCBD 中,1360AOD DBC BCO ∠+∠+∠+∠=︒.∵90AOD ∠=︒,∴1180BCO ∠+∠=︒.又∵2180BCO ∠+∠=︒.∴12∠=∠.∴EBD △≌ABC △.∴ED AC =.∵OD OE ED =+,∴OD OA AC =+.②由①EBD △≌ABC △,∴BC BD =.∵BH 等分CBD ∠,∴BH CD ⊥,45CBH DBH ∠=∠=︒.∴45BCH ∠=︒.∴CBH BCH ∠=∠.∴CH BH =.作HM AB ⊥于点M ,HN OA ⊥于点N .∴90HNC HMB ∠=∠=︒.在四边形BACH 中,360CAB ABH BHC HCA ∠+∠+∠+∠=︒.∴180HCA ABH ∠+∠=︒.又∵3180HCA ∠+∠=︒,∴3ABH ∠=∠.∴NCA △≌MBH △.∴HN HM =.∴HAO HAB ∠=∠.∵90BAO ∠=︒,∴45HAB ∠=︒.2021北京西城八年级上期末数学试卷局部解析一.选择题1.【答案】A 【解析】2211224-==.2.【答案】D 【解析】由轴对称图形的定义知D 图不是轴对称图形.3.【答案】C【解析】A .()xz yz z x y -+=--,该项错误;B .2232(321)a b ab ab ab a b -+=-+,该项错误;C .232682(34)xy y y x y -=-,该项正确;D .234(4)(1)x x x x +-=+-,该项错误.4.【答案】D 【解析】2xy y x x =,2122x y x y =--,221()()x y x y x y x y x y x y++==-+--, 故最简分式为22x x +.5.【答案】C【解析】一次函数(2)3y m x =-+的图象颠末第二、四象限,∴20m -<,∴2m <.6.【答案】D 【解析】1111(1)1x x x -==----.7.【答案】B【解析】假设腰长为2,那么224+=,不符合题意,∴腰长为4,那么周长为44210++=.8.【答案】A【解析】∵ABD △≌ACE △,∴105ADB AEC ∠=∠=︒,∴75ADE AED ∠=∠=︒.∴180757530DAE ∠=︒-︒-︒=︒.9.【答案】C【解析】作DF BC ⊥交BC 的耽误线于F , ∵5BC =,BCD △的面积为5,∴2DF =,∵BD 等分ABC ∠,DE AB ⊥,DF BC ⊥,∴2DE DF ==.10.【答案】B【解析】∵直线y x m =-+与5(0)y nx n n =+≠的交点的横坐标为2-,∴关于x 的不等式4x m nx n -+>+的解集为2x <-,∵50y nx n =+=时,5x =-,∴50nx n +>的解集是5x >-.∴50x m nx n -+>+>的解集是52x -<<-,∴关于x 的不等式50x m nx n -+>+>的整数解为3-,4-.二.填空题11.【答案】1x ≠ 【解析】假设分式11x -在实数范围内有意义,那么10x -≠,即1x ≠.12.【答案】(2)(2)x y x y -+【解析】224(2)(2)x y x y x y -=-+.13.【答案】(2,3)【解析】点P 的坐标是(2,3)-,那么点P 关于y 轴对称的对称点的坐标是(2,3). 14.【答案】BC DB =【解析】添加条件为BC DB =,理由如下,在ABC △和EDB △中,AB ED ABC DBC DB =⎧⎪∠=∠⎨⎪=⎩,∴ABC △≌EDB △〔SAS 〕.15.【答案】6【解析】∵MN 是AB 的垂直等分线,∴AM BM =.∴MBC △的周长BM CM BC AM CM BC AC BC =++=++=+,∵8AB =,MBC △的周长是14,∴1486BC =-=.16.【答案】55y -≤≤【解析】把2x =-代入一次函数215y x =-+=,把3x =时代入一次函数215y x =-+=-,∴函数值y 的取值范围是55y -≤≤.17.【答案】ASA ,全等三角形对应边相等【解析】∵AB MN ⊥,DE MN ⊥,∴90ABC EDC ∠=∠=︒.在ABC △和EDC △中,ABC EDC BD DCACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABC △≌EDC △〔AAS 〕.∴DE AB =.18.【答案】①③【解析】由题意可知乙比甲晚出发4min ,当04t ≤≤时甲在行走而乙不动,结合函数图象4t =时120S =,故甲行走的速度为30m/min ,故①正确;当410t <≤时,甲仍然向篮球馆行走,乙在后面追赶甲,当10t =时,0S =暗示乙追上甲,此时甲、乙距离光明学校1030300(m)⨯=,故②错误;由②知乙的速度为300(104)50m/min ÷-=,当10t a <≤时,乙超过甲,甲乙间距离逐渐增大,当乙达到篮球馆时S 最大,此时150043450a =+=,当34t =时,甲的路程为34301020⨯=,乙的路程为1500,150********S =-=,故③正确;甲从光明学校到篮球馆所用时间为15003050(min)÷=,故④错误.故答案为:①③.。

【最新】2016-2017学年北师大版八年级上册期末数学试卷及答案

【最新】2016-2017学年北师大版八年级上册期末数学试卷及答案


结论是 13.如果 a、 b 同号,则点 P(a,b)在
. 象限.
xy5
14.方程组
的解是
.
2x y 1
得 分 评卷人 三、解答题 (本大题共有 9 个小题,满分 58 分)
15.(本小题 4 分)计算: 3 ( 12 48 )
八年级数学试卷
第小题 5 分)已知
19.(本小题 5 分)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场 调查榕树的单价比香樟树少 20 元,购买 3 棵榕树和 2 棵香樟树共需 340 元.请问榕树和香樟树的单价各多少?
八年级数学试卷
第5 页
(共 8 页)
19.(本小题 5 分)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场 调查榕树的单价比香樟树少 20 元,购买 3 棵榕树和 2 棵香樟树共需 340 元.请问榕树和香樟树的单价各多少?
八年级数学试卷
第5 页
(共 8 页)
18.(本小题 5 分)长方形的两条边长分别为 4, 6,建立适当的直角坐标系, 使它的一个顶点的坐标为( - 2, - 3).请你写出另外三个顶点的坐标.
2016-2017 学年上学期末综合素质测评 八年级数学试卷
(全卷满分 100 分,考试时间 120 分钟)
题号



总分
得分
得分
评卷人
一、选择题 (本大题共 8 个小题,每小题只有一个正
确选项,每小题 3 分,满分 24 分)
1.计算 - 32 的结果是(

A.- 3
B. 3
C. - 9
D.9
2.下列几组数能作为直角三角形的三边长的是(
第2 页
(共 8 页)

【最新】2016-2017学年北师大版八年级数学上册期末试卷及答案

【最新】2016-2017学年北师大版八年级数学上册期末试卷及答案

C .第三象限
D .第四象限
2. 二元一次方程 x- 2y=1 有无数多个解,下列四组值中是该方程的解的是(
▲)
x0
A.
y1
x1
B.
y1
x1
C.
y1
x1
D.
y0
3. 2016 年 1 月份,某市一周空气质量报告中某项污染指数的数据是:
31, 35, 31,
33, 30, 33, 31.則下列关于这列数据表述正确的是(
本卷共六大题,全
一、选择题(本大题共 6 小题,每小题 3 分,共 18 分)每题只有一个正确的选项
1. 点 P(﹣ 3,﹣ 4)位于( ▲ ) A.第一象限 B .第二象限
C .第三象限
D .第四象限
2. 二元一次方程 x- 2y=1 有无数多个解,下列四组值中是该方程的解的是(
▲)
x0
A.
y1
x1
C .第三象限
D .第四象限
2. 二元一次方程 x- 2y=1 有无数多个解,下列四组值中是该方程的解的是(
▲)
x0
A.
y1
x1
B.
y1
x1
C.
y1
x1
D.
y0
3. 2016 年 1 月份,某市一周空气质量报告中某项污染指数的数据是:
31, 35, 31,
33, 30, 33, 31.則下列关于这列数据表述正确的是(
A. 1 条
B
.2条
C
.3条
D
.4 条
5. 在以下四种沿 AB 折叠的方法中,不一定能判定纸带两条边线
a、 b 互相平行的
是( ▲ )
A.如图 1,展开后测得∠ 1=∠ 2

2016-2017北京市八年上学期期末试题及答案

2016-2017北京市八年上学期期末试题及答案

2016-2017学年北京市八年级(上)期末数学试卷一、选择题(每题只有一个正确答案,共10道小题,每小题2分,共20分)1.在平面直角坐标系中,点P(2,3)关于x轴的对称点坐标为()A.(﹣2,3)B.(2,﹣3)C.(3,﹣2)D.(﹣2,﹣3)2.如果分式有意义,那么x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x=13.下列计算中,正确的是()A.x3÷x=x2B.a6÷a2=a3C.x•x3=x3D.x3+x3=x64.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC5.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个6.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件x个,依题意列方程为()A.﹣=5 B.﹣=5C.﹣=5 D.7.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7B.2.5×10﹣6C.25×10﹣7D.0.25×10﹣58.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.40°C.45°D.36°9.在各个内角都相等的多边形中,一个外角等于一个内角的,则这个多边形的边数是()A.5 B.6 C.7 D.810.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)二、填空题(共6道小题,第11~14小题,每小题3分,第15~16小题,每小题3分,共20分)11.化简的结果是.12.分式,的最简公分母是.13.如图,由射线AB,BC,CD,DA组成平面图形,则∠1+∠2+∠3+∠4=.14.有如下四个事件:①随机抛掷一枚硬币,落地后正面向上;②任意写出一个数字,这个数字是一个有理数;③等腰三角形的三边长分别为2cm、2cm和5cm;④《九章算术》是中国传统数学重要的著作,书中《勾股章》说,把勾和股分别自乘,然后把它们的乘积加起来,再进行开方,便可以得到弦.在这四个事件中是不可能事件是.(2015秋通州区期末)如图,在△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB边上的一个动点(点D不与点A、B重合),连接CD,过点D作CD的垂线交射线CA于点E.当△ADE为等腰三角形时,AD的长度为.16.如图,在△ABC中,∠C=90°,按以下步骤作图:①以点B为圆心,以小于BC的长为半径画弧,分别交AB、BC于点E、F;②分别以点E,F为圆心,以大于EF的长为半径画弧,两弧相交于点G;③作射线BG,交AC边于点D.则BD为∠ABC的平分线,这样作图的依据是;若AC=8,BC=6,则CD=.三、解答题(共11道小题,第17~24小题,每小题5分,第25~26小题,每小题5分,第27小题8分,共60分)17.计算:.18.计算:.19.计算:.20.解方程:.21.已知:x2+3x﹣2=0,求代数式的值.22.有两个盒子,分别装有若干个除颜色外都相同的球,第一个盒子装有4个红球和6个白球,第二个盒子装有6个红球和6个白球.分别从这两个盒子中各摸出1个球,请你通过计算来判断从哪一个盒子中摸出白球的可能性大.23.如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE.求证:AB=CD.24.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.25.已知:Rt△ABC,∠ACB=90°,顶点A、C在直线l上.(1)请你画出Rt△ABC关于直线l轴对称的图形;(2)若∠BAC=30°,求证:BC=AB.26.已知:线段AB.(1)尺规作图:作线段AB的垂直平分线l,与线段AB交于点D;(保留作图痕迹,不写作法)(2)在(1)的基础上,点C为l上一个动点(点C不与点D重合),连接CB,过点A作AE⊥BC,垂足为点E.①当垂足E在线段BC上时,直接写出∠ABC度数的取值范围.②请你画出一个垂足E在线段BC延长线上时的图形,并求证∠BAE=∠BCD.27.在Rt△ABC中,BC=AC,∠ACB=90°,点D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE、BF.(1)当点D在线段AB上时(点D不与点A、B重合),如图1①请你将图形补充完整;②线段BF、AD所在直线的位置关系为,线段BF、AD的数量关系为;(2)当点D在线段AB的延长线上时,如图2①请你将图形补充完整;②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.2015-2016学年北京市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题只有一个正确答案,共10道小题,每小题2分,共20分)1.在平面直角坐标系中,点P(2,3)关于x轴的对称点坐标为()A.(﹣2,3)B.(2,﹣3)C.(3,﹣2)D.(﹣2,﹣3)【考点】关于x轴、y轴对称的点的坐标.【专题】应用题.【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.【解答】解:点P(2,3)关于x轴的对称点的坐标是(2,﹣3).故选B.【点评】本题主要考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.1.如果分式有意义,那么x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x=1【考点】分式有意义的条件.【分析】本题主要考查分式有意义的条件:分母不为0,即1﹣x≠0.【解答】解:∵1﹣x≠0,∴x≠1.故选C.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.3.下列计算中,正确的是()A.x3÷x=x2B.a6÷a2=a3C.x•x3=x3D.x3+x3=x6【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】根据合并同类项的法则,同底数幂的乘法与除法的知识求解即可求得答案.【解答】解:A、x3÷x=x2,故A选项正确;B、a6÷a2=a4,故B选项错误;C、x•x3=x4,故C选项错误;D、x3+x3=2x3,故D选项错误.故选:A.【点评】此题考查了合并同类项的法则,同底数幂的乘法与除法等知识,解题要注意细心.4.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC【考点】全等三角形的判定.【分析】本题已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,必须是这边和公共边的夹角对应相等,只有符合以上条件,才能根据三角形全等判定定理得出结论.【解答】解:A、符合AAS,能判断△ABD≌△BAC;B、符合ASA,能判断△ABD≌△BAC;C、符合SSA,不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.所以根据全等三角形的判定方C、满足SSA不能判断两个三角形全等.故选C.【点评】本题考查了全等三角形的判定方法;三角形全等判定定理中,最易出错的是“边角边”定理,这里强调的是夹角,不是任意一对角.5.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个【考点】等腰三角形的判定;坐标与图形性质.【专题】压轴题.【分析】分为三种情况:①OA=OP,②AP=OP,③OA=OA,分别画出即可.【解答】解:以O为圆心,以OA为半径画弧交x轴于点P和P′,此时三角形是等腰三角形,即2个;以A为圆心,以OA为半径画弧交x轴于点P″(O除外),此时三角形是等腰三角形,即1个;作OA的垂直平分线交x轴于一点P1,则AP=OP,此时三角形是等腰三角形,即1个;2+1+1=4,故选C.【点评】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解啊.6.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件x个,依题意列方程为()A.﹣=5 B.﹣=5C.﹣=5 D.【考点】由实际问题抽象出分式方程.【分析】设原计划每天生产零件x个,则实际每天生产零件为1.5x个,根据提前5天完成任务,列方程即可.【解答】解:设原计划每天生产零件x个,则实际每天生产零件为1.5x个,由题意得,﹣=5.故选:A.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.7.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7B.2.5×10﹣6C.25×10﹣7D.0.25×10﹣5【考点】科学记数法—表示较小的数.【专题】常规题型.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.40°C.45°D.36°【考点】等腰三角形的性质.【分析】题中相等的边较多,且都是在同一个三角形中,因为求“角”的度数,将“等边”转化为有关的“等角”,充分运用“等边对等角”这一性质,再联系三角形内角和为180°求解此题.【解答】解:∵BD=AD∴∠A=∠ABD∵BD=BC∴∠BDC=∠C又∵∠BDC=∠A+∠ABD=2∠A∴∠C=∠BDC=2∠A∵AB=AC∴∠ABC=∠C又∵∠A+∠ABC+∠C=180°∴∠A+2∠C=180°把∠C=2∠A代入等式,得∠A+2•2∠A=180°解得∠A=36°故选:D.【点评】本题反复运用了“等边对等角”,将已知的等边转化为有关角的关系,并联系三角形的内角和及三角形一个外角等于与它不相邻的两个内角的和的性质求解有关角的度数问题.9.在各个内角都相等的多边形中,一个外角等于一个内角的,则这个多边形的边数是()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【专题】计算题.【分析】一个多边形的每个内角都相等,一个外角等于一个内角的,又由于相邻内角与外角的和是180度,设内角是x°,外角是y°,列方程组即可求得多边形的边数.【解答】解:设内角是x°,外角是y°,可列一个方程组解得;而任何多边形的外角是360°,则多边形内角和中的外角的个数是360÷60=6,则这个多边形的边数是6.故本题选B.【点评】本题根据多边形的内角与外角的关系转化为方程组的问题,并利用了多边形的外角和定理;其中已知外角求边数的这种方法是需要熟记的内容.10.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)【考点】等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.【分析】分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.【解答】解:阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).故选:D.【点评】本题主要考查了平方差公式,运用不同方法表示阴影部分面积是解题的关键.本题主要利用面积公式求证明a2﹣b2=(a+b)(a﹣b).二、填空题(共6道小题,第11~14小题,每小题3分,第15~16小题,每小题3分,共20分)11.化简的结果是2.【考点】算术平方根.【分析】由于﹣2的平方等于4,而的算术平方根为2,由此即可求解.【解答】解:==2.故应填2.【点评】此题主要考查了平方根的性质,要求学生能够求解一些简单的算术平方根的值.12.分式,的最简公分母是3(b﹣a)2.【考点】最简公分母.【分析】根据确定最简公分母的步骤找出最简公分母即可【解答】解:分式,的最简公分母是3(b﹣a)2;故答案为:3(b﹣a)2【点评】此题考查了最简公分母,确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.13.如图,由射线AB,BC,CD,DA组成平面图形,则∠1+∠2+∠3+∠4=360°.【考点】多边形内角与外角.【分析】由多边形外角和定理即可得到结论.【解答】解:由多边形外角和定理得:∠1+∠2+∠3+∠4=360°.故答案为360°.【点评】本题主要考查了多边形内角和定理,熟记多边形内角和定理是解决问题的关键.14.有如下四个事件:①随机抛掷一枚硬币,落地后正面向上;②任意写出一个数字,这个数字是一个有理数;③等腰三角形的三边长分别为2cm、2cm和5cm;④《九章算术》是中国传统数学重要的著作,书中《勾股章》说,把勾和股分别自乘,然后把它们的乘积加起来,再进行开方,便可以得到弦.在这四个事件中是不可能事件是③.(填写序号即可)【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:①随机抛掷一枚硬币,落地后正面向上是随机事件;②任意写出一个数字,这个数字是一个有理数是随机事件;③等腰三角形的三边长分别为2cm、2cm和5cm是必然事件;④《九章算术》是中国传统数学重要的著作,书中《勾股章》说,把勾和股分别自乘,然后把它们的乘积加起来,再进行开方,便可以得到弦是必然事件,.在这四个事件中是不可能事件是③.故答案为:③.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.15.如图,在△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB边上的一个动点(点D不与点A、B重合),连接CD,过点D作CD的垂线交射线CA于点E.当△ADE为等腰三角形时,AD的长度为1或.【考点】勾股定理;等腰三角形的判定;含30度角的直角三角形.【专题】动点型.【分析】分两种情况:①当点E在AC上时,AE=AD,则∠EDA=∠BAC=30°,由含30°角的直角三角形的性质得出BC=AB=1,∠B=60°,得出AC=,∠BCD=60°,证出△BCD 是等边三角形,得出CD=BC=1,AD=CD=1;②当点E在射线CA上时,AE=AD,得出∠E=∠ADE=15°,由三角形内角和定理得出∠ACD=∠CDA,由等角对等边得出AD=AC=;即可得出结果.【解答】解:分两种情况:①当点E在AC上时,AE=AD,∴∠EDA=∠BAC=30°,∵DE⊥CD,∴∠BDC=60°,∵∠ACB=90°,∠BAC=30°,∴BC=AB=1,∠B=60°,∴AC=,∠BCD=60°,∴△BCD是等边三角形,∠DCA=30°=∠BAC,∴CD=BC=1,AD=CD=1;②当点E在射线CA上时,如图所示:AE=AD,∴∠E=∠ADE=15°,∵DE⊥CD,∴∠CDA=90°﹣15°=75°,∴∠ACD=180°﹣30°﹣75°=75°=∠CDA,∴AD=AC=;综上所述:AD的长度为1或;故答案为:1或.【点评】本题考查了勾股定理、等腰三角形的判定与性质、含30°角的直角三角形的性质、等边三角形的判定与性质等知识;熟练掌握等腰三角形的判定与性质是解决问题的关键.16.如图,在△ABC中,∠C=90°,按以下步骤作图:①以点B为圆心,以小于BC的长为半径画弧,分别交AB、BC于点E、F;②分别以点E,F为圆心,以大于EF的长为半径画弧,两弧相交于点G;③作射线BG,交AC边于点D.则BD为∠ABC的平分线,这样作图的依据是三边分别相等的两个三角形全等,全等三角形对应角相等;若AC=8,BC=6,则CD=3.【考点】作图—基本作图;全等三角形的判定与性质.【分析】连接GF,EG,根据SSS定理可得出△BFG≌△BEG,故可得出∠GBF=∠GBE,即BD为∠ABC的平分线;根据勾股定理求出AB的长,过点D作DH⊥AB于点H,由角平分线的性质可得出CD=DH,再由三角形的面积公式即可得出CD的长.【解答】解:连接GF,EG,在△BFG与△BEG中,,∴△BFG≌△BEG(SSS),∴∠GBF=∠GBE,即BD为∠ABC的平分线.∵AC=8,BC=6,∠C=90°,∴AB==10.过点D作DH⊥AB于点H,∵BD为∠ABC的平分线,∴CD=DH,∴S△BAC=ACBC=BCCD+ABDH=×6×8=24,∴(BCCD+ABDH)=24,即6CD+10DH=48,解得CD=3.故答案为:三边分别相等的两个三角形全等,全等三角形对应角相等;3.【点评】本题考查了基本作图以及三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.要在作法中找已知条件.三、解答题(共11道小题,第17~24小题,每小题5分,第25~26小题,每小题5分,第27小题8分,共60分)17.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【分析】根据实数的运算顺序,首先计算乘方,再计算乘法,然后从左向右依次计算.【解答】解:原式=4﹣1+2﹣+2=5+.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、乘方、绝对值等考点的运算.18.计算:.【考点】二次根式的混合运算.【专题】计算题.【分析】先利用完全平方公式和平方差公式展开,然后合并即可.【解答】解:原式=2﹣2+3﹣(2﹣3)=2﹣2+3+1=6﹣2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.计算:.【考点】分式的加减法.【分析】先把分母因式分解,再找到最简公分母,通分即可.【解答】解:原式===.【点评】本题考查了分式的加减运算,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.20.解方程:.【考点】解分式方程.【分析】观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解【解答】解:两边乘(x+1)(x﹣1)得到:(x+1)2+6=(x+1)(x﹣1)x2+2x+1+6=x2﹣12x=﹣8x=﹣4检验:把x=﹣4带入最简公分母(x+1)(x﹣1)中,最简公分母值不为零.故x=﹣4是原方程的解.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要进行检验.21.已知:x2+3x﹣2=0,求代数式的值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再求出x2+3x的值,代入代数式进行计算即可.【解答】解:原式=÷(﹣)=÷===.∵x2+3x﹣2=0,∴x2+3x=2,∴原式=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.有两个盒子,分别装有若干个除颜色外都相同的球,第一个盒子装有4个红球和6个白球,第二个盒子装有6个红球和6个白球.分别从这两个盒子中各摸出1个球,请你通过计算来判断从哪一个盒子中摸出白球的可能性大.【考点】可能性的大小.【分析】分别求得摸到两种球的概率后通过比较概率即可得到摸到的可能性大.【解答】解:P(从第一个盒子中摸出一个白球)=,P(从第二个盒子中摸出一个白球)=,∵,∴第一个盒子中摸到白球的可能性大.【点评】此题考查可能性大小的比较:只要总情况数目(面积)相同,谁包含的情况数目(面积)多,谁的可能性就大,反之也成立;若包含的情况(面积)相当,那么它们的可能性就相等.23.如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE.求证:AB=CD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】利用SAS证明△ABC≌△DCE,根据全等三角形的对应边相等即可得到AB=CD.【解答】解:∵BC∥DE∴∠ACB=∠E,在△ABC和△DCE中∵∴△ABC≌△DCE(SAS)∴AB=CD.【点评】本题考查了全等三角形的性质定理与判定定理,解决本题的关键是证明△ABC≌△DCE(SAS).24.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.【考点】分式方程的应用.【分析】设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,根据驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,所行的路程相等列出方程解决问题.【解答】解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,由题意得=,解得:x=0.18经检验x=0.18为原方程的解答:纯电动汽车每行驶1千米所需的电费为0.18元.【点评】此题考查分式方程的应用,找出题目蕴含的数量关系,列出方程解决问题.25.已知:Rt△ABC,∠ACB=90°,顶点A、C在直线l上.(1)请你画出Rt△ABC关于直线l轴对称的图形;(2)若∠BAC=30°,求证:BC=AB.【考点】作图-轴对称变换;含30度角的直角三角形.【分析】(1)根据轴对称的性质画出图形即可;(2)根据轴对称的性质得出AB=AB',BC=BB′,再由∠BAC=30°可知∠B=60°,所以△ABB'为等边三角形,根据等边三角形的性质即可得出结论.【解答】(1)解:如图所示,Rt△AB'C是Rt△ABC关于直线l轴对称的图形(2)证明:∵Rt△AB'C是Rt△ABC关于直线l轴对称的图形,∴AC垂直平分B'B,∴AB=AB',BC=BB′.∵∠BAC=30°∴∠B=60°∴△ABB'为等边三角形∴AB=BB'.∵BC=BB′,∴BC=AB.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.26.已知:线段AB.(1)尺规作图:作线段AB的垂直平分线l,与线段AB交于点D;(保留作图痕迹,不写作法)(2)在(1)的基础上,点C为l上一个动点(点C不与点D重合),连接CB,过点A作AE⊥BC,垂足为点E.①当垂足E在线段BC上时,直接写出∠ABC度数的取值范围.②请你画出一个垂足E在线段BC延长线上时的图形,并求证∠BAE=∠BCD.【考点】作图—基本作图;线段垂直平分线的性质.【分析】(1)利用作已知线段的垂直平分线的法作图即可;(2)①根据锐角三角形的高在三角形内即可解决.②利用等角的余角相等证明.【解答】解:(1)直线l即为所求作的直线.(见图1)(2)①45°≤∠ABC<90°.理由如下:连接AC,当∠ACB≤90°时垂足E在线段BC上,∵CD垂直平分AB,∴CA=CB,∴∠CAB=∠CBA,∵2∠CBA+∠ACB=180°,∴2∠CBA≥90°∴∠CBA≥45°∵∠CBA是锐角,∴45°≤∠CBA<90°②在图2中,证明:∵线段AB的垂直平分线为l,∴CD⊥AB,∵AE⊥BE,∴∠AEB=∠BDC=90°,∴∠BAE+∠B=∠BCD+∠B=90°,∴∠BAE=∠BCD.【点评】本题考查垂直平分线的作法、三角形的高、都等角的余角相等等知识,熟练掌握这些知识是解题的关键.27.在Rt△ABC中,BC=AC,∠ACB=90°,点D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE、BF.(1)当点D在线段AB上时(点D不与点A、B重合),如图1①请你将图形补充完整;②线段BF、AD所在直线的位置关系为垂直,线段BF、AD的数量关系为相等;(2)当点D在线段AB的延长线上时,如图2①请你将图形补充完整;②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)①D在线段AB上时,在直线l上截取CE=CF=CD,即可画出图象.②在图1中证明△ACD≌△BCF得到AD=BF,∠BAC=∠FBC,利用∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.(2)①D在线段AB延长线上时,在直线l上截取CE=CF=CD,即可画出图象.②在图2中证明△ACD≌△BCF得到AD=BF,∠BAC=∠FBC,利用∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.【解答】解:(1)①见图1所示.②证明:连接ED,DF.∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠ACB=∠DCF,∴∠ACD=∠BCF∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.故答案为:垂直、相等.(2)①见图2所示.②成立.理由如下:证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF+∠BCD=∠ACB+∠BCD,即∠ACD=∠BCF,∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.【点评】本题考查等腰直角三角形的性质、全等三角形的判定和性质、两条直线垂直的证明方法,寻找全等三角形是解决问题的关键.。

122016-2017第1学期初2期末数学考试题答案西城-百分卷

122016-2017第1学期初2期末数学考试题答案西城-百分卷

北京市西城区2016-2017学年度第一学期期末试卷八年级数学参考答案及评分标准 2017.1一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分) 11. 1.12.x≥3. 13.(5,1).14.200(1)v-. 15. (1)见图1(涂色1分,画对称轴1分);(2)3(1分).16. (1)3(2分);(2)256(1分). 三、解答题(本题共52分) 17. (本题6分,每小题3分)解:(1)32225(5)a b a b a b a b -=-;……………………………………………………3分 (2)231212a a -+23(44)a a =-+……………………………………………………………………4分 23(2)a =-.…………………………………………………………………………6分18. (本题6分)解: 222142442a a a a a a a a ---⎛⎫-÷⎪++++⎝⎭ 2212=(2)(2)4a a a a a a a ⎡⎤--+-⨯⎢⎥++-⎣⎦21=(4)(2)(4)a a a a a a ----+-……………………………………………………………3分(2)(2)(1)=(2)(4)a a a a a a a -+--+-图14=(2)(4)a a a a -+-………………………………………………………………………4分21=2a a +.………………………………………………………………………………5分当1a =-时,221112(1)2(1)a a ==-+-+⨯-.…………………………………………6分 19. (本题6分)解:方程两边同乘(1)(1)x x -+,得 2(1)(1)7x x ++-=.…………………………………2分去括号,得 2217x x ++-=.……………………………………………………………3分 移项,合并,得 36x =.………………………………………………………………4分 系数化1,得 2x =.……………………………………………………………………5分 经检验,2x =是原方程的根.…………………………………………………………6分 所以原方程的解为2x =. 20. (本题6分)2分解:原式222-⨯……………………………………………4分=31222+-…………………………………………………………………5分=1152-………………………………………………………………………6分21. (本题6分)证明:如图2.∵△P AO 和△PBQ 是等边三角形,∴P A=PO ,PB=PQ ,∠OP A =60°,∠QPB =60°. ∴∠OP A =∠QPB .∴33OPA QPB ∠-∠=∠-∠.∴∠1=∠2.………………………………………………1分 在△P AB 和△POQ 中,,12,,PA PO PB PQ =⎧⎪∠=∠⎨⎪=⎩…………………………………………………………………………4分 ∴△P AB ≌△POQ .…………………………………………………………………5分 ∴AB=OQ .………………………………………………………………………6分图222. (本题6分) (1)例如:①当a = 2 ,b = 3 时,等式222121()()3333+=+成立;……………………………1分 ②当a = 3 ,b = 5 时,等式223232()()5555+=+成立.……………………………2分 (2)解:22222222()()a b a a b a a b b a a ab b b b b b b b --+--++=+==,……………………3分22222222()a b a a b ab a a ab b b b b b b --+-++=+=.……………………………5分 所以等式2()a b a b b -+=2()a b a b b-+成立.……………………………………6分23. (本题5分)解:(1)例如:(画出一种即可)…………………4分(2)结论略.……………………………………………………………………………5分 24.1(本题5分)解:(1)4(1分),直线EF 与AC 边的交点(1分),标图1分(图略).…………………3分(2)先画点M 关于直线AB 的对称点M ',射线NM '与直线AB 的交点即为点P .(见图3)…………………………………5分注:画图1分,回答1分.24.2(本题7分)(1)解:草图如图4.…………………………………………………………………………1分先由长为h ,m 的两条线段作Rt △ADH ,再由线段c 作边AB 确定点B ,再倍长 BD 确定点C .……………………………………………………………………4分(2)如图5.…………………………………………………………………………………7分 注:其他正确图形及作法相应给分.25.(本题6分)(1)证明:如图6.图3∵△ABC 是等边三角形,∴260BAC B ∠=∠=∠=︒. ∵AD=DE , ∴1E ∠=∠.∵1BAD BAC ∠=∠-∠,2EDC E ∠=∠-∠, ∴∠BAD =∠EDC .………………………2分 (2)①补全图形.(见图7)……………………3分②法1: 证明:如图7. 由(1)已得34∠=∠.∵点E 与点M 关于直线BC 对称, 可得45∠=∠,DE=DM . ∵DE=DA ,∴35∠=∠,DA=DM .∵∠ADC 是△ABD 的外角, ∴3603ADC B ∠=∠+∠=︒+∠. 又∵5ADC ADM ∠=∠+∠, ∴60ADM ∠=︒.∴△ADM 是等边三角形.∴DA=AM .………………………………………………………………………6分 法2:证明:如图8,在AB 边上截取BF=BD ,连接CM ,DF . 可得△BDF 是等边三角形,120AFD DCE ∠=∠=︒. ∵DA= DE ,34∠=∠ ∴△ADF ≌△DEC . ∴DF=EC .∵点E 与点M 关于直线BC 对称, 可得45∠=∠,CE=CM ,120DCM DCE ∠=∠=︒. ∴BD= DF=EC= MC ,60ACM ∠=︒. ∴B ACM ∠=∠.∵△ABC 是等边三角形, ∴AB AC =. ∴△ABD ≌△ACM .∴DA=AM .………………………………………………………………………6分图7图8。

北京市西城区八级上期末数学试卷含答案解析

北京市西城区八级上期末数学试卷含答案解析

北京市西城区2015— 2016学年度第一学期期末试卷八年级数学 2016.1试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的. 1.计算22-的结果是( ). A.14B.14- C.4 D.4-【考点】幂的运算 【试题解析】==故选A 【答案】A2.下列剪纸作品中,不是..轴对称图形的是( ).A B C D 【考点】轴对称与轴对称图形 【试题解析】 A .是轴对称图形; B . 是轴对称图形; C . 是轴对称图形; D . 不是轴对称图形; 故选D 【答案】D3.在下列分解因式的过程中,分解因式正确的是( ).A.()xz yz z x y -+=-+B. ()223232a b ab ab ab a b -+=-C. 232682(34)xy y y x y -=-D. 234(2)(x 2)3x x x x +-=+-+ 【考点】因式分解 【试题解析】A .,错误;B . ,错误;C . ,正确;D . ,错误;故选C 【答案】C4.下列分式中,是最简分式的是( ).A .2xy xB .222x y -C .22x y x y +-D .22xx +【考点】分式的概念 【试题解析】根据分子分母都是整式,且分子分母没有公因式称作最简分式. 逐一判断,可知是最简分式故选D 【答案】D5.已知一次函数(2)3y m x =-+的图象经过第一、二、四象限,则m 的取值范围是( ).A .0m <B .0m >C .2m <D .2m > 【考点】一次函数的图像及其性质 【试题解析】 一次函数的图象经过第一、二、四象限, 即m-2<0,故选C 【答案】C 6.分式11x--可变形为( ). A .11x + B .11x -+ C .11x -- D .11x -【考点】分式的运算 【试题解析】=故选D 【答案】D7.若一个等腰三角形的两边长分别为2和4,则这个等腰三角形的周长是为( ). A. 8 B. 10 C. 8或10 D.6或12 【考点】等腰三角形 【试题解析】等腰三角形的两边长分别为2和4,则底边是2,腰为4, 周长为2+4+4=10 故选B 【答案】B8.如图,B ,D ,E ,C 四点共线,且△ABD ≌△ACE ,若∠AEC =105°, 则∠DAE 的度数等于( ). A. 30° B.40°C. 50°D.65° 【考点】等腰三角形 【试题解析】 ∵△ABD ≌△ACE ,∴AD=AE, ∠AEC=∠ADB=105°, ∴∠AED=∠ADE=75°, ∴∠DAE=180°-75°-75°=30° 故选A 【答案】A9.如图,在△ABC 中,BD 平分∠ABC ,与AC 交于点D ,DE ⊥AB 于点E ,若BC =5,△BCD 的面积为5,则ED 的长为( ). A.12B. 1C.2D.5 【考点】角及角平分线【试题解析】过D 作DF ⊥BC ,交BC 的延长线于F, ∵BD 平分∠ABC , DE ⊥AB ,DF ⊥BC , ∴DE=DF,∵△BCD 的面积为5,BC=5,DF ⊥BC , ∴DF=2 ∴DE=DF=2 故选C【答案】C10.如图,直线y =﹣x +m 与直线y =nx +5n (n ≠0)的交点的横坐标为 ﹣2,则关于x 的不等式﹣x +m >nx +5n >0的整数解为( ). A.﹣5 ,﹣4,﹣3 B. ﹣4,﹣3 C.﹣4 ,﹣3,﹣2 D. ﹣3,﹣2 【考点】一次函数与方程(组)、不等式的关系 【试题解析】∵直线y=-x+m 与y=nx+5n (n ≠0)的交点的横坐标为-2, ∴关于x 的不等式-x+m >nx+4n 的解集为x <-2, ∵y=nx+5n=0时,x=-5, ∴nx+5n >0的解集是x >-5,∴-x+m >nx+5n >0的解集是-5<x <-2,∴关于x 的不等式-x+m >nx+4n >0的整数解为-3,-4, 故选B 【答案】B二、填空题(本题共20分,第11~14题,每小题3分,第15~18题,每小题2分)11.若分式11x 在实数范围内有意义,则x 的取值范围是 .【考点】分式的基本性质 【试题解析】分式在实数范围内有意义,即分母x-1≠0, x ≠1, 故答案为x ≠1 【答案】x ≠112.分解因式224x y -= .【考点】因式分解 【试题解析】==(x+2y )(x-2y )故答案为(x+2y )(x-2y ) 【答案】(x+2y )(x-2y )13.在平面直角坐标系xOy 中,点P (-2,3)关于y 轴的对称点的坐标是 . 【考点】平面直角坐标系及点的坐标【试题解析】根据关于纵轴的对称点:纵坐标相同,横坐标变成相反数, ∴点P 关于y 轴的对称点的坐标是(2,3) 故答案为(2,3) 【答案】(2,3)14.如图,点B 在线段AD 上,∠ABC =∠D , AB ED =.要使 △ABC ≌△EDB ,则需要再添加的一个条件是 (只需填一个条件即可). 【考点】全等三角形的判定【试题解析】∵AB=ED, ∠ABC=∠D ,BD=CB, ∴△ABC ≌△EDB ,(SAS) 故答案为BD=CB 【答案】BD=CB15.如图,在△ABC 中,∠ABC =∠ACB , AB 的垂直平分线交AC 于点M ,交AB 于点N .连接MB ,若AB=8,△MBC 的周长是14 ,则BC 的长 为 . 【考点】等腰三角形 【试题解析】:∵∠ABC=∠ACB ,AB=8,∴AB=AC=8,∵AB 的垂直平分线交AC 于点M , ∴MB=MA,∵△MBC 的周长是14 , ∴BC+AC=14, ∴BC=14-AC=14-8=6 故答案为6 【答案】616.对于一次函数21y x =-+,当-2≤x ≤3时,函数值y 的取值范围是 .【考点】一次函数与方程(组)、不等式的关系 【试题解析】 一次函数,y 随x 的增大而减小,当-2≤≤3时,-5≤y ≤5 故答案为-5≤y ≤5 【答案】-5≤y ≤517.如图,要测量一条小河的宽度AB 的长,可以在小河的岸边作AB 的垂线 MN ,然后在MN 上取两点C ,D ,使BC =CD ,再 画出MN 的垂线DE ,并使点E 与点A ,C 在一条直线上,这时 测得DE 的长就是AB 的长,其中用到的数学原理是:_ .【考点】全等三角形的判定全等三角形的性质 【试题解析】∵∠ABC=EDC,∠BC=CD,∠ACB=∠ECD, ∴△ABC ≌△EDC,(ASA)∴AB=DE, (全等三角形对应边相等) 故答案为ASA,全等三角形对应边相等 【答案】ASA,全等三角形对应边相等t (分)S (米)412048010a018.甲、乙两人都从光明学校出发,去距离光明学校1500m 远的篮球馆打球,他们沿同一条道路匀速行走,乙比甲晚出发4min .设甲行走的时间为t (单位:min),甲、乙两人相距y (单位:m),表示y 与t 的函数关系的图象如图所示,根据图中提供的信息,下列说法: ①甲行走的速度为30m/min②乙在距光明学校500m 处追上了甲 ③甲、乙两人的最远距离是480m ④甲从光明学校到篮球馆走了30min正确的是__ _(填写正确结论的序号).【考点】函数的表示方法及其图像 【试题解析】①120÷4=30 m/min ,正确;②10×30=300m, 因此乙在距光明学校500m 处追上了甲错误; ③由图可知:甲、乙两人的最远距离是480m ,正确;④1500÷30=50min, 因此甲从光明学校到篮球馆走了30min 错误; 故答案为①③ 【答案】①③练习题改编,识图能力,如何提取信息,数形结合思想三、解答题(本题共50分,第19,20题每小题6分;第21题~25题每小题5分;第26题6分,第27题7分)19.分解因式:(1)2()3()a b a b -+- (2)221218ax ax a -+解: 解:【试题解析】(1)解:原式=(a-b )(a-b+3); (2)解:原式=2a(-6x+9)=2a【答案】(1)解:原式=(a-b )(a-b+3);(2)解:原式=2a(-6x+9)=2a20.计算:(1)42223248515a b a bc c÷(2)24()212x xx xx x-⋅+++解:解:【考点】分式的运算【试题解析】(1)解:原式==;(2)解:原式===【答案】(1)解:原式==; (2)解:原式===21.已知2a b-=,求222()2ab aaa ba ab b÷---+的值.解:【考点】分式的运算【试题解析】解:====当a-b=2时,原式=【答案】22.解分式方程2242111x x xxx-+=+-解:【考点】分式的运算【试题解析】解:方程两边都乘以(x+1)(x-1),得:解得x=,经检验,x=是原分式方程的解,所以,分式方程的解为x=【答案】x=23.已知:如图,A,O,B三点在同一条直线上,∠A=∠C,∠1=∠2,OD=OB.求证:AD=CB.证明:【考点】全等三角形的性质全等三角形的判定【试题解析】证明:∵A,O,B三点在同一条直线上,∴∠1+∠COB=180°,∠2+∠AOD=180°,∵∠1=∠2,∴∠AOD=∠COB,又∵∠A=∠C,OD=OB,∴△AOD≌△COB,∴AD=CB.【答案】见解析24.列方程解应用题中国地大物博,过去由于交通不便,一些地区的经济发展受到了制约,自从“高铁网络”在全国陆续延伸以后,许多地区的经济和旅游发生了翻天覆地的变化,高铁列车也成为人们外出旅行的重要交通工具.李老师从北京到某地去旅游,从北京到该地普快列车行驶的路程约为1352km ,高铁列车比普快列车行驶的路程少52km ,高铁列车比普快列车行驶的时间少8h .已知高铁列车的平均时速是普快列车平均时速的2.5倍,求高铁列车的平均时速. 解:【考点】分式方程的应用 【试题解析】解:设普快列车的平均时速为x km/h,则高铁列车的平均时速为2.5x km/h, 由题意得解得x=104,经检验,x=104是原分式方程的解,且符合题意, 则2.5x=260,答:高铁列车的平均时速260 km/h. 【答案】高铁列车的平均时速260 km/h.25.在平面直角坐标系xOy 中,将正比例函数2y x =-的图象沿y 轴向上平移4个单位长度后与y 轴交于点B ,与x 轴交于点C .(1)画正比例函数2y x =-的图象,并直接写出直线BC 的解析式;(2)如果一条直线经过点C 且与正比例函数2y x =-的图象交于点P (m ,2),求m 的值及直线CP 的解析式. 解:(1)直线BC 的解析式: ; (2)【考点】一次函数与几何综合 【试题解析】解:(1)直线BC 的解析式:y=-2x+4;(2)∵直线经过点C 且与正比例函数的图象交于点P(m ,2),∴2=-2m,m=-1,∴P 点的坐标为(-1,2),由(1)直线BC 与x 轴交于点C,∴C 点的坐标为(2,0),设CP 的解析式为y=kx+b(k ≠0),直线经过点P (-1,2),C (2,0), ∴ 解得,∴CP 的解析式为y=【答案】见解析26.阅读下列材料:利用完全平方公式,可以将多项式2(0)ax bx c a ++≠变形为2()a x m n ++的形式, 我们把这样的变形方法叫做多项式2ax bx c ++的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:21124x x ++=222111111()()2422x x ++-+=21125()24x +- =115115()()2222x x +++- =(8)(3)x x ++根据以上材料,解答下列问题:(1)用多项式的配方法将281x x +-化成2()x m n ++的形式;(2)下面是某位同学用配方法及平方差公式把多项式2340x x --进行分解因式的解答过程:老师说,这位同学的解答过程中有错误,请你找出该同学解答中开始出现错误的地方,并用“ ”标画出来,然后写出完整的、正确的解答过程:(3)求证:x ,y 取任何实数时,多项式222416x y x y +--+的值总为正数.【考点】整式的运算【试题解析】(1)解:x2+8x-1= x2+8x+42-42-1=(x+4) 2-17 (2)正确的解答过程是:x2-3x-40 = x2-3x+解: 2340x x -- =22233340x x -+-- =2(3)49x -- =(37)(37)x x -+-- =(4)(10)x x +-=(x-)2-==(x+5)(x-8)(3)证明:==∵(x-1)2≥0,(y-2)2≥0,∴≥0,∴x,y取任何实数时,多项式的值总为正数.【答案】见解析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市西城区2016-2017学年度第一学期期末试卷八 年 级 数 学 2017.1试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.下列二次根式中,最简二次根式是( ).A.B.18 2. 2015年9月14日,意大利物理学家马尔科•德拉戈收到来自激光干涉引力波天文台(LIGO )的系统自动提示邮件,一股宇宙深处的引力波到达地球,在位于美国华盛顿和烈文斯顿的两个LIGO 探测器上产生了-18410⨯米的空间畸变(如图中的引力波信号图像所示),也被称作“时空中的涟漪”,人类第一次探测到了引力波的存在,“天空和以前不同了……你也听得到了.”这次引力波的信号显著性极其大,探测结果只有三百五十万分之一的误差. 三百五十万分之一约为0.000 000 285 7.将0.000 000 285 7用科学记数法表示应为( ).A .-82.85710⨯ B. -72.85710⨯ C . -62.85710⨯ D. -60.285 710⨯3.以下图形中,不是..轴对称图形的是( ).4. 如图,在△ABC 中,∠B =∠C =60︒,点D 在AB 边上,DE ⊥AB ,并与 AC 边交于点E . 如果AD=1,BC=6,那么CE 等于( ). A. 5 B. 4C. 3D. 25.下列各式正确的是( ). A. 6212121= x x x x --⋅= B. 62331 x x x x --÷== C. 323322 () x xy x y y --== D. 13223y x x y -⎛⎫= ⎪⎝⎭6.化简211x x --正确的是( ).A. 221(1)1111x x x x x --==---B. 221(1)111x x x x x --==---C. 21(1)(1)111x x x x x x -+-==+--D. 21(1)(1)1111x x x x x x -+-==--+ 7. 在△ABD 与△ACD 中,∠BAD =∠CAD ,且B 点,C 点在AD 边两侧,则不一定...能使△ABD 和△ACD 全等的条件是( ).A. BD =CDB. ∠B =∠CC. AB =ACD. ∠BDA =∠CDA 8.下列判断错误的是( ).A. 当a ≠0时,分式2a有意义 B. 当3a =-时,分式239a a +-有意义 C. 当12a =-时,分式2a +1a 的值为0D. 当1a =时,分式21a a-的值为19. 如图,AD 是△ABC 的角平分线,∠C =20︒,AB BD AC +=, 将△ABD 沿AD 所在直线翻折,点B 在AC 边上的落点记为 点E ,那么∠AED 等于( ). A. 80︒ B.60︒ C. 40︒ D. 30︒10. 在课堂上,张老师布置了一道画图题:画一个Rt △ABC ,使∠B =90°,它的两条边分别等于两条已知线段.小刘和小赵同学先画出了∠MBN =90°之后,后续画图的主要过程分别如下图所示.那么小刘和小赵同学作图确定三角形的依据分别是( ).A. SAS ,HLB. HL ,SASC. SAS ,AASD. AAS ,HL二、填空题(本题共18分,每小题3分) 11. 0(π-3)=________.12. 在实数范围内有意义,那么x 的取值范围是_________.小刘同学小赵同学13. 在平面直角坐标系xOy 中,点(5,1)-关于y 轴对称的点的坐标为_________.14. 中国新闻网报道: 2022年北京冬奥会的配套设施——“京张高铁”(北京至张家口高速铁路)将于2019年底全线通车,届时,北京至张家口高铁将实现1小时直达. 目前,北京至张家口的列车里程约200千米,列车的平均时速为v 千米/时,那么北京至张家口“京张高铁”运行的时间比现在列车运行的时间少________小时.(用含v 的式子表示)15. 如图所示的“钻石”型网格(由边长都为1个单位长度的等边三角形组成), 其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个.....小三角形, 使它与阴影部分合起来所构成的完整图形是一个轴对称图形.(1)画出其中 一种涂色方式并画出此时的对称轴;(2)满足题意的涂色方式有_____种.16. 对于实数p ,我们规定:用<p >表示不小于p 的最小整数,例如:<4>=4,<3>=2. 现对72进行如下操作:(1)对36只需进行_______次操作后变为2;(2)只需进行3次操作后变为2的所有正整数中,最大的是________.三、解答题(本题共52分) 17. (本题6分,每小题3分)分解因式:(1)3225a b a b -; (2)231212a a -+.解: 解:18. (本题6分)化简并求值:222142442a a a a a a a a ---⎛⎫-÷ ⎪++++⎝⎭,其中1a =-.19. (本题6分)解方程:2217111x x x +=-+-. 解:20. (本题6分)小华在学习二次根式时遇到如下计算题,他是这样做的:请你先把他在第一步中出现的其它错误圈画出来(不必改正),再.完成此题的解答过程.......... 解:21. (本题6分)如图,△P AO 和△PBQ 是等边三角形,连接AB ,OQ . 求证:AB =OQ . 证明:22. (本题6分)阅读下列材料:小铭和小雨在学习过程中有如下一段对话:小铭:“我知道一般当m ≠n 时,2m n +≠2m n +.可是我见到有这样一个神奇的等式:2()a b a b b -+=2()a b a b b -+(其中a ,b 为任意实数,且b ≠0).你相信它成立吗?”小雨:“我可以先给a ,b 取几组特殊值验证一下看看.”完成下列任务:(1)请选择两组你喜欢的、合适的a ,b 的值,分别代入阅读材料中的等式,写出代入后得到的具体等式并验证它们是否成立(在相应方框内打勾);① 当a = ,b = 时,等式 (□成立;□不成立);② 当a = ,b = 时,等式 (□成立;□不成立).(2)对于任意实数a ,b (b ≠0),通过计算说明2()a b a b b -+=2()a b a b b-+是否成立. 解:23. (本题5分)阅读下列材料:为了了解学校初二年级学生的阅读情况,小廉所在实践小组的同学们设计了相应的调查问卷,他们共发放问卷300张,收回有效问卷290张,并利用统计表整理了每一个问题的数据,绘制了统计图.他们的调查问卷中,有关“阅读载体的选择”和“阅读过书的类型”两个问题的统计情况如下表所示. 表1:表2:根据以上材料解答下列问题:(1)根据表1中的统计数据,选择合适的统计图对其进行数据的描述;(2)通过表2中统计出的数据你能得到哪些结论?请你说出其中的一条即可.解:(1) (2)24. 先阅读以下材料,再从24.1、24.2两题中任选一题....作答(若两题都做以第一题为准).............24.1题5分(此时卷面满分100分),24.2题7分(卷面总分不超过100分).请先在以下相应方框内打勾,再解答相应题目.24.1 解决下列两个问题:(1)如图2,在△ABC 中,AB =3,AC =4,BC =5,EF 垂直且平分BC ,点P 在直线EF 上,直接写出P A +PB 的最小值,回答P A +PB 取最小值时点P 的位置并在图中标出来......; 解:P A +PB 的最小值为 ,P A +PB 取最小值时点P 的 位置是 ;(2)如图3,点M ,N 分别在直线AB 两侧,在直线AB上找一点P ,使得MPB NPB ∠=∠.要求画图,并简要叙述确定点P 位置的步骤.(无需尺规作图,保留画图痕迹,无需证明)解:确定点P 位置的简要步骤:.24.2借鉴阅读材料中解决问题的三个步骤完成以下尺规作图....: 已知三条线段h ,m ,c ,求作△ABC ,使其BC 边上的高AH =h ,中线AD =m ,AB = c .(1)请先画草图(画出一个即可),并叙述简要的作图思路(即实现目标图的大致作图步骤);(4分) 解:(2)完成尺规作图(不要求写作法.......,作出一个满足条件的三角形即可).(3分)25. (本题6分)在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE =DA(如图1).(1)求证:∠BAD=∠EDC;(2)点E关于直线BC的对称点为M,连接DM,AM.①依题意将图2补全;②小姚通过观察、实验提出猜想:在点D运动的过程中,始终有DA=AM.小姚把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明DA=AM,只需证△ADM是等边三角形;想法2:连接CM,只需证明△ABD≌△ACM即可.请你参考上面的想法,帮助小姚证明DA=AM(一种方法即可).(1)证明:(2)①补全图形.②证明:北京市西城区2016-2017学年度第一学期期末试卷八年级数学附加题2017.1试卷满分:20分一、填空题(本题8分)1. 3,按下面的方式进行排列:(1,5),(2,3),那么(1所在的位置应记为;(2)在(4,1)的位置上的数是,所在的位置应记为;(3)这组数中最大的有理数所在的位置应记为.二、操作题(本题4分)2. 条件:图①和图②是由边长都为1个单位长度的小正方形组成的网格,其中有三个图形:组块A,组块B和组块C.任务:在图②的正方形网格中,用这三个组块拼出一个轴对称图形(组块C的位置已经画好),要求组块的所有顶点都在格点上,并且3个组块中,每两个组块.....要有公共的顶点或边.请画出组块A和组块B的位置(用阴影部分表示,并标注字母)说明:只画一种即可,组块A,组块B可在网格中平移,翻折或旋转.三、解答题(本题8分)3. 在平面直角坐标系xOy中,点A的坐标为(4,0)-,点B的坐标为(0,)b,将线段BA绕点B顺时针旋转90︒得到线段BC,连接AC.(1)当点B在y轴的正半轴上时,在图1中画出△ABC并求点C的坐标(用含b的式子表示);(2)画图探究:当点B在y轴上运动且满足2-≤b≤5时,相应的点C的运动路径形成什么图形.①在图2中画出该图形;②描述该图形的特征;③利用图3简要证明以上结论.解:(1)(2)①画图.②该图形的特征是.③简要证明过程:图1 图2 图3北京市西城区2016-2017学年度第一学期期末试卷八年级数学参考答案及评分标准 2017.1一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分) 11. 1. 12. x ≥3. 13. (5,1).14. 200(1)v-. 15. (1)见图1(涂色1分,画对称轴1分);(2)3(1分).16. (1)3(2分);(2)256(1分). 三、解答题(本题共52分) 17. (本题6分,每小题3分)解:(1)32225(5)a b a b a b a b -=-; …………………………………………………… 3分 (2) 231212a a -+23(44)a a =-+ …………………………………………………………………… 4分 23(2)a =-. ………………………………………………………………………… 6分18. (本题6分)解: 222142442a a a a a a a a ---⎛⎫-÷⎪++++⎝⎭ 2212=(2)(2)4a a a a a a a ⎡⎤--+-⨯⎢⎥++-⎣⎦图121=(4)(2)(4)a a a a a a ----+- …………………………………………………………… 3分(2)(2)(1)=(2)(4)a a a a a a a -+--+-4=(2)(4)a a a a -+-……………………………………………………………………… 4分21=2a a +. ……………………………………………………………………………… 5分当1a =-时,221112(1)2(1)a a ==-+-+⨯-. …………………………………………6分19. (本题6分)解:方程两边同乘(1)(1)x x -+,得 2(1)(1)7x x ++-=.…………………………………2分去括号,得 2217x x ++-=.……………………………………………………………3分 移项,合并,得 36x =.……………………………………………………………… 4分 系数化1,得 2x =. …………………………………………………………………… 5分 经检验,2x =是原方程的根. ………………………………………………………… 6分 所以原方程的解为2x =. 20. (本题6分)………… 2分解:原式222-⨯ …………………………………………… 4分=31222+- ………………………………………………………………… 5分=1152-……………………………………………………………………… 6分21. (本题6分)证明:如图2.∵ △P AO 和△PBQ 是等边三角形,∴ P A=PO ,PB=PQ ,∠OP A =60°,∠QPB =60°. ∴ ∠OP A =∠QPB .∴ 33OPA QPB ∠-∠=∠-∠.∴ ∠1=∠2. ……………………………………………… 1分 在△P AB 和△POQ 中,,12,,PA PO PB PQ =⎧⎪∠=∠⎨⎪=⎩………………………………………………………………………… 4分 ∴ △P AB ≌△POQ . ………………………………………………………………… 5分 ∴ AB=OQ . ……………………………………………………………………… 6分 22. (本题6分) (1)例如:①当a = 2 ,b = 3 时,等式222121()()3333+=+成立;…………………………… 1分② 当a = 3 ,b = 5 时,等式223232()()5555+=+成立. ……………………………2分(2)解:22222222()()a b a a b a a b b a a ab b b b b b b b --+--++=+==,…………………… 3分 22222222()a b a a b ab a a ab b b b b b b --+-++=+=. …………………………… 5分 所以等式2()a b a b b -+=2()a b a b b-+成立.…………………………………… 6分23. (本题5分)解:(1)例如:(画出一种即可)图2………………… 4分(2)结论略. …………………………………………………………………………… 5分 24.1 (本题5分)解:(1)4(1分),直线EF 与AC 边的交点(1分),标图1分(图略). …………………3分(2)先画点M 关于直线AB 的对称点M ',射线NM '与直线AB 的交点即为点P . (见图3)………………………………… 5分注:画图1分,回答1分.24.2(本题7分)(1)解:草图如图4. …………………………………………………………………………1分先由长为h ,m 的两条线段作Rt △ADH ,再由线段c 作边AB 确定点B ,再倍长 BD 确定点C . …………………………………………………………………… 4分(2)如图5. ………………………………………………………………………………… 7分 注:其他正确图形及作法相应给分.25.(本题6分) (1)证明:如图6. 图3∵ △ABC 是等边三角形,∴ 260BAC B ∠=∠=∠=︒. ∵ AD=DE , ∴ 1E ∠=∠.∵ 1BAD BAC ∠=∠-∠,2EDC E ∠=∠-∠, ∴ ∠BAD =∠EDC . ……………………… 2分 (2)①补全图形.(见图7)……………………3分②法1: 证明:如图7. 由(1)已得34∠=∠.∵ 点E 与点M 关于直线BC 对称, 可得 45∠=∠,DE=DM .∵ DE=DA ,∴ 35∠=∠,DA=DM . ∵ ∠ADC 是△ABD 的外角, ∴ 3603ADC B ∠=∠+∠=︒+∠. 又∵ 5ADC ADM ∠=∠+∠,∴ 60ADM ∠=︒. ∴ △ADM 是等边三角形.∴ DA=AM . ……………………………………………………………………… 6分 法2:图7证明:如图8,在AB 边上截取BF=BD ,连接CM ,DF .可得△BDF 是等边三角形,120AFD DCE ∠=∠=︒. ∵ DA= DE ,34∠=∠ ∴ △ADF ≌△DEC .∴ DF=EC .∵ 点E 与点M 关于直线BC 对称, 可得45∠=∠,CE=CM ,120DCM DCE ∠=∠=︒.∴ BD= DF=EC= MC ,60ACM ∠=︒. ∴ B ACM ∠=∠.∵ △ABC 是等边三角形, ∴ AB AC =. ∴ △ABD ≌△ACM .∴ DA=AM . ……………………………………………………………………… 6分图8北京市西城区2016-2017学年度第一学期期末试卷八年级数学附加题参考答案及评分标准2017.1一、填空题(本题8分)1.解:(1)(2,5).……………………………………………………………………………2分(2),(5,4).……………………………………………………………………6分(3)(6,2).……………………………………………………………………………8分二、操作题(本题4分)2.解:如图所示,任画一种即可.…………………………………………………………4分三、解答题(本题8分)3.解:(1)如图1,作CD⊥y轴于点D.由题意可得AB=BC,90ABC∠=︒,∴90DBC OBA∠+∠=︒.∵90AOB BDC∠=∠=︒,∴90OAB OBA∠+∠=︒.∴OAB DBC∠=∠.∴△OAB≌△DBC.…………………………2分∴OB=DC,OA=DB. ………………………3分∵点A的坐标为(4,0)-,点B的坐标为(0,)b,点B在y轴的正半轴上,∴4OA=,OB b=.∴ 4OD OB BD b =+=+,CD OB b ==. …………………………………… 4分 由题意知点C 在第二象限,∴ 点C 的坐标为( ,+4)b b -.………………………………………………………5分 (2)①画图见图2. ………………………………………………………………………6分 ②线段13C C ,其中1C ,3C 两点的坐标分别为1(2,2) C ,3(5,9) C -,线段13C C 所 在直线与y 轴所夹的锐角为45︒. ………………………………………………7分③简要证明过程:如图3,设点G 的坐标为(0,4)G ,点H 的坐标为(4,0)H ,可 得∠OGH =45︒.任取满足题意的点(0,)B b (其中2-≤b ≤5),作出相应的线段BC 和线段AC ,作CD ⊥y 轴于点D .由点(0,4)G 可得4OG OA ==. 同(1)可得OB=CD ,AO=BD .所以 CD OB OD BD ==-OD OA OD OG DG =-=-=. 由CD ⊥y 轴于点D 可得∠DGC =45︒.所以无论点B 在y 轴上如何运动,相应的点C 在运动时总落在直线GH 上.而点B 在y 轴上运动满足2-≤b ≤5时,此时点C 运动的路径是这条直线上的一部分,是线段13C C (见图2),其中与点1(0,2) B -对应的端点为1(2,2) C ;与点3(0,5) B 对应的端点为3(5,9) C -. …………………………………………… 8分。

相关文档
最新文档