高三数学专练20

合集下载

2020高考高三数学专题练习含答案

2020高考高三数学专题练习含答案

利用多出来的一个月,多多练习,提升自己,加油! 一、选择题:(每题5分,共60分)1.已知a 为不等于零的实数,那么集合{}R x x a x x M ∈=++-=,01)1(22的子集的个数为A .1个B .2个C .4个D .1个或2个或4个2.函数x x y cot tan -=的最小正周期是A .2π B .π C .2π D .3π 3.已知关于x 的不等式b xax ≥+的解集是[-1,0)则a +b = A .-2 B .-1 C .1 D .34.过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若AB =4,则满足条件的直线l 有A .2条B .3条C .4条D .无数条 5.若向量d a c b a b c a d 与则,)()(⋅⋅-⋅⋅=的夹角是A .30°B .60°C .90°D .120° 6.设a 、b 是两条异面直线,P 是a 、b 外的一点,则下列结论正确的是A .过P 有一条直线和a 、b 都平行;B .过P 有一条直线和a 、b 都相交;C .过P 有一条直线和a 、b 都垂直;D .过P 有一个平面和a 、b 都垂直。

7.互不相等的三个正数321,,x x x 成等比数列,且点P 1(,,)log ,(log )log ,log 22211y x P y x b a b a )log ,(log 333y x P b a 共线 )1,0,10(≠>≠>b b a a 且且则1y ,成32,y yA .等差数列,但不等比数列;B .等比数列而非等差数列C .等比数列,也可能成等差数列D .既不是等比数列,又不是等差数列8.若从集合P 到集合Q={}c b a ,,所有的不同映射共有81个,则从集合Q 到集合P 可作的不同映射共有A .32个B .27个C .81个D .64个9.对于函数⎩⎨⎧<≥=时当时当x x xx x xx f cos sin cos cos sin sin )(给出下列四个命题:①该函数的值域为[-1,1]②当且仅当;1,)(22该函数取得最大值时z k k x ∈+=ππ③该函数是以π为最小正周期的周期函数; ④当且仅当0)(,)(2322<∈+<<+x f z k k x k 时ππππ 上述命题中错误命题的个数为A .1B .2C .3D .410.已知等差数列{}{}121211,,++==n n n n b a b a b a 且各项都是正数和等比数列,那么,一定有A.1111.++++≥≤n n n n b a B b a C 、1111.++++>>n n n n b a D b a二、填空题:(每題4分,共16分)11、若31)3tan(,53)tan(=-=+πy y x ,则)3tan(π+x 的值是 .12、不等式xx m 22+≤对一切非零实数x 恒成立 , 则m 的取值范围是 .13、如图,底面ABCD 是正方形,PD ⊥平面ABCD ,PD =AD , 则PA 与BD 所成的角等于 .14、若函数)3(log )(2+-=kx x x f k 在区间⎥⎦⎤ ⎝⎛∞-2,k 上是减函数,则实数k 的取值范围是 。

2020年人教版福建省高三数学专题练习-解析几何(附答案)

2020年人教版福建省高三数学专题练习-解析几何(附答案)

3.在平行四边形ABCD 60,AD ,若P 是平0xAB y AD PA ++=(,x y ∈在以A 为圆心,||BD 为半径的圆上时,实数.22421x y xy ++= 21xy -= 是椭圆的两个焦点,满足120MF MF =的点的直线与抛物线交于点,且在轴上截得弦长为4,设该动圆圆心的轨迹为曲线.(Ⅰ)求曲线C 方程;(Ⅱ)设点A 为直线l :20x y --=上任意一点,过A 作曲线C 的切线,切点分别为P ,Q ,求APQ △面积的最小值及此时点A 的坐标.8.如图,已知点1F ,2F 是椭圆1C :2212x y +=的两个焦点,椭圆2C :222x y λ+=经过点1F ,2F ,点P 是椭圆2C 上异于1F ,2F 的任意一点,直线1PF 和2PF 与椭圆1C 的交点分别是A ,B 和C ,D .设AB ,CD 的斜率分别为k ,k '.(Ⅰ)求证kk '为定值; (Ⅱ)求||||AB CD 的最大值.9.在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段,D 为垂足,点M 在线段PD 上,且||2||DP DM =,点P 在圆上运动.(1)求点M 的轨迹方程;(2)过定点(1,0)C -的直线与点M 的轨迹交于A ,B 两点,在x 轴上是否存在N ,使NA NB 为常数,若存在,求出点N 的坐标;若不存在,请说明理由.121244x x kx x b+==-,且112k y ==01)(1)y x - 是椭圆2C 上的点,故212()x x +4[4|||CD =当且仅当k =±|||CD 的最大值等于00(,)P x y 2x y ∴+(Ⅱ)假设存在.当直线1+212212k x x k -=+1(NA NB x ∴=-412k+11NA NB 是与k 202n ∴+= 74n ∴=-即(4N -此时1516NA NB =-则1516NA NB =-综上所述,在x 轴上存在定点,使NA NB 为常数.。

高三数学专项训练:排列与组合练习题

高三数学专项训练:排列与组合练习题

高三数学专项训练:排列与组合练习题一、选择题1.将3个不同的小球放入4个盒子中,则不同放法种数有()A.81 B.64 C.14 D.122.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A.324B.328C. 360D.6483.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的左边,那么不同的排法共有()A.60种 B.48种 C.36种 D.24种4.3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同的排法的种数是()A.360 B.288 C.216 D.965.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种 B.10种 C.9种 D.8种6.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名,从中任选1人参加某项活动,则不同选法种数为()(A)60 (B)12 (C)5 (D)57.从10名大学生中选3个人担任乡村干部,则甲、丙至少有1人入选,而乙没有入选的不同选法的种数为()A. 85 B. 56 C. 49 D. 288.某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有()A. 24种B. 36种C. 38种D. 108种9.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、节目乙不能排在第一位,节目丙不能排在最后一位,该台晚会节目演出顺序的编排方案共有(A)36种(B)42种(C)48种(D)54种10.有6人被邀请参加一项活动,必然有人去,去几人自行决定,共有()种不同去法A. 36种B. 35种C. 63种D. 64种11.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有()A. 6种B. 12种C. 30种D. 36种12.从6名同学中选派4人分别参加数学、物理、化学、生物四科知识竞赛,若其中甲、乙两名同学不能参加生物竞赛,则选派方案共有()A.240种 B.280种 C. 96种 D.180种13.2位教师与5位学生排成一排,要求2位教师相邻但不排在两端,不同的排法共有()A. 480种B.720种C. 960种D.1440种14.4名运动员报名参加3个项目的比赛,每人限报一项,不同的报名方法有(A)43种(B)34种(C)34A种(D)34C种15.从9名学生中选出4人参加辩论赛,其中甲、乙、丙三人至少有两人入选的不同选法的种数为()A.36 B.51 C.63 D.9616.今有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担,现从10人中选派4人承担这三项任务,不同的选派方法有A.1260种B.2025种C.2520种D.5054种17.某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有 ( )A.16种 B.36种 C.42种 D.60种18.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( )A.140种 B. 120种 C. 35种 D. 34种19.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有()不同的装法.A.240 B.120 C.600 D.36020.有11名学生,其中女生3名,男生8名,从中选出5名学生组成代表队,要求至少有1名女生参加,则不同的选派方法种数是 ( )A.406B.560C.462D.15421.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中取出4个,则取出的编号互不相同的种数为()A.5 B.80 C.105 D.21022.从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为A.85B.56 C.49 D.2823.某班乒乓球队9名队员中有2名是校队选手,现在挑5名队员参赛,校队必须选,那么不同的选法共有()种.A)126;B)84;C)35;D)21;24.三名教师教六个班的课,每人教两个班,分配方案共有()A.18种B.24种C.45种D.90种25.某班级有一个8人小组,现任选其中3人相互调整座位,其余5人座位不变,则不同的调整方案的种数有()A.56B.112C.336D.16826.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种27.平面上有5个点,其中任何3个点都不共线,那么可以连成的三角形的个数是( ) A.3 B.5 C.10 D.2028.6本不同的书分给甲、乙、丙三人,每人两本,不同的分法种数是()A.2264C C B C.336A D.36C29.某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A.14B.24C.28D.4830.有5盆互不相同的玫瑰花,其中黄玫瑰2盆、白玫瑰2盆、红玫瑰1盆,现把它们摆放成一排,要求2盆白玫瑰不能相邻,则这5盆玫瑰花的不同摆放种数是()A、120 B、72 C、12 D、3631.从6人中选4人分别到北京、哈尔滨、广州、成都四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且在这6人中甲、乙不去哈尔滨游览,则不同的选择方案共有A.300种B.240种C.144种D.96种32.将4个不同的球放入3个不同的盒中,每个盒内至少有1个球,则不同的放法种数为()(A)24 (B)36 (C)48 (D)9633.现安排5名同学去参加3个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案个数为()(A)72 (B)114 (C)144(D)150 34.某人有3个不同的电子邮箱,他要发5个电子邮件,发送的方法的种数()A . 8 B. 15 C. 243 D. 12535.7名志愿者安排6人在周六,周日两天参加社区公益活动若每天安排3人,则不同的安排方案共有()A.280种B.140种C.360种D.300种36.某班级要从4名男生、2名女生中选4人接受心理调查,如果要求至少有1名女生,那么不同的选法种数为()A.14 B.24 C.28 D.4837.某节目表有6个节目,若保持其相对顺序不变,在它们之间再插入2个小品节目,且这2个小品在表中既不排头也不排尾,那么不同插入方法有()A. 20种B. 30种C. 42种D. 56种38.现从甲、乙、丙等6名学生中安排4人参加4×100m接力赛跑。

2020年人教版福建省高三数学专题练习-数列(附答案)

2020年人教版福建省高三数学专题练习-数列(附答案)
只需 成立,这是显然的,故 ;
综上所述 ;
由数学归纳法原理知 成立.
5.证明:(Ⅰ)以下用数学归纳法证明 .
当 时, 成立;
假设当 时,结论也成立,即 ,
则当 时有 ,
故知结论成立.
(Ⅱ)解法一:∵ ,∴

下面用数学归纳法结论
数学归纳法
当 时, 成立;
假设当 时,结论也成立,即 ,
则当 时有 ,
由数学归纳法原理知结论成立.
解法二:
∵ ,∴

,解得 ,∴ ;
(Ⅱ) ,记 ,则

证毕.
2.解:(Ⅰ)∵ ∴
∴ 即
∵ 成等差数列,∴
∵ ∴ ∴
又∵ 也满足上式,故 .
(Ⅱ)证明∵

∴ .
3.解法一:(Ⅰ)∵ ,当 时,整理得 ∵ ,∴ ;
当 时,∵ ,∴ ,整理得
∴ 是等差数列, ,∴当 时,
∵ 也满足上式,∴
(Ⅱ)证明:
故不等式获证.
4.解:(Ⅰ)∵ 成等差数列,∴ ,
2.
【解析】∵ ,
∴ ,

∴ 与 的单调性一样,故选 .
3.B
【解析】∵ ,整理得 ,
且 ,∴ ,∴ ,∴ ,∴ ,
∴ ,∴ .
4.B
【解析】由题前25项的和可以看作第1项加上以第2,3,4项为首项,三个公差为2的等差数列的前8项之和.
由题可得 ,∴ ,∴ ,
故选B.
5.D
【解析】利用三角函数的降幂公式将条件 转化为 再利用和差化积公式转化,求得 ,从而可求得等差数列 的公差 ,根据 即可求得首项 的取值范围.
7.设 为数列 的前 项和, ,则数列 的前 项和为.

高三数学专题练习题

高三数学专题练习题

高三数学专题练习题【题目一】已知集合$A=\{x|x^2-2x>5\}$,集合$B=\{y|y^2+y-12>0\}$,求集合$(A\cup B)\cap B^C$。

【解答一】首先,我们来求解集合$A$和$B$。

给定不等式$x^2-2x>5$,我们可以将其转化为$x^2-2x-5>0$,进一步因式分解为$(x-5)(x+1)>0$。

然后,我们可以通过建立数表或绘制数轴进行分析,最终得到$x<-1$或$x>5$。

类似地,我们可以解得集合$B$为$y<-4$或$y>3$。

接下来,我们来求解$(A\cup B)\cap B^C$,其中$B^C$表示集合$B$的补集,即$B^C=\{y|y\leq-4\text{或}y\geq3\}$。

首先,求解$A\cup B$,即找出同时属于集合$A$或属于集合$B$的元素。

由于$A$中的元素范围是$x<-1$或$x>5$,而$B$中的元素范围是$y<-4$或$y>3$,因此$A\cup B$的元素范围是$x<-1$或$x>5$,$y<-4$或$y>3$。

然后,我们在$B^C$的基础上再求解$(A\cup B)\cap B^C$,即找出同时属于$(A\cup B)$和$B^C$的元素。

根据前面的分析,我们可以得到$(A\cup B)\cap B^C$的元素范围是$x<-1$或$x>5$,$-4\leq y\leq3$。

综上所述,集合$(A\cup B)\cap B^C$的元素范围是$x<-1$或$x>5$,$-4\leq y\leq3$。

【题目二】已知函数$f(x)=\frac{2x}{x-1}$,求函数$f(x)$的反函数。

【解答二】要求一个函数的反函数,首先需要让函数是双射的,即函数是一一对应的。

我们来分析函数$f(x)=\frac{2x}{x-1}$的定义域。

高三数学练习题库

高三数学练习题库

高三数学练习题库一、选择题(每题4分,共40分)1. 下列函数中,为奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 已知等差数列{an}的前三项依次为2,5,8,则该数列的公差d为()A. 1B. 2C. 3D. 43. 函数f(x) = 2x^2 - 4x + 3的最小值为()A. -1B. 0C. 1D. 24. 已知向量a = (1, 2),向量b = (3, -4),则向量a与向量b的夹角的余弦值为()A. 1/5B. 2/5C. 3/5D. 4/55. 圆x^2 + y^2 - 6x - 8y + 24 = 0的圆心坐标为()A. (3, 4)B. (-3, -4)C. (3, -4)D. (-3, 4)6. 已知函数f(x) = x^2 - 2x + 1,若f(a) = 0,则a的值为()A. 0B. 1C. -1D. 27. 直线x + 2y - 3 = 0与圆x^2 + y^2 = 9的位置关系是()A. 相离B. 相切C. 相交D. 重合8. 已知等比数列{bn}的前三项依次为3,9,27,则该数列的公比q为()A. 2B. 3C. 4D. 59. 函数f(x) = ln(x)的定义域为()A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. (-∞, 0) ∪ (0, +∞)10. 抛物线y^2 = 4x的准线方程为()A. x = -1B. x = 1C. x = 0D. y = -1二、填空题(每题4分,共20分)1. 已知函数f(x) = x^3 - 3x^2 + 2x,若f(1) = 0,则f'(1)的值为______。

2. 已知等差数列{an}的前n项和为S_n,若S_5 = 55,则a_3的值为______。

3. 已知向量a = (2, -3),向量b = (-4, 6),则向量a与向量b的点积为______。

高三数学练习题及答案

高三数学练习题及答案

高三数学练习题及答案一、选择题1. 已知函数f(x) = 2x + 3,那么f(1)的值为()。

A. 1B. 5C. 1D. 52. 若|a| = 5,则a的值为()。

A. 5 或 5B. 0C. 5D. 53. 下列函数中,奇函数是()。

A. y = x^2B. y = x^3C. y = |x|D. y = 1/x4. 在等差数列{an}中,若a1 = 1,a3 = 3,则公差d为()。

A. 1B. 2C. 3D. 45. 若复数z满足|z 1| = |z + 1|,则z在复平面上的对应点位于()。

A. 实轴上B. 虚轴上C. 原点D. 不在坐标轴上二、填空题1. 已知等差数列{an}的通项公式为an = 3n 2,则第7项的值为______。

2. 若向量a = (2, 3),向量b = (4, 1),则2a 3b = ______。

3. 不等式2x 3 > x + 1的解集为______。

4. 二项式展开式(a + b)^10中,含a^3b^7的项的系数为______。

5. 在三角形ABC中,a = 5, b = 8, sinA = 3/5,则三角形ABC的面积为______。

三、解答题1. 讨论函数f(x) = x^3 3x在区间(∞, +∞)上的单调性。

2. 设函数f(x) = (1/2)^x 2^x,求f(x)的单调递减区间。

3. 已知等差数列{an}的前n项和为Sn = 2n^2 + n,求该数列的通项公式。

4. 在△ABC中,a = 10, b = 15, C = 120°,求sinA和cosA的值。

5. 解三角形ABC,已知a = 8, b = 10, sinB = 3/5。

6. 已知函数f(x) = x^2 + ax + 1在区间[1, 3]上的最小值为3,求实数a的值。

7. 设函数f(x) = x^2 2x + c,讨论函数在区间[0, 3]上的最大值和最小值。

2020届高三理科数学专练20: 抛物线(附解析)

2020届高三理科数学专练20:  抛物线(附解析)

1.抛物线x 2=12y 的焦点到准线的距离是( )A .2B .1 C.12 D.14 2.过点P(-2,3)的抛物线的标准方程是( )A .y 2=-92x 或x 2=43yB .y 2=92x 或x 2=43yC .y 2=92x 或x 2=-43yD .y 2=-92x 或x 2=-43y3.若抛物线y =ax 2的焦点坐标是(0,1),则a =( )A .1 B.12 C .2 D.144.若抛物线y 2=2px 上一点P(2,y 0)到其准线的距离为4,则抛物线的标准方程为( )A .y 2=4xB .y 2=6xC .y 2=8xD .y 2=10x5.已知点A(-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-126.若抛物线y 2=2px(p>0)上一点到焦点和到抛物线对称轴的距离分别为10和6,则抛物线的方程为( )A .y 2=4xB .y 2=36xC .y 2=4x 或y 2=36xD .y 2=8x 或y 2=32x7.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB|=42,|DE|=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .88.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A.355 B .2 C.115 D .39.点A 是抛物线C 1:y 2=2px(p>0)与双曲线C 2:x 2a 2-y 2b2=1(a>0,b>0)的一条渐近线的交点,若点A 到抛物线C 1的准线的距离为p ,则双曲线C 2的离心率等于( )A. 2B. 3C. 5D. 610.设抛物线C :y 2=2px(p>0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x11.已知抛物线y 2=2px(p>0)上一点M 到焦点F 的距离等于2p ,则直线MF 的斜率为( )A .± 3B .±1C .±34D .±3312.已知抛物线y 2=2px(p>0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB +1k BC +1k CA=( )A .0B .1C .2D .2p13.经过抛物线y 2=8x 的焦点和顶点且与其准线相切的圆的半径为________.14.已知抛物线x 2=4y 的焦点为F ,准线为l ,P 为抛物线上一点,过P 作PA ⊥l 于点A ,当∠AFO =30°(O 为坐标原点)时,|PF|=________.15.已知定点Q(2,-1),F 为抛物线y 2=4x 的焦点,动点P 为抛物线上任意一点,当|PQ|+|PF|取最小值时,P 的坐标为________.16.右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.17.抛物线y2=2px(p>0)有一个内接直角三角形,直角顶点是原点,一条直角边所在直线方程为y=2x,斜边长为513,求此抛物线方程.18.已知抛物线C:x2=2py(p>0),圆O:x2+y2=1.(1)若抛物线C的焦点F在圆上,且A为C和圆O的一个交点,求|AF|;(2)若直线l与抛物线C和圆O分别相交于点M,N,求|MN|的最小值及相应p的值.1.抛物线x 2=12y 的焦点到准线的距离是( )A .2B .1 C.12 D.14答案 D 解析 抛物线标准方程x 2=2py(p>0)中p 的几何意义为:抛物线的焦点到准线的距离,又p =14,故选D.2.过点P(-2,3)的抛物线的标准方程是( )A .y 2=-92x 或x 2=43yB .y 2=92x 或x 2=43yC .y 2=92x 或x 2=-43yD .y 2=-92x 或x 2=-43y答案 A 解析 设抛物线的标准方程为y 2=kx 或x 2=my ,代入点P(-2,3),解得k =-92, m =43,∴y 2=-92x 或x 2=43y ,选A.3.若抛物线y =ax 2的焦点坐标是(0,1),则a =( )A .1 B.12 C .2 D.14答案 D 因为抛物线的标准方程为x 2=1a y ,所以其焦点坐标为(0,14a ),则有14a =1,a =14, 4.若抛物线y 2=2px 上一点P(2,y 0)到其准线的距离为4,则抛物线的标准方程为( )A .y 2=4xB .y 2=6xC .y 2=8xD .y 2=10x答案 C 解析 ∵抛物线y 2=2px ,∴准线为x =-p2.∵点P(2,y 0)到其准线的距离为4, ∴|-p2-2|=4.∴p =4,∴抛物线的标准方程为y 2=8x.5.已知点A(-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-12答案 C 解析 因为点A 在抛物线的准线上,所以-p2=-2,所以该抛物线的焦点F(2,0),所以k AF =3-0-2-2=-34. 6.若抛物线y 2=2px(p>0)上一点到焦点和到抛物线对称轴的距离分别为10和6,则抛物线的方程为( )A .y 2=4xB .y 2=36xC .y 2=4x 或y 2=36xD .y 2=8x 或y 2=32x答案 C 解析 因为抛物线y 2=2px(p>0)上一点到抛物线的对称轴的距离为6,所以若设该点为P ,则P(x 0,±6).因为P 到抛物线的焦点F(p2,0)的距离为10,所以由抛物线的定义得x 0+p2=10 ①.因为P 在抛物线上,所以36=2px 0 ②.由①②解得p =2,x 0=9或p =18,x 0=1,则抛物线的方程为y 2=4x 或y 2=36x.7.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB|=42,|DE|=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8 答案 B解析 由题意,不妨设抛物线方程为y 2=2px(p>0),由|AB|=42,|DE|=25,可取A(4p ,22),D(-p 2,5),设O 为坐标原点,由|OA|=|OD|,得16p 2+8=p 24+5,得p =4,所以选B.8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A.355 B .2 C.115 D .3答案 B 解析 由题可知l 2:x =-1是抛物线y 2=4x 的准线,设抛物线的焦点为F(1,0),则动点P 到l 2的距离等于|PF|,则动点P 到直线l 1和直线l 2的距离之和的最小值,即焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2,故选B.9.点A 是抛物线C 1:y 2=2px(p>0)与双曲线C 2:x 2a 2-y 2b2=1(a>0,b>0)的一条渐近线的交点,若点A 到抛物线C 1的准线的距离为p ,则双曲线C 2的离心率等于( )A. 2B. 3C. 5D. 6 答案 C解析 求抛物线C 1:y 2=2px(p>0)与双曲线C 2:x 2a 2-y 2b 2=1(a>0,b>0)的一条渐近线的交点为⎩⎪⎨⎪⎧y 2=2px ,y =b a x ,解得⎩⎨⎧x =2pa 2b 2,y =2pa b ,所以2pa 2b 2=p 2,c 2=5a 2,e =5,故选C.10.设抛物线C :y 2=2px(p>0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x答案 C 解析 方法一:设点M 的坐标为(x 0,y 0),由抛物线的定义,得|MF|=x 0+p2=5,则x 0=5-p 2. 又点F 的坐标为(p 2,0),所以以MF 为直径的圆的方程为(x -x 0)(x -p2)+(y -y 0)y =0.将x =0,y =2代入得px 0+8-4y 0=0,即y 022-4y 0+8=0,所以y 0=4. 由y 02=2px 0,得16=2p(5-p2),解之得p =2或p =8. 所以C 的方程为y 2=4x 或y 2=16x.故选C.方法二:由已知得抛物线的焦点F(p2,0),设点A(0,2),抛物线上点M(x 0,y 0), 则AF →=(p 2,-2),AM →=(y 022p,y 0-2).由已知得,AF →·AM →=0,即y 02-8y 0+16=0,因而y 0=4,M(8p ,4).由抛物线定义可知:|MF|=8p +p2=5.又p>0,解得p =2或p =8,故选C.11.已知抛物线y 2=2px(p>0)上一点M 到焦点F 的距离等于2p ,则直线MF 的斜率为( )A .± 3B .±1C .±34D .±33答案 A 解析 设M(x M ,y M ),由抛物线定义可得|MF|=x M +p 2=2p ,解得x M =3p2,代入抛物线方程可得y M =±3p ,则直线MF 的斜率为y M x M -p 2=±3pp =±3,选项A 正确.12.已知抛物线y 2=2px(p>0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB +1k BC +1k CA=( )A .0B .1C .2D .2p 答案 A解析 设点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),F(p 2,0),则(x 1-p 2,y 1)+(x 2-p 2,y 2)+(x 3-p2,y 3)=(0,0),故y 1+y 2+y 3=0.∵1k AB =x 2-x 1y 2-y 1=12p (y 22-y 12)y 2-y 1=y 2+y 12p ,同理可知1k BC =y 3+y 22p ,1k CA =y 3+y 12p ,∴1k AB +1k BC +1k CA =2(y 1+y 2+y 3)2p=0. 13.经过抛物线y 2=8x 的焦点和顶点且与其准线相切的圆的半径为________. 答案 3 解析 圆心是x =1与抛物线的交点.r =1+2=3.14.已知抛物线x 2=4y 的焦点为F ,准线为l ,P 为抛物线上一点,过P 作PA ⊥l 于点A ,当∠AFO =30°(O 为坐标原点)时,|PF|=________.答案 43解析 设l 与y 轴的交点为B ,在Rt △ABF 中,∠AFB =30°,|BF|=2,所以|AB|=233.设P(x 0,y 0),则x 0=±233,代入x 2=4y 中,得y 0=13,从而|PF|=|PA|=y 0+1=43. 15.已知定点Q(2,-1),F 为抛物线y 2=4x 的焦点,动点P 为抛物线上任意一点,当|PQ|+|PF|取最小值时,P 的坐标为________.答案 (14,-1)解析 设点P 在准线上的射影为D ,则根据抛物线的定义可知|PF|=|PD|,∴要使|PQ|+|PF|取得最小值,即D ,P ,Q 三点共线时|PQ|+|PF|最小.将Q(2,-1)的纵坐标代入y 2=4x 得x =14,故P 的坐标为(14,-1).16.右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.答案 26解析 建立如图所示的平面直角坐标系, 设抛物线的方程为x 2=-2py(p>0),由点(2,-2)在抛物线上,可得p =1,则抛物线方程为x 2=-2y. 当y =-3时,x =±6,所以水面宽为2 6 米.17.抛物线y 2=2px(p>0)有一个内接直角三角形,直角顶点是原点,一条直角边所在直线方程为y =2x ,斜边长为513,求此抛物线方程.解析 设抛物线y 2=2px(p>0)的内接直角三角形为AOB ,直角边OA 所在直线方程为y =2x ,另一直角边所在直线方程为y =-12x.解方程组⎩⎪⎨⎪⎧y =2x ,y 2=2px ,可得点A 的坐标为⎝⎛⎭⎫p 2,p ;解方程组⎩⎪⎨⎪⎧y =-12x ,y 2=2px ,可得点B 的坐标为(8p ,-4p). ∵|OA|2+|OB|2=|AB|2,且|AB|=513,∴⎝⎛⎭⎫p 24+p 2+(64p 2+16p 2)=325.∴p =2,∴所求的抛物线方程为y 2=4x.18.已知抛物线C :x 2=2py(p>0),圆O :x 2+y 2=1.(1)若抛物线C 的焦点F 在圆上,且A 为C 和圆O 的一个交点,求|AF|;(2)若直线l 与抛物线C 和圆O 分别相交于点M ,N ,求|MN|的最小值及相应p 的值.解析 (1)由题意F(0,1),∴C :x 2=4y.解方程组⎩⎨⎧x 2=4y ,x 2+y 2=1,得y A =5-2,∴|AF|=5-1.(2)设M(x 0,y 0),则切线l :y =x 0p (x -x 0)+y 0,整理得x 0x -py -py 0=0. 由|ON|=1得|py 0|=x 02+p 2=2py 0+p 2,∴p =2y 0y 02-1且y 02-1>0.∴|MN|2=|OM|2-1=x 02+y 02-1=2py 0+y 02-1=4y 02y 02-1+y 02-1=4+4y 02-1+(y 02-1)≥8,当且仅当y 0=3时等号成立.∴|MN|的最小值为22,此时p = 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专练20 应用动力学和能量观点分析电磁感应问题
1.如图1所示,倾角为θ=53°的斜面上相继分布着宽度为L的电场和宽度为L 的磁场,电场的下边界与磁场的上边界相距为L(即二者之间有段无电磁场区域),其中电场方向沿斜面向上,磁场方向垂直于斜面向下、磁感应强度的大小为B.电荷量为q的带正电小球(视为质点)通过长度为4L的绝缘轻杆与边长
为L、电阻为R的正方形单匝线框相连,组成总质量为m的“”形装置,置于斜面上,线框下边与磁场的上边界重合.现将该装置由静止释放,当线框下边刚离开磁场时恰好做匀速运动,且其速度为v0=1 m/s;当小球运动到电场的下边界时速度刚好为0.已知L=1 m,E=6×106 N/C,R=0.1 Ω,m =0.8 kg,sin 53°=0.8,g取10 m/s2.不计一切摩擦,求:
图1
(1)磁感应强度的大小;
(2)小球所带的电荷量;
(3)经过足够长时间后,小球到达的最低点与电场上边界的距离.
解析(1)线框下边离开磁场时做匀速直线运动,则有
E感=BL v0
I=E感R
F安=BIL=B2L2v0 R
根据平衡条件:mg sin θ-B2L2v0
R=0
解得B=0.8 T.
(2)从线框刚离开磁场区域到小球刚运动到电场的下边界,根据动能定理: -qEL +mg sin θ×2L =0-1
2m v 20 代入数据解得:q =2.2×10-6C.
(3)经足够长时间后,线框最终不会再进入磁场,即运动的最高点是线框的上边与磁场的下边界重合,设小球运动的最低点到电场上边界的距离为x . 根据动能定理:qEx -mg sin θ(L +x )=0 代入数据得:x =1617 m
答案 (1)0.8 T (2)2.2×10-6C (3)16
17 m
2.相距L =1.5 m 的足够长金属导轨竖直放置,质量为m 1=1 kg 的金属棒ab 和质量为m 2=0.27 kg 的金属棒cd 均通过棒两端的套环水平地套在金属导轨上,如图2(a)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同.ab 棒光滑,cd 棒与导轨间的动摩擦因数为μ=0.75,两棒总电阻为1.8 Ω,导轨电阻不计.ab 棒在方向竖直向上,大小按图(b)所示规律变化的外力F 作用下,从静止开始,沿导轨匀加速运动,同时cd 棒也由静止释放.(g 取10 m/s 2)
图2
(1)求出磁感应强度B 的大小和ab 棒加速度的大小.
(2)已知在2 s 内外力F 做功40 J ,求这一过程中两金属棒产生的总焦耳热. (3)判断cd 棒将做怎样的运动,求出cd 棒达到最大速度所需的时间t 0,并在图(c)中定性画出cd 棒所受摩擦力f cd 随时间变化的图象. 解析 (1)经过时间t ,金属棒ab 的速率v =at 此时,回路中的感应电流为I =E R =BL v
R
对金属棒ab ,由牛顿第二定律得 F -BIL -m 1g =m 1a
由以上各式整理得:F =m 1a +m 1g +B 2L 2
R at 在图线上取两点:
t 1=0,F 1=11 N ;t 2=2 s ,F 2=14.6 N 代入上式得a =1 m/s 2,B =1.2 T.
(2)在2 s 末金属棒ab 的速率v t =at =2 m/s 所发生的位移s =1
2
at 2=2 m
由动能定理得W F -m 1gs -W 安=1
2m 1v 2t 又Q =W 安 联立以上方程,
解得Q =W F -m 1gs -12m 1v 2
t =40 J -1×10×2 J -12×1×22 J =18 J.
(3)cd 棒先做加速度逐渐减小的加速运动,当cd 棒所受重力与滑动摩擦力相等时,速度达到最大;然后做加速度逐渐增大的减速运动,最后停止运动. 当cd 棒速度达到最大时,有m 2g =μF N 又F
N =F 安 F 安=BIL I =E R =BL v m R v m =at 0
整理解得t 0=m 2gR
μB 2L 2a =
0.27×10×1.8
0.75×1.22×1.52×1
s =2 s
f cd 随时间变化的图象如图所示. 答案 见解析
3.(2014·蚌埠三县第二次联考)如图3所示,两根足够长且平行的光滑金属导轨所在平面与水平面成α=53°角,导轨间接一阻值为3 Ω的电阻R ,导轨电阻忽略不计.在两平行虚线间有一与导轨所在平面垂直的匀强磁场,磁场区域的宽度为d =0.5 m .导体棒a 的质量为m 1=0.1 kg 、电阻为R 1=6 Ω;导体棒
b 的质量为m 2=0.2 kg 、电阻为R 2=3 Ω,它们分别垂直导轨放置并始终与导轨接触良好.现从图中的M 、N 处同时将a 、b 由静止释放,运动过程中它们都能匀速穿过磁场区域,且当a 刚出磁场时b 正好进入磁场.(sin 53°=0.8,cos 53°=0.6,g 取10 m/s 2,a 、b 电流间的相互作用不计),求:
图3
(1)在b 穿越磁场的过程中a 、b 两导体棒上产生的热量之比; (2)在a 、b 两导体棒穿过磁场区域的整个过程中,装置上产生的热量; (3)M 、N 两点之间的距离.
解析 (1)R 1R 2=21,I 1I 2=13,Q 1Q 2=I 21R 1t
I 22R 2t =2∶9
(2)设整个过程中装置上产生的热量为Q 由Q =m 1g sin α·d +m 2g sin α·d , 可解得Q =1.2 J
(3)设a 进入磁场的速度大小为v 1,此时电路中的总电阻 R 总1=⎝

⎭⎪⎫6+
3×33+3 Ω=7.5 Ω b 进入磁场的速度大小为v 2,此时电路中的总电阻 R 总2=⎝

⎭⎪⎫3+
6×36+3 Ω=5 Ω 由m 1g sin α=B 2L 2v 1R 总1和m 2g sin α=B 2L 2v 2
R 总2,
可得v 1v 2=m 1R 总1m 2R 总2=3
4
又由v 2=v 1+a d
v 1
得v 2=v 1+8×0.5
v 1
由上述两式可得v21=12 (m/s)2,v22=16 9
v21
M、N两点之间的距离Δs=v22
2a-
v21
2a=
7
12m
答案(1)2∶9(2)1.2 J(3)7
12m
4.如图4所示,足够长的平行金属导轨内有垂直纸面向里的匀强磁场,金属杆ab与导轨垂直且接触良好,导轨右端与电路连接.已知导轨相距为L,磁场的磁感应强度为B,R1、R2和ab杆的电阻值均为r,其余电阻不计,板间距为d、板长为4d,重力加速度为g,不计空气阻力.如果ab杆以某一速度向左匀速运动时,沿两板中心线水平射入质量为m、带电荷量为+q的微粒恰能沿两板中心线射出,如果ab杆以同样大小的速度向右匀速运动时,该微粒将射到B板距其左端为d的C处.
图4
(1)求ab杆匀速运动的速度大小v;
(2)求微粒水平射入两板时的速度大小v0;
(3)如果以v0沿中心线射入的上述微粒能够从两板间射出,试讨论ab杆向左
匀速运动的速度范围.
解析(1)设ab杆匀速运动的速度为v,则ab杆产生的电动势为E=BL v

两板间的电压为U0=1
3E=
BL v
3

ab杆向左匀速运动时:qU0
d=mg

由①②③式得:v=3mgd qBL

(2)ab 杆向右匀速运动时,设带电微粒射入两极板时的速度为v 0,向下运动的加速度为a ,经时间t 射到C 点,有:qU 0
d +mg =ma

微粒做类平抛运动有:d =v 0t

d 2=12at
2 ⑦
由③⑤⑥⑦得:v 0=2gd

(3)要使带电微粒能从两板间射出,设它在竖直方向运动的加速度为a 1、时间为t 1,应有: d 2>12a 1t 21

t 1=4d v 0

由⑧⑨⑩得:a 1<g
8

若a 1的方向向上,设ab 杆运动的速度为v 1,两板电压为:U 1=1
3BL v 1⑫ 又有:qU 1
d -mg =ma 1

联立⑪⑫⑬式得:v 1<27mgd
8qBL

若a 1的方向向下,设ab 杆的运动速度为v 2,两板电压为:U 2=1
3BL v 2

又有:mg -qU 2
d =ma 1

由⑪⑮⑯式得:v 2>21mgd
8qBL

所以ab 杆向左匀速运动时速度的大小范围为 21mgd 8qBL <v <27mgd
8qBL

答案 见解析 方法技巧
巧用功能关系以及能量守恒思想
(1)在电磁感应现象中,当安培力是变力时,无法直接求安培力做的功,这时要用功能关系和能量守恒的观点来分析问题.
(2)一个注意点:在应用能量守恒观点解决电磁感应问题时,一定要分析清楚能量的转化情况,尤其要注意电能往往只是各种形式能转化的中介.。

相关文档
最新文档