第12章一次函数总复习
沪科版八年级上册数学第12章 一次函数含答案(综合)

沪科版八年级上册数学第12章一次函数含答案一、单选题(共15题,共计45分)1、成都市为减少雾霾天气采取了多项措施,如对城区主干道进行绿化.现计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21﹣1)=6(x﹣1)B.5(x+21)=6(x﹣1)C.5(x+21﹣1)=6xD.5(x+21)=6x2、若直线y=-2x-4与直线y=4x+b的交点在第三象限,则b的取值范围是()A.-4<b<8B.-4<b<0C.b<-4或b>8D.-4≤6≤83、已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x 轴的交点是()A.(0,1)B.(-1,0)C.(0,-1)D.(1,0)4、将函数y=﹣3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=﹣3x+2B.y=﹣3x﹣2C.y=﹣3(x+2)D.y=﹣3(x﹣2)5、若一次函数的函数值y随x的值增大而增大,且此函数的图象不经过第二象限,则k的取值范围是()A. B. C. D. 或6、把直线向上平移m个单位后,与直线的交点在第一象限,则m的取值范围是A.1<m<7B.3<m<4C.m>1D.m<47、已知函数的图象与轴有交点,则的取值范围是()A. B. C. D.8、对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>09、已知两个一次函数,的图象相互平行,它们的部分自变量与相应的函数值如下表:则m的值是()A. B. C. D.10、将直线y=-2x向下平移两个单位,所得到的直线为()A.y=-2(x+2)B.y=-2(x-2)C.y=-2x-2D.y=-2x+211、如图,已知一次函数y=kx+b的图象,当x<0,y的取值范围是()A.y>0B.y<0C.y<-2D.2<y<012、若一次函数(k是常数,)的图象经过点P,且函数y 的值随自变量x的增大而减小,则点P的坐标可以是()A. B. C. D.13、一天晚饭后,小明陪妈妈从家里出去散步,下图描述了他们散步过程中离家的距离s(米)与散步时间t(分)之间的函数关系,下面的描述符合他们散步情景的是()A.从家出发,到了一家书店,看了一会儿书就回家了B.从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回14、已知直线y=ax+b(a≠0)经过第一,二,四象限那么,直线y=bx﹣a一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限15、如图,在平面直角坐标系中,若点在直线与轴正半轴、轴正半轴围成的三角形内部,则的值可能是()A.-3B.3C.4D.5二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且∠AOC=60°,A点的坐标是(0,4),则直线AC的表达式是________.17、如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+6与x轴交于点A,与y轴交于点B,在x轴上有一点E,在y轴上有一点F,满足OB=3BF =3AE,连接EF,交AB于点M,则M的坐标为________.18、如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为________.19、某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款________元.20、函数中自变量x的取值范围是________ .21、直线y=﹣5x+7可以看作是由直线y=﹣5x﹣1向________平移________个单位得到的.22、如图,巳知一次函数y=kx+3和y=-x+b的图象交于点P (2,4).则关于x的方程kx+3=-x+b 的解是________.23、对于一次函数y=−2x+1,当−2<x<3时,函数值y的取值范围是________.24、已知,那么=________.25、市场上一种豆子的单价是2元/kg,豆子总的售价y (元)与所售豆子的重量x (kg)之间的函数关系式为________三、解答题(共5题,共计25分)26、一次函数y =kx+b()的图象经过点,,求一次函数的表达式.27、如图,在平面直角坐标系中,直线AC与x轴交于C点,与y轴交于A点,直线AB与x轴交于B点,与y轴交于A点,已知A(0,4),B(2,0).(1)求直线AB的解析式.=7,求点C的坐标.(2)若S△ABC28、某苹果生产基地组织20辆汽车装运A,B,C三种苹果42吨到外地销售.按规定每辆车只装一种苹果,且必须装满,每种苹果不少于2车.苹果品种 A B C每辆汽车的装载重量(吨)2.2 2.1 2每吨苹果获利(百元) 6 8 5(1)设用x辆车装运A种苹果,用y辆车装运B种苹果.根据上表提供的信息,求y与x之间的函数关系式,并求出x的取值范围;(2)设此次外销活动的利润为W(百元),求W与x之间的函数关系式及最大利润,并制定相应的车辆分配方案.29、如图,已知函数的图象与y轴交于点A,一次函数的图象经过点B(0,-1),并且与x轴以及的图象分别交于点C、D.(1)若点D的横坐标为1,求四边形AOCD的面积(即图中阴影部分的面积);(2)在第(1)小题的条件下,在y轴上是否存在这样的点P,使得以点P、B、D 为顶点的三角形是等腰三角形.如果存在,求出点P坐标;如果不存在,说明理由.(3)若一次函数的图象与函数的图象的交点D始终在第一象限,则系数k的取值范围是.30、如图,直线y=﹣2x+6与直线y=mx+n相交于点M(p,4).(1)求p的值;(2)直接写出关于x,y的二元一次方程组的解;(3)判断直线y=3nx+m﹣2n是否也过点M?并说明理由.参考答案一、单选题(共15题,共计45分)1、A2、A3、D4、A5、C6、C7、C8、D9、A10、C11、C12、C13、D14、D15、D二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
第12章一次函数期末复习一次函数的交点问题PPT课件(沪科版)

则方程组
x-y-3=0 2x-y+2=0
的解是_x_=__-__5 y=-8
.
7.直线y=x+2和直线y=x-3的位置关系是 平行 , 由此可知方程组 x-y=-2解的情况为_无__解___.
x-y=3
8. 如图,在同一平面直角坐标系中,直线
l1:y=
1 4
x+
1 2
与直线l2:
y=kx+3的图象相交
6.把方程x+1=4y+
x 3
化为y=kx+b的情势,
正确的是( C ).
A.
1 3
1 4
B.
1 6
C.
1 6
1 4
D.
1 3
7.已知函数y=-x +m与y= mx-4的图象的交点
在x轴的负半轴上那么m的值为( D ).
A.±2
B.±4 C.2 D.-2
∵图象的交点在x轴上
∴ y=0 ∴ -x +m=0 ∴ x= m
( 2)两个一次函数的图象的交点
3.求一次函数的图象与坐标轴的交点的方法
(1)求一次函数的图象的与x轴交点坐标 设y=0, 变为求方程kx+b=0的解
(2)求一次函数的图象的与y轴交点坐标
设x=0, 变为求代数式kx+b的值
(3)一次函数y=kx+b的图象的与x轴交点
坐标为(
-
b k
,0
)
;
与y轴的交点坐标
C.( -1,-1) D.( -1,5)
12.如果直线y =kx+b平行于直线 y=5x-m, y= kx+b
则方程组 y= 5x- m 的解的情况是( B ).
A.有无数解
B.无解
C.一组解
D.两组解
填空题 1.已知关于x的方程ax-5=7的解为x=1,则一次
2020-2021学年安徽省八年级上册数学(沪科版)期末考试复习:第12章《一次函数》解答题精选

2020-2021学年安徽省八年级上册数学(沪科版)期末考试复习:第12章《一次函数》解答题精选一.解答题(共24小题)1.(2020春•谢家集区期末)如图,直线l1:y=﹣3x+3与x轴交于点A,直线l2经过点B(4,0),C(3,﹣1.5),并与直线l2交于点D.(1)求直线l2的函数解析式;(2)求△ABD的面积;(3)在平面内是否存在点E,使以A、B、D、E为顶点的四边形是平行四边形?若存在,直接写出点E 的坐标,若不存在,请说明理由.2.(2019秋•宿松县校级期末)2017年“中国移动”公司提供两种通讯收费方案供客户选择.根据以上信息,解答下列问题:(1)设通话时间为x分钟,方案一的通讯费用为y1元,方案二的通讯费用为y2元,分别求出y1、y2关于x的函数表达式.(2)请你通过计算说明如何选用通讯收费方案更合算.(3)小明的爸爸每月的通话时间约为500分钟,应选用哪种通讯收费方案.3.(2019秋•宿松县校级期末)小刚同学学习一次函数的图象与性质后,结合平移知识对一次函数的表达式进行了研究.(1)把直线y=2x沿x轴方向向左平移1个单位长度,得到的一次函数的表达式为;把直线y =2x沿x轴方向向左平移2个单位长度,得到的一次函数的表达式为;把直线y=2x沿x轴方向向左平移3个单位长度,得到的一次函数的表达式为;…….(2)把直线y=2x沿x轴方向向左(或向右)平移n(n是正整数)个单位长度,根据(1)的规律,写出平移得到的一次函数的表达式;(3)把直线y=mx(m≠0)沿x轴方向向左(或向右)平移n(n是正整数)个单位长度,写出平移得到的一次函数的表达式.4.(2020春•镜湖区期末)公安部交管局部署在全国开展“一盔一带”安全守护行动,自2020年6月1日起,要求骑乘电动车需要佩戴头盔,市场上头盔出现热销,某厂家每月固定生产甲、乙两种型号的头盔共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如下表:型号甲乙价格(元/只)种类原料成本60 40销售单价90 60生产提成 5 4(1)若该厂家五月份的销售收入为1500万元,求甲、乙两种型号的产品分别是多少万只?(2)厂家实行计件工资制,即工人每生产一只头盔获得一定金额的提成,如果厂家六月份投入总成本(原料总成本+生产提成总额)不超过1195万元,应怎样安排甲、乙两种型号头盔的产量,可使该月厂家所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本).5.(2020春•和县期末)已知y是x的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.(1)求这个一次函数的解析式;(2)求当﹣3<y≤1时,自变量x取值范围.6.(2020春•铜陵期末)如图所示,直线l是正比例函数y=kx(k是常数,k≠0)的图象,把直线l分别向上、向下平移b(b>0)个单位长度后,所得直线l1与x,y轴分别相交于点A,B;所得直线l2与x,y 轴分别相交于点C,D,连接AD,BC.(1)求证:四边形ABCD是菱形;(2)当k取何值时,四边形ABCD是正方形?7.(2019秋•宿松县期末)新春佳节来临,某公司组织10辆汽车装运苹果、芦柑、香梨三种水果共60吨去外地销售,要求10辆汽车全部装满,每辆汽车只能装运同一种水果,且装运每种水果的车辆都不少于2辆,根据下表提供的信息,解答以下问题:苹果芦柑香梨每辆汽车载货量(吨)7 6 5每吨水果获利(万元)0.15 0.2 0.1(1)设装运苹果的车辆为x辆,装运芦柑的车辆为y辆,求y与x之间的函数关系式,并直接写出x的取值范围(2)用w来表示销售获得的利润,那么怎样安排车辆能使此次销售获利最大?并求出w的最大值.8.(2019秋•石台县期末)甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地.甲、乙两车距B地的路程y(km)与各自行驶的时间x(h)之间的关系如图所示.(1)求甲车距B地的路程y1关于x的函数解析式;(2)求乙车距B地的路程y2关于x的函数解析式,并写出自变量x的取值范围;(3)当甲车到达B地时,乙车距B地的路程为km.9.(2019秋•蜀山区期末)某公司欲将m 件产品全部运往甲,乙,丙三地销售(每地均有产品销售),运费分别为40元/件,24元/件,7元/件,且要求运往乙地的件数是运往甲地件数的3倍,设安排x (x 为正整数)件产品运往甲地.(1)根据信息填表:甲地 乙地 丙地产品件数(件) x 3x运费(元)40x (2)若总运费为6300元,求m 与x 的函数关系式并求出m 的最小值.10.(2019秋•东至县期末)如图,直线y =kx +1(k ≠0)与两坐标轴分别交于点A 、B .直线y =﹣2x +4与y 轴交于点C ,与直线y =kx +1交于点D .△ACD 的面积为32.(1)求k 的值;(2)直接写出不等式x +1<﹣2x +4的解集;(3)点P 在x 轴上,如果△DBP 的面积为4,点P 的坐标.11.(2019秋•裕安区期末)已知一次函数y =kx +b 的图象经过点(﹣2,5),并且与y 轴相交于点P ,直线y =﹣x +3与y 轴相交于点Q ,点Q 恰与点P 关于x 轴对称,求这个一次函数y =kx +b 的表达式.12.(2019秋•裕安区期末)小明平时喜欢玩“开心消消乐”游戏.本学期在学校组织的几次数学反馈性测试中,小明的数学成绩如下表:月份x 9 10 11 12 13(第二年元月) 14(第二年2月)成绩(分) 90 80 70 60 … …(1)以月份为轴,根据上表提供的数据在平面直角坐标系中描点.(2)观察(1)中所描点的位置关系,猜想y 与x 之间的的函数关系,并求出所猜想的函数表达式.(3)若小明继续沉溺于“开心消消乐“游戏,照这样的发展趋势,请你估计元月(此时x =13)份的考试中小明的数学成绩,并用一句话对小明提出一些建议.13.(2019秋•当涂县期末)已知一次函数y=kx+b,它的图象经过(1,﹣3),(4,6)两点.(1)求y与x之间的函数关系式;(2)若点(a,3)在这个函数图象上,求a的值.14.(2019秋•宣城期末)如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数y=kx+b的图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数表达式;(2)求△AOD的面积.15.(2019秋•蜀山区期末)在平面直角坐标系xOy中,△ABC如图所示,点A(﹣3,2),B(1,1),C(0,4).(1)求直线AB的解析式;(2)求△ABC的面积;(3)一次函数y=ax+3a+2(a为常数).①求证:一次函数y=ax+3a+2的图象一定经过点A;②若一次函数y=ax+3a+2的图象与线段BC有交点,直接写出a的取值范围.16.(2019秋•临泉县期末)已知:如图,一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标.(2)若一次函数y1与y2的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≤y2时x的取值范围.17.(2019秋•肥东县期末)为加强校园文化建设,某校准备打造校园文化墙,需用甲、乙两种石材经市场调查,甲种石材的费用y(元)与使用面积x(m2)间的函数关系如图所示,乙种石材的价格为每平方米50元.(1)求y与x间的函数解析式;(2)若校园文化墙总面积共600m2,其中使用甲石材xm2,设购买两种石材的总费用为w元,请直接写出w与x间的函数解析式;(3)在(2)的前提下,若甲种石材使用面积多于300m2,且不超过乙种石材面积的2倍,那么应该怎样分配甲、乙两种石材的面积才能使总费用最少?最少总费用为多少元?18.(2019秋•濉溪县期末)已知y是x的一次函数,它的图象上有两点分别为点A(1,1),B(5,9).(1)求这个一次函数的表达式;(2)判断点C(3,7)是否在这条直线上;(3)当x取何值时,y>0?19.(2019秋•濉溪县期末)如图,在平面直角坐标系中AD⊥BC,垂足为D,交y轴于点H,直线BC的解析式为y=﹣2x+4.点H(0,2),(1)求证:△AOH≌△COB;(2)求D点的坐标.20.(2019秋•潜山市期末)市教育局在全市中小学推广某学校“品格教育”科研成果,其中“敬老孝亲”是“品格教育”亮点之一.重阳节(农历九月初九)快到了,某校八年级(1)班班委发起为老人们献上真挚的节日祝福活动,决定全班同学利用课余时间去卖鲜花筹集慰问金.已知同学们从花店按每支1.5元买进鲜花,并按每支4.5元卖出.(1)求同学们卖出鲜花的销售额y(元)与销售量x(支)之间的函数关系式;(2)若从花店购买鲜花的同时,还总共用去40元购买包装材料,求所筹集的慰问金w(元)与销售量x(支)之间的函数关系式;若要筹集不少于500元的慰问金,则至少要卖出鲜花多少支?(慰问金=销售额﹣成本)21.(2019秋•潜山市期末)已知直线l1:y1=mx﹣4与直线l2:y2=﹣x+n交于点A(2,4),直线l1与x 轴交于点B,直线l2与y轴交于点C.(1)求m,n的值;(2)求当x为何值时,y1>y2,y1<y2;(3)求△ABC的面积.22.(2019秋•安庆期末)某企业生产并销售某种产品,整理出该商品在第x(1≤x≤90,x为整数)天的售价y与x函数关系如图所示,已知该商品的进价为每件30元,第x天的销售量为(200﹣2x)件.(1)试求出售价y与x之间的函数关系式;(2)请求出该商品在销售过程中的最大利润;23.(2019秋•安庆期末)(1)模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)模型应用:①如图2,一次函数y=﹣2x+4的图象分别与x轴、y轴交于点A、B,以线段AB为腰在第一象限内作等腰直角三角形ABC,则C点的坐标为(直接写出结果)②如图3,在△ABC和△DCE中,CA=CB,CD=CE,∠CAB=∠CED=45°,连接BD、AE,作CM⊥AE于M点,延长MC与BD交于点N,求证:N是BD的中点.24.(2019秋•宿州期末)某送奶公司计划在三栋楼之间建一个取奶站,三栋楼在同一条直线,顺次为A楼、B楼、C楼,其中A楼与B楼之间的距离为40米,B楼与C楼之间的距离为60米.已知A楼每天有20人取奶,B楼每天有70人取奶,C楼每天有60人取奶,送奶公司提出两种建站方案.方案一:让每天所有取奶的人到奶站的距离总和最小;方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和.(1)若按照方案一建站,取奶站应建在什么位置?(2)若按照方案二建站,取奶站应建在什么位置?2020-2021学年安徽省八年级上册数学(沪科版)期末考试复习:第12章《一次函数》解答题精选参考答案与试题解析一.解答题(共24小题)1.【解答】解:(1)设直线l 2的表达式为y =kx +b ,则{4k +k =03k +k =−1.5,解得{k =1.5k =−6, 故直线l 2的表达式为y =1.5x ﹣6;(2)对于y =﹣3x +3,令y =0,则﹣3x +3=0,解得x =1,故点A (1,0),则AB =3,联立l 1、l 2的表达式得{k =−3k +3k =1.5k −6,解得{k =2k =−3, 故点D (2,﹣3),∴△ABD 的面积=12×AB ×|y D |=12×3×3=92;(3)存在,理由:①当AB 是边时,则DE =AB =3,而点D (2,﹣3),故点E (5,﹣3)或(﹣1,﹣3);②当AB 是对角线时,由中点公式得:12(1+4)=12(2+x E )且12(0+0)=12(﹣3+y E ), 解得{k k =3k k =3,故点E (3,3), 综上,点E 的坐标为(5,﹣3)或(﹣1,﹣3)或(3,3).2.【解答】解:(1)根据题意知,当0≤x ≤50时,y 1=40.当x >50时,y 1=40+(x ﹣50)×0.1=35+0.1x .综上所述,y 1={40(0≤k ≤50)0.1k +35(k >50). y 2=0.2x (x ≥0);(2)当0≤x ≤50时,y 1=40>y 2,选择方案二合算;当x >50时:①y 1>y 2,即0.1x +35>0.2x ,解得x <350,选择方案二合算;②y 1=y 2,即0.1x +35=0.2x ,解得x =350,选择两种方案一样合算;③y 1<y 2,即0.1x +35<0.2x ,解得x >350,选择方案一合算.综上所述,当通话时间小于350分钟,选择方案二合算;当通话时间为350分钟,选择两种方案一样合算;当通话时间大于350分钟,选择方案一合算;(3)由于500>350,所以小明的爸爸选用通讯收费方案一合算.3.【解答】解:(1)∵直线y =2x 沿x 轴方向向左平移1个单位长度,∴得到函数y =2(x +1)=2x +2;∵直线y =2x 沿x 轴方向向左平移2个单位长度,∴得到的一次函数的表达式为y =2(x +2)=2x +4;∵直线y =2x 沿x 轴方向向左平移3个单位长度,∴得到的一次函数的表达式为y =2(x +3)=2x +6;故答案为:2x +2;2x +4;2x +6;(2)直线y =2x 沿x 轴方向向左平移n (n 是正整数)个单位长度,根据(1)的规律,可得平移得到的一次函数的表达式为y =2(x +n )=2x +2n ;直线y =2x 沿x 轴方向向右平移n (n 是正整数)个单位长度,根据(1)的规律,可得平移得到的一次函数的表达式为y =2(x ﹣n )=2x ﹣2n ;故答案为:y =2x +2n 或y =2x ﹣2n ;(3)直线y =mx (m ≠0)沿x 轴方向向左平移n (n 是正整数)个单位长度,得到的一次函数的表达式为y =m (x +n )=mx +mn ;直线y =mx (m ≠0)沿x 轴方向向右平移n (n 是正整数)个单位长度,得到的一次函数的表达式为y =m (x ﹣n )=mx ﹣mn ;故答案为:y =mx +mn 或y =mx ﹣mn .4.【解答】解:(1)设甲型号的产品为x 万只,则乙型号的产品为(20﹣x )万只,由题意得:90x +60(20﹣x )=1500,解得:x =10,则20﹣x =20﹣10=10,答:甲、乙两种型号的产品分别是10万只、10万只;(2)设安排甲型号头盔的产量为y 万只,则乙型号头盔的产量为(20﹣y )万只,由题意得:(60+5)y +(40+4)(20﹣y )≤1195,解得:y ≤15,由题意得:利润W =(90﹣60﹣5)y +(60﹣40﹣4)(20﹣y )=9y +320,当y =15时,W 最大,最大值为:9×15+320=455(万元),此时20﹣y =5,即安排甲型号头盔的产量为15万只,则乙型号头盔的产量为5万只,可使该月厂家所获利润最大,最大利润为455万元.5.【解答】解:(1)设一次函数解析式为y =kx +b (k ≠0), 把x =﹣4,y =9;x =6,y =﹣1代入得:{−4k +k =96k +k =−1, 解得:{k =−1k =5, 则一次函数解析式为y =﹣x +5;(2)y =﹣x +5,∵k =﹣1<0,∴y 随x 的增大而减小,当y =﹣3时,﹣3=﹣x +5,即x =8,当y =1时,1=﹣x +5,即x =4,则当﹣3<y ≤1时,自变量x 的范围是4≤x <8.6.【解答】(1)证明:∵直线y =kx +b 与x ,y 轴分别相交于点A ,B ,∴A (−k k ,0),B (0,b ),∵直线y =kx ﹣b 与x ,y 轴分别相交于点C ,D ,∴C (k k ,0),D (0,﹣b ),∴OA =OC ,OB =OD ,∴四边形ABCD 是平行四边形,∵AC ⊥BD ,∴四边形ABCD 是菱形.(2)解:∵四边形ABCD 是菱形,∴当AC =BD 时,四边形ABCD 是正方形,∴b =k k , ∴k =1.7.【解答】解:(1)设装运苹果的车辆为x 辆,装运芦柑的车辆为y 辆,则运香梨的车辆(10﹣x ﹣y )辆.7x +6y +5(10﹣x ﹣y )=60,∴y =﹣2x +10(2≤x ≤4);(2)w =7×0.15x +6×0.2(﹣2x +10)+5×0.1[10﹣x ﹣(﹣2x +10)],即w =﹣0.85x +12,∵﹣0.85<0,∴w 随x 的增大而减小,∴当x =2时,w 有最大值10.3万元,∴装运苹果的车辆2辆,装运芦柑的车辆6辆,运香梨的车辆2辆时,此次销售获利最大,最大利润为10.3万元.8.【解答】解:(1)设y 1关于x 的函数解析式为y 1=kx +b ,由题意可得{k =280160=1.5k +k∴{k =−80k =280∴y 1=﹣80x +280,(2)由图象可得乙车的速度为:601=60千米/时,∴相遇时间=28060+80=2(小时) ∴经过2小时,甲乙两车相遇,且距离B 地120公里;∴乙车以原速原路返回到B 地所需时间为2小时,当2<x ≤4时,设y 2=mx +n ,且过(4,0),(2,120), ∴{0=4k +k 120=2k +k∴{k =−60k =240∴y 2=﹣60x +240,∴y 2={60k (0≤k ≤2)−60k +240(2<k ≤4)(3)由题意可得:甲车到达B 地时间=28080=72小时,∴y 2=﹣60×72+240=30km , 故答案为:30.9.【解答】解:(1)表格如下:甲地 乙地丙地 产品件数(件) x 3xm ﹣4x 运费(元) 40x 72x7m ﹣28x 故答案为:m ﹣4x ;72x ;7m ﹣28x ;(2)由题意得:40x +72x +7m ﹣28x =6300;化简得:84x +7m =6300,∴m =﹣12x +900,∵m >4x ,∴﹣12x +900>4x ,∴k <2254,∵x 为正整数,∴当x =56时,m 取得最小值,m =228.10.【解答】解:(1)当x =0时,y =kx +1=1,则A (0,1),当x =0时,y =﹣2x +4=4,则C (0,4),设D 点的坐标为(t ,﹣2t +4),∵△ACD 的面积为32,∴12×(4﹣1)×t =32,解得t =1,∴D (1,2),把D (1,2)代入y =kx +1得k +1=2,∴k =1;(2)不等式x +1<﹣2x +4的解集为x <1;(3)当y =0时,x +1=0,解得x =﹣1,则B (﹣1,0),设P (m ,0),∵△DBP 的面积为4,∴12×|m +1|×2=4,解得m =3或﹣5,∴P 点坐标为(﹣5,0)或(3,0).11.【解答】解:由题意可得,点Q 的坐标是(0,3),点P 的坐标是(0,﹣3),把(0,﹣3),(﹣2,5)代入一次函数y =kx +b 得b =﹣3,﹣2k +b =5,解得b =﹣3,k =﹣4.所以这个一次函数的表达式:y =﹣4x ﹣3.12.【解答】解:(1)如图所示;(2)猜想y 与x 之间的的函数关系是一次函数关系,设y =kx +b ,由题意可得{90=9k +k80=10k +k解得{k =−10k =180∴y =﹣10x +180;(3)当x =13时,y =50,建议小明,放下游戏,认真学习.13.【解答】解:(1)将(1,﹣3),(4,6)代入y =kx +b 中,得:{k +k =−34k +k =6,解得:{k =3k =−6,∴y 与x 之间的函数关系式为y =3x ﹣6.(2)把点(a ,3)代入y =3x ﹣6得,3a ﹣6=3解得:a =3,∴a 的值为3.14.【解答】解:(1)∵正比例函数y =2x 的图象与一次函数y =kx +b 的图象交于点A (m ,2)∴2m =2,解得m =1,∴A (1,2),把A (1,2)和B (﹣2,﹣1)代入y =kx +b ,得{k +k =2−2k +k =−1,解得k =1,b =1 则一次函数表达式是y =x +1;(2)y =x +1中,令y =0,则x =﹣1,∴D (﹣1,0),∴△AOD 的面积=12×1×2=1.15.【解答】解:(1)设直线AB 的解析式是y =kx +b , 将点A (﹣3,2),点B (1,1)代入的,得{−3k +k =2k +k =1解得,{k =−14k =54∴直线AB 的解析式是k =−14k +54;(2)设直线AB 与y 轴的交点为D 点,则点D 的坐标为(0,54),k △kkk =k △kkk +k △kkk =12×(4−54)×3+12×(4−54)×1=112;(3)①证明:∵y =ax +3a +2=a (x +3)+2, ∴y =ax +3a +2必过点(﹣3,2),即必过A 点;②把B (1,1)代入y =ax +3a +2得,1=a +3a +2,解得a =−14;把C (0,4)代入y =ax +3a +2得,4=3a +2,解得a =23,∴若一次函数y =ax +3a +2的图象与线段BC 有交点,则−14≤k ≤23且a ≠0.16.【解答】解:(1)联立两函数解析式可得方程组{k =k −2k =k −4,解得:{k =1k =−3, ∴点A 的坐标为(1,﹣3);(2)当y 1=0时,﹣x ﹣2=0,解得:x =﹣2,∴B (﹣2,0),当y 2=0时,x ﹣4=0,解得:x =4,∴C (4,0),∴CB =6,∴△ABC 的面积为:12×6×3=9;(3)由图象可得:y 1≤y 2时x 的取值范围是x ≥1.17.【解答】解:(1)①0≤x ≤300时,设y =kx +b (k ≠0),过(0,0),(300,24000),{k =0300k +k =24000,解得{k =80k =0, ∴y =80x ,②x >300时,设y =kx +b (k ≠0),过(300,24000),(500,30000),{300k +k =24000500k +k =30000,解得{k =30k =15000, ∴y =30x +15000,∴y ={80k (0≤k ≤300)30k +15000(k >300);(2)当0≤x ≤300时,w =80x +50(600﹣x )=30x +30000;当x >300时,w =30x +15000+50(600﹣x ),即w =﹣20x +45000;∴k ={30k +3000(0≤k ≤300)−20k +45000(k >300);(3)设甲种石材为 am 2,则乙种石材(600﹣a )m 2,{k >300k ≤2(600−k ),∴300<x ≤400,由(2)知w =﹣20x +45000,∵k =﹣20<0,∴W 随x 的增大而减小,即甲400m 2,乙200m 2时,W min =﹣20×400+45000=37000.答:甲种石材400m 2,乙种石材200m 2时,总费用最少,最少总费用为37000元.18.【解答】解:(1)设一次函数解析式为y =kx +b ,∵图象过两点A (1,1),B (5,9),∴{1=k +k9=5k +k,解得:{k =2k =−1, ∴函数解析式为:y =2x ﹣1;(2)当x =3时,y =6﹣1=5≠7,∴点C (3,7)不在这条直线上;(3)∵y >0,∴2x ﹣1>0,∴x >12.19.【解答】解:(1)由y =﹣2x +4可求得OC =4,OB =OH =2,∵∠AOH =∠COB =90°,∴∠HAO +∠ABC =90°∠BCO +∠ABC =90°即∠HAO =∠BCO ,∴△AOH ≌△COB (AAS );(2)由(1)得OA =4,即A (﹣4,0)∵H (0,2),∴于是求得直线AH 解析式为:k =12k +2,联立直线BC 的解析式为y =﹣2x +4.可求得x =45,y =125∴D (45,125).20.【解答】解:(1)y =4.5x ;(2)w =4.5x ﹣1.5x ﹣40=3x ﹣40,当w ≥500时,3x ﹣40≥500解得x ≥180答:要筹集不少于500元的慰问金,则至少要卖出鲜花180支.21.【解答】解:(1)把A (2,4)代入y 1=mx ﹣4得2m ﹣4=4,解得m =4;把A (2,4)代入y 2=﹣x +n 得﹣2+n =4,解得n =6;(2)当x >2时,y 1>y 2,当x <2时,y 1<y 2;(3)直线y =4m ﹣4于y 轴的交点D 的坐标为(0,﹣4),与x 轴的交点B 的坐标为(1,0), 直线y =﹣x +6与y 轴的交点C 的坐标为(0,6),所以△ABC 的面积=S △ACD ﹣S △BCD =12×10×2−12×10×1=5. 22.【解答】解:(1)当0≤x ≤50时,设y 与x 的解析式为:y =kx +40,则50k +40=90,解得k =1,∴当0≤x ≤50时,y 与x 的解析式为:y =x +40,∴售价y 与x 之间的函数关系式为:y ={k +40(0≤k ≤50)90(k ≥50);(2)设该商品在销售过程中的利润为w ,当0≤x ≤50时,w =(x +40﹣30)(200﹣2x )=﹣2x 2+180x +2000=﹣2(x ﹣45)2+6050,∵a =﹣2<0且0≤x ≤50,∴当x =45时,w 取最大值,最大值为6050元;当50≤x ≤90时,w =(90﹣30)(200﹣2x )=﹣120x +1200,∵﹣120<0,∴w 随x 的增大而减小,∴当x =50时,该商品在销售过程中的利润最大,最大值为:(90﹣30)×(200﹣2×50)=6000(元). ∵6050>6000,∴x =45时,w 增大,最大值为6050元.答:第45天时,该商品在销售过程中的利润最大,最大利润为6050元.23.【解答】解:(1)∵AD ⊥ED ,BE ⊥ED ,∴∠D =∠E =90°,∴∠ACD +∠CAD =90°,∵∠ACB =90°,∴∠ACD +∠BCE =90°,∴∠BCE =∠CAD ,在△BEC 和△CDA 中{∠k =∠k kkkk =kkkk kk =kk,∴△BEC ≌△CDA (AAS );(2)①如图2过点C 作CH ⊥x 轴于H ,同(1)的方法得,△ACH ≌△BAO (AAS ),∴AH =OB =4,CH =OA =2,∴OH =OA +AH =6,∴C (6,2),同理:C '(4,6)故答案为:C (4,6)或C (6,2);②如图,作BP ⊥MN 交MN 的延长线于P ,作DQ ⊥MN 于Q∵CA =CB ,∠CAB =45°,∴∠CBA =∠CAB =45°,∴∠ACB =90°,∵CM ⊥AE ,∴∠AMC =90°=∠ACB ,∵∠BCP +∠BCA =∠CAM +∠AMC ,∵∠BCA =∠AMC ,∴∠BCP =∠CAM ,在△CBP 与△ACM 中,{∠kkk =∠kkkkkkk =kkkk kk =kk,∴△CBP ≌△ACM (AAS ),∴MC =BP ,同理,CM =DQ ,∴DQ =BP在△BPN 与△DQN 中,{∠kkk =∠kkkkkkk =kkkk kk =kk,∵△BPN ≌△DQN (AAS ),∴BN =ND ,∴N 是BD 的中点.24.【解答】解:(1)设取奶站建在距A 楼x 米处,所有取奶的人到奶站的距离总和为y 米.①当0≤x ≤40时,y =20x +70(40﹣x )+60(100﹣x )=﹣110x +8800∴当x =40时,y 的最小值为4400,②当40<x ≤100,y =20x +70(x ﹣40)+60(100﹣x )=30x +3200此时,y的值大于4400因此按方案一建奶站,取奶站应建在B处;(2)设取奶站建在距A楼x米处,①0≤x≤40时,20x+60(100﹣x)=70(40﹣x)解得x=−3203<0(舍去)②当40<x≤100时,20x+60(100﹣x)=70(x﹣40)解得:x=80因此按方案二建奶站,取奶站建在距A楼80米处.。
第12讲一次函数复习PPT课件

当b=0 时,y=kx+b 即为 y=kx,
所以正比例函数,是一次函数的特例.
(1)若y=5x3m-2是正比例函数,m= 1 。 (2)若 y (m 2)xm23 是正比例函数,m= -2 。
考点2、正比例函数与一次函数的图象与性质
正比例函数y=kx的图象与性质
(1)图象:正比例函数y= kx (k 是常 数,k≠0)) 的图象是经过原点的一条直线, 我们称它为直线y= kx 。
1、通过近三年潍坊中考考点的展示及连接中考环节,体验潍坊中考对一次函 数的考查。 2、通过一次函数知识网络的整理,整体把握本讲的知识构成。 3、通过考点精讲及例习题,进一步加深以下知识点的认知及应用:
(1)一次函数及正比例函数的概念。 (2)一次函数的图象及性质。 (3)用待定系数法求一次函数的解析式。 (4)一次函数的实际应用。 4、通过检测过关环节反馈本讲知识的达标情况,及时查缺补漏。
4.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位 置正确的是 ( C)
A
B
C
D
5.(202X·安徽第20题)如图,一次函数y=kx+b的图象分别与反比例函数y= a x
的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y= a 的表达式; x
【答案】 (1)由图象可知,当x=4 h时,y=380 km,故从小刚家到该景区乘车一共用了 4小时. (2)设直线AB的函数关系式为y=kx+b, 由题意可知:A(1,80),B(3,320),
∴
∴线段AB的解析式为y=120x-40(1≤x≤3). (3)小刚一家出发2.5小时时处于AB段,把x=2.5代入y=120x-40,得y=120×2.540=260(km), 380-260=120(km). 所以小刚一家出发2.5小时时离目的地120 km.
沪科版数学八年级上册 第12章 小结与复习

(a,b是常数,a ≠ 0) .
y
为何值时,函数 = ax + b 的值大于
0?
求直线 y = ax + b 在
解不等式 ax + b>0
x 轴上方的部分
(a,b 是常数,a ≠ 0从) .“形”的角度看(射线)所对应的横坐
标的取值范围.
(3)一次函数与二元一次方程组
一般地,任何一个二元一次方程都可以转化
(2)由两直线平行得 2m+1=3;(3)一次函数中 y 随着 x 的
增大而减小,即 2m+1<0;(4)代入该点坐标即可求解.
解:(1)∵函数是正比例函数,∴m﹣3 = 0,且 2m + 1 ≠ 0,
解得 m = 3.
(2)∵函数的图象平行于直线 y = 3x﹣3,∴2m + 1 = 3,
解得 m = 1.
②列出不等式(方程),求出自变量在取不 同值时所对应的函数值,判断其大小关系
③结合实际需求,选择最佳方案
考点四 一次函数的应用
例4 为美化某市景,园林部门决定利用现有的 3490 盆甲种花卉和 2950 盆乙种花卉搭配 A、B 两种园艺造 型共 50 个摆放在迎宾大道两侧,已知搭配一个 A 种 造型需甲种花卉 80 盆,乙种花卉 40 盆,搭配一个 B 种造型需甲种花卉 50 盆,乙种花卉 90 盆. (1)问符合题意的搭配方案有几种?请你帮助设计出来; (2)若搭配一个 A 种造型的成本是 800 元,搭配一个 B 种造型的成本是 960 元,试说明(1)中哪种方案成本最 低?最低成本是多少元?
方法二:成本为 y=800x+960(50-x)=-160x+48000(31≤x≤33). 根据一次函数的性质,-160<0,y 随 x 的增大而减小, 故当 x = 33 时,y 取得最小值,为
沪科版八年级上册数学课件-第12章一次函数复习

沪科版 八年级上册
知识框图,整体把握
函数概念 函数
列表法
函数表示方法 解析法
一
次 函
定义
图像法
数 一次函数 性质
应用 一次函数与一元一次方程、一元一次不等式
一次函数与二元一次方程
典例精析
1.考查概念(易错题) 主要考查k≠0,常以选择和填空的情势出现.
例1 已知函数y=(n+3)x|n|-2是一次函数,则
【解】因为直线y=(m+2)x-4经过第二、四象限, 则有m+2<0,得m<-2,即m的取值范围是m<-2.
4.确定函数表达式 常常以选择和填空的情势出现,或出现在大
题的第一问. 做这一类题关键在于求出k和b的值. 给出两点,求一次函数表达式
例4.已知一次函数的图象经过A(-2,-3),B (1,3)两点. (1)求这个一次函数的解析式; (2)试判断点P(-1,1)是否在这个一次函数 的图象上?
(2)①依题意得:w=12n+8(30-n),
即w=4n+240,
且 n < 2(30 - n) 和 n 1(30 - n)
3
3
所以,w(元)关于n(本)的函数关系式 为:w=4n+240,
自变量n的取值范围是
15 n < 12 2
,n为
整数.
②对于一次函数w=4n+240, ∵ w随n的增大而增大,且 15 n < 12 ,
6.应用
例6 某校八年级举行英语演讲比赛,派了两位老师去 学校附近的超市购买笔记本作为奖品,经过了解得知,该 超市的A,B两种笔记本的价格分别是12元和8元,他们准 备购买这两种笔记本共30本. (1)如果他们计划用300元购买奖品,那么能买这两种笔 记本各多少本?
八年级数学上册第12章一次函数知识点总结沪科版

八年级数学上册第12章一次函数知识点总结新版沪科版第十二章一次函数一、确定函数自变量的取值范围1、自变量以整式形式出现,自变量的取值范围是全体实数;2、自变量以分式形式出现,自变量的取值范围是使分母不为0的数;3、自变量以偶次方根形式出现,自变量的取值范围是使被开方数大于或等于0(即被开方数≥0)的数;自变量以奇次方根形式出现,自变量的取值范围是全体实数。
4、自变量出现在零次幂或负整数次幂的底数中,自变量的取值范围是使底数不为0的数。
(说明:(1)当一个函数解析式含有几种代数式时,自变量的取值范围是各个代数式中自变量取值范围的公共部分;(2)当函数解析式表示具有实际意义的函数时,自变量取值范围除应使函数解析式有意义外,还必须符合实际意义.)二、一次函数1、一般形式:y=k x+b(k、b为常数,k≠0),当b=0时,y=k x (k≠0),此时y是x的正比例函数。
2、一次函数的图像与性质3、确定一次函数图像与坐标轴的交点(1)与x 轴交点:)0,(kb,求法:令y=0,求x ;(2)与y 轴交点:(0,b ),求法:令x=04、确定一次函数解析式—-—待定系数法确定一次函数解析式,只需x 和y 的两对对应值即可求解。
具体求法为:(1)设函数关系式为:y=k x +b ;(2)代入x 和y 的两对对应值,得关于k 、b 的方程组; (3)解方程组,求出k 和b.5、k 和b 的意义(1)∣k ∣决定直线的“平陡”。
∣k ∣越大,直线越陡(或越靠近y 轴);∣k ∣越小,直线越平(或越远离y 轴);(2)b 表示在y 轴上的截距。
(截距与正负之分)6、由一次函数图像确定k 、b 的符号 (1)直线上升,k>0;直线下降,k 〈0;(2)直线与y 轴正半轴相交,b 〉0;直线与y 轴负半轴相交,b<07、两条直线的位置关系222111b x k y l b x k y l +=+=:和直线:直线{{有无数交点)与重合(与)(没有交点)与平行(与)(有且只有一个交点)与相交(与)(2121212121212121212121321l l l l l l l l l l l l k k k k b b k k b b ⇔⇔⇔≠===≠8、x=a 和y=b 的图象x=a 的图象是经过点(a,0)且垂直于x 轴的一条直线; y=b 的图象是经过点(0 ,b )且垂直于y 轴的一条直线。
完整版沪科版八年级上册数学第12章 一次函数含答案

沪科版八年级上册数学第12章一次函数含答案一、单选题(共15题,共计45分)1、将直线y= -3x+5向上平移2个单位后得到的直线表达式是()A.y= -3x+2B.y= -3x-2C.y= -3x+7D.y= -3x-72、同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图象如图所示,则满足y1≥y2的x取值范围是()A.x≤﹣2B.x≥﹣2C.x<﹣2D.x>﹣23、y=kx+(k-3)的图象不可能是()A. B. C. D.4、如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.y=-x+2B.y=-x-2C.y=x+2D.y=x-25、若正比例函数的图象经过点(-1,2),则这个图象必经过点()A. B. C. D.6、已知一次函数y=kx+b(k,b是常数,且k≠0),x与y的部分对应值如下表所示:则不等式kx+b<bx+k的解集为()A. x>1B. x<1C. x>0D. x<07、如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时点N自D点出发沿折线DC﹣CB以每秒2cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A. B. C. D.8、港口依次在同一条直线上,甲、乙两艘船同时分别从两港出发,匀速驶向港,甲、乙两船与港的距离(海里)与行驶时间(小时)之间的函数关系如图所示,则下列说法正确的有()① 两港之间的距离为60海里②甲、乙两船在途中只相遇了一次③甲船平均速度比乙船平均速度快30海里/时④甲船到达港时,乙船还需要一个小时才到达港⑤点的坐标为A.1个B.2个C.3个D.4个9、已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A.-1B.0C.2D.任意实数10、在同一平面内,两直线的位置关系必是()A.相交B.平行C.相交或平行D.垂直11、若直线y=2x-1与y=x-k的交点在第四象限,则k的取值范围是()A. B. C. 或 D.12、已知点A(1,y1),B(-3,y2)都在直线上,则()A.y1< y2B.y1=y2C.y1>y2D.不能比较13、如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.y=-x+2B.y=x+2C.y=x-2D.y=-x-214、如图,爸爸从家(点O)出发,沿着等腰三角形AOB的边OA→AB→BO的路径去匀速散步,其中OA=OB.设爸爸距家(点O)的距离为S,散步的时间为t,则下列图形中能大致刻画S与t之间函数关系的图象是()A. B. C. D.15、一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x表示注水时间,用y表示浮子的高度,则用来表示y与x之间关系的选项是()A. B. C. D.二、填空题(共10题,共计30分)16、已知直线y=kx+b与y=2x+1平行,且经过点(﹣3,4),则函数y=kx+b的图象可以看作由函数y=2x+1的图象向上平移________个单位长度得到的.17、直线与两坐标轴围成的三角形的面积为4,则b的值为________.18、已知一次函数y=kx-2的图象上有两个点P(x1, y1),Q(x2, y2)如果x1>x2, y1<y2,则k________0.19、若函数y= 有意义,则自变量x的取值范围是________.20、函数y=中自变量x的取值范围是________ .21、如图图像反映的过程是:小明从家跑到体育馆,在那里锻炼了﹣阵后又走到新华书店去买书,然后散步走回家,其中表示时间t(分钟)表示小明离家的距离s(千米),那么小明在体育馆锻炼和在新华书店买书共用去的时间是________分钟.22、如图,直线与轴交于点,以为斜边在轴上方作等腰直角,将沿轴向右平移,当点中点落在直线上时,则平移的距离是________.23、直线与平行,且经过(2,1),则+=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:∵y=kx+b图象与y= - 2x图象平行 ∴k=-2 ∵图像经过点(0,4) ∴b=4 ∴此函数的解析式为y= - 2x+4 ∵函数y= - 2x+4与两坐标轴的交点为(0,4) (2,0)
1 ∴ S△ = ×2 ×4=4 2
求函数解析式(拓展)
1.已知y-1与x成正比例,且x=2时,y=5. 写出y与x之间的函数关系式;
3 毫克。 为每毫升____
6
3
O
2
5
x/时
通过图象获得信息: (五)、某医药研究所开发了一种新药,在实际验药时发
现,如果成人按规定剂量服用,那么每毫升血液中含药量y (毫克)随时间x(时)的变化情况如图所示,当成年人按 规定剂量服药后。 (3)当x≤2时y与x之间的函数关系式是___________ y=3x 。
图象与y轴的交点位置 b决定___________________________.
k、b
决定
草图
看b找点,看k画线。
①k>0,b>0,直线经过_______象限; ②k>0,b<0,直线经过_______象限; ③k<0,b>0,直线经过_______象限; ④k<0,b<0,直线经过_______象限.
n≥1
(2) y
3 x2
x≠2
h (3) 1 k k 1
k≤0且 k≠-1
自变量的取值范围:
一辆汽车的平均耗油量为0.1 L/km,耗油量 (单位:L)随着行驶里程x(单位:km)的 增加而增加。 ★现有汽油50L,在行驶途中不再加油。 1.写出剩余油量y(L)与行驶里程x的函数关 y=50-0.1x 。 系式为____________ 2.求出自变量x的取值范围。
七、一次函数的图象与性质:
直线 。 一次函数y=kx+b的图象是一条_____ 两点法 作图方法________________.
b 与y轴的交点为 ( 0 ,___)
与x轴的交点为
b ( ,0) k
k,b 决定图象所经过的象限. 注意:_____ 上升与下降 k决定________________.
k≠0, x的次数为1
y=kx+b y=kx
当b =0 时,y=kx+b 即为 y=kx, 正比例函 数,是特殊 的一次函数。
练习:
1.下列函数中,哪些是一次函数?
1 (1) y 2 x (2) y (3) y x 1(4) y x
x
2
答: (1)是 (2)不是 (3)是 (4)不是 2:函数y=(m +2)x+(m 2 -4)为正比例 函数,则m为何值 m =2
5、经过点A ( x1 , y1 ) 和点B ( x2 , y2 ), y y 当x 时, x 1 2 x 1 2 1 K>0 K<0 则k的取值范围是___________ 。
八、求函数解析式的方法:
先设出函数解析式,再根据 条件确定解析式中未知的系数, 从而具体写出这个式子的方法,
观察形状
s = x 2 ( x> 0)
(3)连 线
(用平滑曲线连接)
五、通过图象获得信息
(一)图象反映的过程是:小明从家里出发去菜地浇水, 又去玉米地锄草,然后回家.x表示时间,y表示小明离他 家的距离 . 千米 速度y/
2 1.1 0
15 25 37 55 80
时间x/分钟
菜地离小明家多远?小明走到菜地用了多少时间?
求函数解析式:
y kx 解: 假设一次函数为________ ∵一次函数经过点 1 ,__ 2) (__
∴
(1)请你确定该直线的解析式。
k 1 2
y=2x
y kx b 解: 假设一次函数为________ ∵一次函数经过点
-1 ,__ 2 )与(__ 1 ,__ -4 ) (__
(1)k>0,b>0
y
(0,b)
(2)k>0,b<0
y
0
(0,b)
(3)k<0,b>0
y
(0,b)
(4)k<0,b<0
y
0
x
0
x
(0,b)
0
ห้องสมุดไป่ตู้
x
x
经过一、二、三象限 经过一、三、四象限
经过一、二、四象限 经过二、三、四象限
草图
y
决定
k、b
· o · x
o
·
x
图象经过的象限 一、二、三 一、三、四
k的符号
30cm, 25cm 2h , 2.5h
__________;
1h (2)当x=___时,
甲、乙两根蜡烛在燃
烧过程中的高度相等.
第十一章 函数 八年级 数学 六、一次函数的概念:
一般地,形如y=kx+b(k,b为常数,且k≠0)
的函数叫做一次函数.
联系:
解析式 一次函数
正比例函数
注意
k≠0, x的次数 为1
(4)当x≥2时y与x之间的函数关系式是 ___________ 。 y=-x+8 y/毫克 (5)如果每毫升血液中含 药量3毫克或3毫克以上时, 治疗疾病最有效,那么这
6
个有效时间是___ 4 时。
3
O
2
5
x/时
(六)甲、乙两人赛跑,路程s与时间t的关系如图示,
那么: 100 (1)这是一次________m 赛跑; 甲 (2)甲、乙两人中先到达终点的是____; (3)乙在这次赛跑中的速度为____m/s. 8
x ≥0 _ __________ y≥0 _ __________
实际问 题有意 义
自变量的取值范围: 已知等腰三角形的周长 为12cm,若底边长为y cm,一腰长为x cm.. x y x
(1)底边长y(cm)与腰长x(cm)的函数关系 y=12-2x 。 式为____________ (2)求出自变量x的取值范围。
(七)、如图所示l1反映了该公司产品的销售成本与销
通过图象获得信息: (八)、在一次蜡烛 燃烧实验中,甲、乙 两根蜡烛燃烧时剩余 部分的高度y(cm) 与燃烧时间 x(h) 之间的关系如图所示.
请根据图像捕捉有效信息:
通过图象获得信息:
(1)甲、乙两根蜡烛燃烧前的高度分别是
_________,从点燃到燃尽所用的时间分别是
一、二、四
二、三、四
k>0 k>0 k<0 k<0
·
o
x
y
y
y x
x
o
·
b的符号
b>0 b<0 b>0 b<0
练习: 直线y=kx+b经过一、二、四象限,则 < > K______0, b_______0 . 此时,直线y=bx-k的图象大致是( D)
一次函数的图象(关于k): 若一次函数y=kx+b的图象: K>0 1、从左到右上升,则k的取值范围________ >0 2、 y随着x的减小而减小,则k________ <0 3、y随着x的增大而减小,则k_________ >0 4、经过一、二、四象限,则k___________
通 过 图 象 获 得 信 息
s乙 100 v乙 t乙 12.5
售量的关系, l2反映了某公司产品的销售收入与销售量的关系。 根据图意填空: Y=500x+2000 (1)l1对应的表达是 , l 2对 Y=1000x 应的表达式是 。 ( 2)当销售量为2吨时,销售收入 =2000元,销售成本= 3000 元。 (3)当销售量为6吨时,销售收入 = 6000 元,销售成本= 5000 元。 (4)当销售量等于 4 吨时,销售 收入等于销售成本。 (5)当销售量 大于4吨时,该公司 盈利(收入大于成本)。 当销售 小于4 吨时,该公司亏损 (收入小于成本)。
A
B
C
D
通过图象获得信息:
(四)根据图象回答下列问题: -4 ≤ x ≤ 4 ; (1)自变量的取值范围是___________ 2 (2)求当x=-4时y=_____________; 1.5 (3)求当y=4时x=________________; 1.5 (4)当x=_________ 时, y的值最大; (5)当x的值在什么 范围内时, y随x 的增大而增大? -2≤ x≤ 1.5
通过图象获得信息: (五)、某医药研究所开发了一种新药,在实际验药时
发现,如果成人按规定剂量服用,那么每毫升血液中含药 量y(毫克)随时间x(时)的变化情况如图所示,当成年 人按规定剂量服药后。 (1)服药后______ 2 时,血液中含药量最高,达到每毫升 _______ 6 毫克,接着逐步衰弱。 y/毫克 (2)服药5时,血液中含药量
1)服药后多长时间血液中含药量最高,达每毫升多少微克? 2)分别求出x≤2和x≥2时,y与x之间的函数关系式;
3)如果每毫升血液 中 含药量为4μg 或4μg 以上时对治 疗疾病是有效的, 那么这个有效时间 是多长?
y
1)服药后多长时间血液中含药量最高,达每毫升多少微克? 2)分别求出x≤2和x≥2时,y与x之间的函数关系式; 3)如果每毫升血液中含药量为4μg或4μg以上时对治疗疾病是 有效的,那么这个有效时间是多长? 解:1)由图可知:服药后2分钟血液中含药量最高,达到每毫升6微克
√
×
√
×
二、函数的表示方法:
正方形的面积S 随边长 x 的变化 S=x2 (x>0)
(1)解析法 (2)列表法 (3)图象法
三、自变量的取值范围:
求出下列函数中自变量的取值范围。