全线三维坐标计算(交点法)

合集下载

交点计算线路坐标(全线断链)

交点计算线路坐标(全线断链)

中线坐标 桩 号 切线方位角
左 边 桩 坐 标
右 边 桩 坐 标
中线坐标 桩 号 切线方位角
左 边 桩 坐 标
右 边 桩 坐 标
中线坐标 桩 号 切线方位角
左 边 桩 坐 标
右 边 桩 坐 标
中线坐标 桩 号 切线方位角
左 边 桩 坐 标
右 边 桩 坐 标
中线坐标 桩 号 切线方位角
左 边 桩 坐 标
右 边 桩 坐 标
中线坐标 桩 号 切线方位角
左 边 桩 坐 标
右 边 桩 坐 标
中线坐标 桩 号 切线方位角
左 边 桩 坐 标
右 边 桩 坐 标
中线坐标 桩 号 切线方位角
左 边 桩 坐 标
右 边 桩 坐 标
中线坐标 桩 号 切线方位角
左 边 桩 坐 标
右 边 桩 坐 标
中线坐标 桩 号 切线方位角
CAD线
, , , , , , , , , , , , , , , , , , , , , , , , ,
CAD线
, , , , , , , , , , , , , , , , , , , , , , , , ,
CAD线
, , , , , , , , , , , , , , , , , , , , , , , , ,
CAD线
, , , , , , , , , , , , , , , , , , , , , , , , ,
CAD线
, , , , , , , , , , , , , , , , , , , , , , , , ,
CAD线
, , , , , , , , , , , , , , , , , , , , , , , , ,

交点法、线元法坐标计算

交点法、线元法坐标计算

3、交点法、线元法坐标计算坐标计算是根据图纸中“直线及曲线转角一览表”提供的数据计算道路中桩坐标,然后和图纸提供的“逐桩坐标表”比对,如果一样则说明输入平曲线参数输入正确,可以计算边桩坐标和其他结构物坐标了;如果中桩坐标不一样,一般是平曲线参数输入有误,需要重新检查输入,另一种结果是图纸有错,这种情况少见,但不代表没有。

“直线及曲线转角一览表”和“逐桩坐标表”见附件1、附件2。

线元法是以路线的起点坐标、方位角、起终点桩号等节点元素来计算出要求的坐标;交点法是以路线的交点要素和路线的主要要素来求得坐标。

①交点法交点:路线的转折点,路线改变方向是相邻两直线的延长线相交的点。

用JD表示,有些图纸上用IP 表示。

看下图:交点是针对曲线的(包含圆曲线和缓和曲线),一段曲线就有一个交点。

交点参数有:坐标(X,Y)、交点桩号、转角值、圆曲线半径R、缓和曲线长度。

教学提供软件(轻松测量、双心软件、测量工具)交点法曲线要素输入说明:1、QD起点坐标:起点坐标必须在直线段上,或填写前一交点的坐标。

2、JD交点曲线要素:(1)交点桩号(2)交点坐标(X,Y)(3)曲线半径R(4)第一缓和曲线长度LS1,若为0,输入0,不能为空。

(5)第二缓和曲线长度LS2,若为0,输入0,不能为空。

3、ZD终点坐标:终点坐标也必须在直线段上,或填写后一交点的坐标。

检核数据是否输入正确的方法:软件生成的圆曲线要素中切线长、外距、交点里程:注意校正起点里程、等与设计图纸是否一致。

如果上述数据和图纸不一样,请认真检查有错误的交点处的数据输入是否正确,如果输入没有错误,请考虑是否包含不完整缓和曲线,使用公式A2=R*Ls检查是否包含不完整缓和曲线。

如果包含不完整缓和曲线,那就需要用线元法也叫积木法计算了。

有的设计院给出的直曲表是整条设计线路的直曲表的一部分,以其中某个交点作为起始点的话,起始里程有时候需要校正,当然,并不是每个图纸给出的起点里程都需要校正,大多数图纸的起点里程已经被设计院校正过,我们输入平曲线的时候需要验证一下。

导线法和交点法

导线法和交点法

导线法和交点法
交点法
交点法也就是以路线当中的交点为要素,将交点和路线一起求得的坐标也就是交点法。

导线法
将控制点用直线连接起来形成折线,成为导线,这些控制点位导线点,点间的折现便称为导线边,相邻边的夹角称为转折角。

于坐标方位角已知的导线边线连接的转折角称为连接角。

通过观测导线边的边长和转折角、根据起算数据经计算获得导线点的平面坐标,称为导线法。

区别
两者之间特点不同,导线法将控制点用直线连接起来形成折线,成为导线。

但是交点法就是路线改变方向以后,相邻的两个直线延长线的相交点。

并且在参数上也有所不同,线元法的参数包括开始里程,结束里程,起始时的坐标和起始时的方位角,需要半径和转向等,但是交点法需要坐标,交点地方的桩号,转角值以及圆曲线的半径和缓和曲线的长度等。

交点法原理

交点法原理

交点法原理交点法是一种用来求解两条直线交点坐标的数学方法,它在计算机图形学、几何学和工程学等领域有着广泛的应用。

在实际应用中,我们常常需要求解两条直线的交点坐标,这时候交点法就能派上用场。

首先,我们来看一下两条直线的一般方程。

一条直线的一般方程可以表示为Ax + By = C,其中A、B、C为常数。

当然,这里有一个前提条件,就是A和B不能同时为0。

如果A和B同时为0,那这条直线就不存在了。

假设我们有两条直线,它们的一般方程分别为A1x + B1y = C1和A2x + B2y =C2,我们需要求解它们的交点坐标。

我们可以通过联立这两个方程,得到一个二元一次方程组。

这个方程组的解就是两条直线的交点坐标。

一般来说,我们会选择使用消元法或者代入法来解决这个方程组。

但是,交点法提供了另外一种更加简洁和直接的解决方案。

我们可以通过一些简单的数学推导,得到两条直线交点坐标的表达式。

假设我们有两条直线的一般方程为A1x + B1y = C1和A2x + B2y = C2,它们的交点坐标为(x, y)。

我们可以利用克莱姆法则来求解这个交点坐标。

克莱姆法则告诉我们,如果一个二元一次方程组的系数行列式不为0,那么这个方程组有唯一解,且这个解可以通过系数行列式的比值来求得。

对于两条直线的交点坐标,我们可以利用克莱姆法则得到如下的表达式:x = (C1B2 C2B1) / (A1B2 A2B1)。

y = (A1C2 A2C1) / (A1B2 A2B1)。

通过这个表达式,我们就可以直接计算出两条直线的交点坐标。

这种方法不需要进行繁琐的消元和代入运算,能够更加高效地求解交点坐标。

除了利用克莱姆法则,我们还可以通过向量的方法来求解两条直线的交点坐标。

我们可以将两条直线表示为参数方程的形式,然后通过向量的叉乘运算来求解它们的交点坐标。

这种方法也能够得到同样的结果,而且在一些情况下更加直观和易于理解。

总的来说,交点法是一种简洁而高效的求解两条直线交点坐标的方法。

交点法坐标计算实例及公式

交点法坐标计算实例及公式

主桩计算公式:切线长:曲线长:圆曲线长度:外距:切曲差:切线加长:切线内移量:缓和曲线角:X=X 0+Cos(FWJ)*(ZH-ZH 0)Y=Y 0+Sin(FWJ)*(ZH-ZH 0)60496.303QD曲线要素公式:直线段:X 0;Y 0;FWJ;ZH 0第一缓和曲线段:圆曲线:第二缓和曲线段:)(2)(m m tg p R T ++=α)(180m Ls R L +=απο180)2(0πβα-=R L y )m (R 2sec )p R (E -α+=)(2m LT q -=⎪⎪⎪⎭⎪⎪⎪⎬⎫•==-=πβο18022424020223R L R L P R L L m s s s s2710420.530419921.016第一缓和曲线长2710752.946152.027420120.0562711595.8740.54030.912左偏45.58°387.450740.714436.66064.07534.18675.9871.3015.885°第一段387.450直线起始桩号:60496.303起始桩号(直缓):直线方位角(弧度):0.540第一方位角(弧度):基点X:2710420.5299基点X:基点Y:419921.0161基点Y:长度(选择桩号-起始桩号):0.000xp值:选择桩号:60496.303yp值:X坐标:2710420.5299长度(选择桩号-起始桩号):Y坐标:419921.0161选择桩号:X坐标:Y坐标:方位角:第一缓和曲线第一直线计算步骤:两点距离:L′=√(Xb-Xa)^2+(Yb-Ya)^2QD JD ZD坐标计算:点在缓和曲线上点位于圆曲线上l为点到坐标原点的曲线长。

半径第二缓和曲线长740.000152.027FWJ2QD 60496.3036.027ZH 60496.303345.332HY 60648.3300.796-1.000QZ 60866.660387.450YH 61084.990740.714HZ61237.017ZD 61720.89475.9871.3010.103第二段871.32660496.303起始桩号(直缓):60496.303起始桩号(缓直):0.540第一方位角(弧度):0.540第二方位角(弧度):2710420.5300基点X:2710420.5300基点X:419921.0162基点Y:419921.0162基点Y:151.867q175.987xp值:5.202p11.301yp值:152.027tp 0.103(起始桩号-选择桩号):60648.330xp 151.867选择桩号:2710553.4974yp 5.202X坐标:419994.5701长度(选择桩号-起始桩号):152.027Y坐标:25°1′34.79″选择桩号:60648.330方位角:X坐标:2710553.4975Y坐标:419994.5701方位角:25°1′34.79曲线圆曲线第二缓和骤:61237.017直线起始桩号:61237.0176.027直线方位角(弧度): 6.027*******.7683基点X:2711127.7683420021.9448基点Y:420021.9448151.867长度(选择桩号-起始桩号):0.0005.202选择桩号:61237.017152.027X坐标:2711127.768361084.990Y坐标:420021.94482710979.5343420055.3690351°13′1.73″第二直线二缓和曲线。

交点法线元法坐标计算

交点法线元法坐标计算

交点法线元法坐标计算交点法和线元法是计算坐标的两种方法,可以用于计算几何图形中的交点和线段的起始点和终止点的坐标。

下面将详细介绍交点法和线元法的计算过程。

交点法是通过已知条件计算出切线的方程,然后求解出两条切线的交点的坐标。

具体步骤如下:1.根据已知条件,建立两条直线的方程。

假设两条直线的方程分别为L1和L22.将L1和L2相减,得到方程L1-L2=0。

这个方程表示两条直线的交点。

3.解方程L1-L2=0,求出交点的坐标。

这可以通过代入法、消元法或者数值计算方法等得到。

交点法计算坐标的优点是可以得到精确的坐标值。

但是对于复杂的几何图形,方程求解过程可能较为繁琐,需要一定的数学知识和计算能力。

线元法是通过将线段拆分为多个小线元,然后根据已知条件和几何关系逐个计算得到各个小线元的坐标。

具体步骤如下:1. 先计算出线段的长度。

假设线段的起始点和终止点的坐标分别为(x1, y1)和(x2, y2),则线段的长度为L = sqrt((x2 - x1)^2 + (y2 - y1)^2)。

2.根据已知条件和几何关系,将线段等分为若干小线元。

每个小线元的长度为L/n,其中n表示需要等分的线元数目。

3.通过线段的起始点和终止点的坐标,以及小线元的长度计算出每个小线元的起始点和终止点的坐标。

计算公式为:起始点坐标为(x1+i*Δx,y1+i*Δy),终止点坐标为(x1+(i+1)*Δx,y1+(i+1)*Δy),其中i表示第i个小线元,Δx=(x2-x1)/n,Δy=(y2-y1)/n。

线元法计算坐标的优点是计算过程相对简单直观,并且可以得到较为精确的近似值。

但是对于曲线等复杂几何图形,需要将线段等分为较多的小线元才能得到较为准确的坐标值。

无论使用交点法还是线元法计算坐标,都需要根据几何图形的特点和已知条件选择适应的方法,并进行准确的推导和计算。

实际应用过程中,根据具体情况选择合适的计算方法会更加便捷和精确。

交点法路线计算程序(王中伟 老师作品) - 副本

交点法路线计算程序(王中伟 老师作品) - 副本

右 边 桩 坐 标
中线坐标 桩 号 切线方位角 高程
左 边 桩 坐 标
右 边 桩 坐 标
中线坐标 桩 号 切线方位角 高程
左 边 桩 坐 标
右 边 桩 坐 标
中线坐标 桩 号 切线方位角 高程
左 边 桩 坐 标
右 边 桩 坐 标
中线坐标 桩 号 切线方位角 高程
左 边 桩 坐 标
右 边 桩 坐 标
中线坐标 桩 号 切线方位角 高程
左 边 桩 坐 标
右 边 桩 坐 标
中线坐标 桩 号 切线方位角 高程
左 边 桩 坐 标
右 边 桩 坐 标
边 桩 坐 标 E(Y)
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
边 桩 坐 标
中线坐标 桩 号 切线方位角 高程
左 边 桩 坐 标
右 边 桩 坐 标
中线坐标 桩 号 切线方位角 高程
左 边 桩 坐 标
右 边 桩 坐 标
中线坐标 桩 号 切线方位角 高程
左 边 桩 坐 标
右 边 桩 坐 标
中线坐标 桩 号 切线方位角 高程

交点法坐标计算程序

交点法坐标计算程序

1.主程序 JDFZBZFS17→DimZ: Norm 2:1→ A " XY=1,FS=2,GC=3,LJKD=4,BPFY=5,BZFY=6”?A:A=1=>Goto1:A=2=>Goto 2: A=3=>Goto 3:A=4=>Goto 4: A=5=>Goto 5: A=6=>Goto 6LbI 1:Prog "DX":LbI A:Prog"QX": 90→B: "PJ1"?B:B →C: "PJ2"?C:B→Z[1]:C→Z[8]:LbI B:1→F: "KM"?Z: Prog"X1":?D:Prog"THB":O→L: Z[2]+Z[1]-Z[8] →E:X+L cos(E) →X:Y+Lsin(E) →Y:Prog"XY":Prog"JS":Goto B LbI 2:2→F:90→Z[1] :Prog"QX":LbI C: "KM"?Z:Prog"X 1": "XO"?X: "Y0"?Y:Prog"THB":Fix 5:Prog"ZD":G oto CLbI 3:Prog"QX": 0→B: "H-B"?B:B→Z[9]:LbI D: "KM"? Z:?D:Prog"H":Fix 5: "H=": H-Z[9] →H◢"I=":I◢Goto DLbI 4:Prog"QX":LbI E: "KM"?Z:?D:Prog"GD":Fix 5:" SJGD=": Locate 6,4,L:Goto ELbI 5:Prog"QX":0.5→B:"TH-GD"?B:B→Z[19]:LbI F:2→F: 90→Z[1]:"KM"?Z:Prog "X1":"X0"?X: "Y0"?Y: "SJ GC"?H: 0→M: "M0(YDMGC) "?M: Prog"BP FY":Fix 3:S→O: "L0=":Locate 6,4,O:Prog"ZD":H-M→G:"TW=": Lcoate 6,4,G: Goto FLbI 6:Prog"DX":LbI G:Prog"QX":LbI H:1→F:90→Z[1]:"KM"?Z: Goto G:Prog"X1":?D:Prog"THB":Prog"XY":Prog"JS":Prog"H":0→M:"M0"?M:Fix 2:H-M→T:"TW=": 6,4,T◢ Goto H2. 坐标计算次程序(THB)LbI J: If F=1:Then Prog "Z":Goto 1:Else Prog "ZX":Goto 2: IfEnd: LbI 1:I+D×COS(Z[2]+Z[1]) →X: J+D×Sin(Z[2]+Z[1]) →Y: LbI 23.路基开挖边线及填方坡脚线放样程序程序名:BP FYLbI H: 13→L:H-M→G: Prog “W1”:If G <0:Then –G →G:G oto W:Else G →G:Goto TLbI W:Z[8]+Z[9]→A: If G >A:Then Goto 1:Else If G >Z[8]: Then Goto 2:Else Goto 3:IfEndLbI 1: L+Z[10]+Z[11]+Z[12]+( G -A-( Z[11]+Z[12])×0.03)×Z[7]+Z[9]×Z[6]+Z[8]×Z[5] →S:Goto ZLbI 2: L+Z[10]+Z[11]+( G -Z[8]- Z[11]×0.03)×Z[6]+Z[8]×Z[5] →S:Goto ZLbI 3: L+ G×Z[5]→S:Goto ZLbI T:Z[16]+Z[17] →B:If G >B:Then Goto 4:Else If G >Z [16]:Then Goto 5:Else Goto 6:IfEndLbI 4: L+Z[18] ×2+ (G -B-2×Z[18]×0.03)×Z[15]+ Z[17]×Z[14]+ Z[16]×Z[13]→S:Goto ZLbI 5: L+Z[18]+( G -Z[16]- Z[18]×0.03)×Z[14]+Z[16]×Z [13]→S:Goto ZLbI 6: L+ G×Z[13]→S:Goto ZLbI Z4.极坐放样计算程序(计算放样点至置仪点方位角及距离)程序名:JSX:Y:Z[11]→K:Z[12]→L:Pol(X-K, Y-L):IF J<0:Then J+360→J:IfEnd:Fix 4:” FWJ=”: J◢DMS◢Fix 5:” S=”: I◢程序名:ZDFix 3:"KM=":Locate 6,4,Z:"D=":Locate 6,4,D5.交点法正算子程序(Z)程序名:ZH2÷R÷24-H∧(4) ÷2688÷R∧(3)→A(圆曲线内移量H表示缓和曲线长)H÷2-H∧(3) ÷240÷R2→B(切垂距)((H2-N2)÷24÷R)÷Sin(Abs(P))-((H∧(4)-N∧(4))/2688/R∧(3)) ÷Sin(Abs(P))→E(R+A)tan(Abs(P) ÷2)+B-E→T:P÷Abs(P) →W0→M:H→CIf Z≤O-T:Then Z-O→S:G→Z[2]:Goto 2: IfEndIf Z≤O-T+H:Then Z-O+T→S:Prog “HX”:G+WK→Z[2]:Goto 4:IfEndIf Z≤O-T+ΠR×Abs(P) ÷180+H÷2-N÷2: Then 180(Z-O+T-0.5H) ÷R÷Π→S: A+R(1-Cos(S))→B H÷2-H∧(3) ÷240÷R2+Rsin(S)→A:R→M:G+WS→Z[2]:Goto 4: IfEnd:O-T+ΠR×Abs(P)÷180+H÷2+N÷2-Z→S:(R+N2÷R÷24-N∧(4)÷2688÷R∧(3))tan(Abs(P) ÷2)+N÷2-N∧(3) ÷240÷R2+E→T :N→H:Prog “HX”:G+P →S:S-WK→Z[2]:U+(T-A)Cos(S)-WBSin(S)→I:V+(T-A)Sin(S)+WBcos(S)→J:Goto 3:LbI 4:U+(A-T)cos(G)-WBsin(G)→I:V+(A-T)Sin(G)+WBcos(G) →J: Goto 3: LbI 2:U+Scos(Z[2])→I:V+Ssin(Z[2]) →J: LbI 3:C→H6. 交点法缓和段转化子程序(HX)程序名:HXS-S∧(5) ÷40÷R2÷H2+S∧(9)÷3456÷R∧(4) ÷H∧(4)→A:S∧(3) ÷6÷R÷H-S∧(7) ÷336÷R∧(3) ÷H∧(3)+S∧(11) ÷42240÷R∧(5) ÷H∧(5)→B:90S2÷Π÷R÷H→K:RS÷H→M7. 交点法反算子程序(ZX)程序名:ZXZ:0→D:LbI 0:Prog “Z”:Pol(X-I,Y-J):J-Z[2] →J:Isin(J) →S:Icos(J) →I:If Abs(I)<0.1:Then Z+I→Z:S→D:Goto 2:Else Goto 1: LbI 1:If M=0:Then Z+I→Z:Goto 0:Eles Pol(M-WS,I):(JMΠ)/180→I:Z+I→Z:Goto 0:IfEndLbI 28.路基标准半幅宽度计算程序程序名GD1→S: Prog “G1”:Z-C→E:(B-A)*E/S+A→L:9. 导线点子程序(DX)程序名:DX“X Z”?K:”YZ”?L:K→Z[11]:L→Z[12]10.高程计算子程序(H)程序名:HP rog “S1”:C-T→F:Z-F→S:C+T→E:G-TI→Q:If T=O:Then Q+SI→H:Goto 0:Else If Z<F:Then Q+SI→H:Goto 0:Else If Z≤E:Then Q+SI+S2÷2÷R→H:Goto 0:LbI 0:H:If D=0:Then Goto I:Else Prog “I”:H+V→H:Goto ILbI I11.高程超高计算程序(I)程序名:IIf Z[3]=1:Then Prog “I1”:Goto 1: IfEndLbI 1: If W=1:Then Goto Z:Else Goto X: IfEndLbI Z:If S=0:Then Abs(D)×M→V:Goto 2:Else Abs(D)×((N-M)×(Z-C)÷S+M)→V:Goto 2:IfEnd:LbI X:If S=0:Then Abs(D)×M→V:Goto 2:Else Abs(D)×(((3((Z-C)÷S)2-2((Z-C)÷S)∧(3))×(N-M))+M)→V:Goto 2:IfEndLbI 2:Abs(D)→E:V÷E→I:I(E-K)→V15.线路选择子程序(线路选择输0时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

请输入线路起点桩号:K00+000.0000
(输入交点及起终点点号时,交点编号只要输入数字即可,起点输为0,终点输为一个"-"数),请在蓝格子里(第1~6、23、24列)输入曲线数据
请输入线路起点桩号:K00+000.0000
(输入交点及起终点点号时,交点编号只要输入数字即可,起点输为0,终点输为一个"-"数),请在蓝格子里(第1~6、23、24列)输入曲线数据
线路曲线要素请输入线路起点桩号:K00+000.0000
(输入交点及起终点点号时,交点编号只要输入数字即可,起点输为0,终点输为一个"-"数),请在蓝格子里(第1~6、23、24列)输入曲线数据
路曲线要素。

相关文档
最新文档