高三数学 课堂训练7-1人教版
高中人教B版数学必修第三册第七章 7.1 7.1.2 课后课时精练

A 级:“四基”巩固训练一、选择题1.下列各式中正确的是( ) A .π=180 B .π=3.14 C .90°=π2 rad D .1 rad =π答案 C解析 A 项,π rad =180°,故错误;B 项,π≈3.14,故错误;C 项,90°=π2rad ,故正确;D 项,1 rad =⎝ ⎛⎭⎪⎫180π°,故错误.故选C.2.扇形的半径变为原来的2倍,而弧长也增加为原来的两倍,则( ) A .扇形的面积不变 B .扇形圆心角不变C .扇形面积增大到原来的2倍D .扇形圆心角增大到原来的2倍 答案 B解析 由弧度制定义,长度等于半径长的圆弧所对的圆心角叫做1弧度的角,所以一扇形所在圆的半径增加为原来的2倍,弧长也增加到原来的2倍,弧长与半径之比不变,所以,扇形圆心角不变,故选B.3.把-11π4表示成θ+2k π(k ∈Z )的形式,使|θ|最小的θ为( ) A .-3π4B.π4C.3π4 D .-π4 答案 A解析 ∵-11π4=-2π-3π4,∴θ=-3π4.又-11π4=-4π+5π4,∴θ=5π4.∴使|θ|最小的θ=-3π4.4.若α=-354+2kπ,k∈Z,则角α所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限答案C解析∵-9<-354<-8,∴-3π<-354<π2-3π.∴-354在第三象限,故α也在第三象限.5.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数的绝对值为()A.π3 B.2π3C. 3 D.2答案C解析设所在圆的半径为r,圆内接正三角形的边长为2r sin60°=3r,所以弧长3r的圆心角的弧度数为3rr= 3.二、填空题6.将-1485°化成α+2kπ(0≤α<2π,k∈Z)的形式为________.答案7π4-10π解析-1485°=-1485×π180=-33π4=7π4-10π.7.扇形AOB,半径为2 cm,AB=2 2 cm,则AB所对的圆心角弧度数为________.答案π2解析∵OA=OB=2,AB=22,∴OA2+OB2=AB2,∴∠AOB=90°=π2.8.若角α的终边与8π5角的终边相同,则在[0,2π]上,终边与α4角的终边相同的角是________________.答案 2π5,9π10,7π5,19π10解析 由题意,得α=8π5+2k π,∴α4=2π5+k π2(k ∈Z ). 令k =0,1,2,3,得α4=2π5,9π10,7π5,19π10. 三、解答题9.用弧度制表示终边在图中阴影区域内角的集合(包括边界),并判断2019°是不是这个集合的元素.解 ∵150°=5π6,∴终边在阴影区域内角的集合为S =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪5π6+2k π≤β≤3π2+2k π,k ∈Z. ∵2019°=219°+5×360°=⎝ ⎛⎭⎪⎫219π180+10π rad ,又 5π6<219π180<3π2,∴2019°∈S . 10.扇形AOB 的周长为8 cm.(1)若这个扇形的面积为3 cm 2,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB . 解 (1)设扇形的圆心角为θ,扇形所在圆的半径为R .依题意有⎩⎨⎧2R +Rθ=8,12θ·R 2=3,解得θ=23或6.即圆心角的大小为23弧度或6弧度.(2)设扇形所在圆的半径为 x cm , 则扇形的圆心角θ=8-2xx .于是扇形的面积是S =12x 2·8-2xx =4x -x 2=-(x -2)2+4. 故当x =2 cm 时,S 取到最大值.此时圆心角θ=8-42=2弧度,弦长AB =2·2sin1=4sin1(cm). 即扇形的面积取得最大值时圆心角等于2弧度,弦长AB 等于4sin1 cm.B 级:“四能”提升训练1.已知一扇形的中心角是α,所在圆的半径是R ,若扇形的周长是一定值C (C >0),该扇形的最大面积为( )A.C 4B.C 24 C.C 216 D.C 22答案 C解析 设扇形的半径为R ,则扇形的弧长为C -2R ,则S =12(C -2R )R =-R 2+C 2R =-⎝ ⎛⎭⎪⎫R -C 42+⎝ ⎛⎭⎪⎫C 42,当R =C 4,即α=C -2R R =2时,扇形的面积最大,最大面积为C 216.故选C.2.如图所示,动点P ,Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求P ,Q 第一次相遇所用的时间及P ,Q 各自走过的弧长.解 设P ,Q 第一次相遇时所用的时间为t 秒, 则t ·π3+t ·⎪⎪⎪⎪⎪⎪-π6=2π,解得t =4. 即第一次相遇时所用的时间为4秒. P 点走过的弧长为:4π3×4=16π3, Q 点走过的弧长为:8π-16π3=8π3.。
高考数学(人教A版文科)一轮复习真题演练集训:第七章不等式7-1Word版含解析

真题操练集训1.[2016 ·北京卷 ] 已知 x,y∈R,且 x>y>0,则 ()1 1A.x-y>0B.sin x-sin y>01 x 1 y<0C.2-2D.ln x+ln y>0答案: C分析:解法一:由于 x>y>0,选项 A,取 x=1,y=1,则1-1=2x yπ1-2=- 1<0,清除 A ;选项 B,取 x=π,y=2,则 sin x-sin y=sin π1π-sin 2=-1<0,清除 B;选项 D,取 x=2,y=2,则 ln x+ln y=ln(xy)=ln 1=0,清除 D.应选 C.1 x 1 x 1解法二:由于函数 y=2在 R 上单一递减,且x>y>0,因此2<2 y1 x 1 y<0,应选 C.,即2-22.[2016 ·新课标全国卷Ⅰ]若 a>b>1,0<c<1,则 ()A .a c<b c B.ab c<ba cC.alog b c<blog a cD.log a c<log b c答案: C分析:关于选项 A ,考虑幂函数 y=x c,由于 c>0,因此 y=x c为增函数,又 a>b>1,因此 a c>b c,故 A 错;关于选项B,ab c<ba c?b ac<b,又 y = b x是减函数,故 B 错;关于选项 D ,由对数函数的性质 a a可知 D 错,应选 C.3. [2014 ·辽宁卷 当 ∈ - 2,1]时,不等式3-x 2+4x +3≥0 恒] x [ ax建立,则实数 a 的取值范围是 ()9A .[-5,- 3]B. -6,-8C .[-6,- 2]D .[-4,- 3]答案: C分析: 当 x =0 时, ax 3-x 2+4x +3≥0 变成 3≥0 恒建立,即 a ∈x 2-4x -3R ,当 x ∈(0,1]时, ax 3≥x 2-4x -3,a ≥x 3,x 2-4x -3∴a ≥x 3max.x 2-4x -3设 φ(x)=x 3,2x -4 x 3- x 2-4x -3 3x 2φ′(x)=x 6x 2-8x -9x -9x +1=- x 4=- x 4>0,∴φ(x)在(0,1]上递加, φ(x)max =φ(1)=- 6.∴a ≥-6.x 2-4x -3当 x ∈[-2,0)时, a ≤x 3,x2-4x-3∴a≤x3min.x2-4x-3仍设φ(x)=x3,x-9 x+1φ′(x)=-x4,当 x∈[-2,- 1)时,φ′(x)<0;当 x∈(-1,0)时,φ′(x)>0.∴当x=- 1 时,φ(x)有极小值,即为最小值.而φ(x)min=φ(-1)=1+4-3=- 2,-1∴a≤-2.综上可知 a 的取值范围为 [ -6,- 2].4.[2015 ·辽宁卷 ] 不等式 2x2-x<4 的解集为 ________.答案: { x|-1<x<2}( 或(-1,2))分析:∵<4,∴<22,∴2-<,即2--<,∴-x x2x x 201<x<2.5.[2014 ·江苏卷 ]已知函数 f(x)=x2+mx- 1,若关于随意 x∈[m,m+1],都有 f(x)<0 建立,则实数 m 的取值范围是 ________.2答案:-2,0分析:由题可得, f(x) < 0 关于x∈[m, m+ 1] 恒建立,即f m =2m2-1<0,f m+1 =2m2+3m<0,2解得-2<m<0.。
人教版高中数学精讲精练选择性必修三7.1 条件概率及全概率(解析版)

7.1条件概率及全概率公式考法一条件概率【例1-1】(2023·云南)某校有7名同学获省数学竞赛一等奖,其中男生4名,女生3名.现随机选取2名学生作“我爱数学”主题演讲.假设事件A 为“选取的两名学生性别相同”,事件B 为“选取的两名学生为男生”,则()|P B A =()A .14B .34C .13D .23【答案】D【解析】由题意得,事件A 包含的样本点数()2234C C 9n A =+=,事件A 和B 包含的样本点数()24C 6n AB ==,所以()()()62|93n AB P B A n A ===.故选:D【例1-2】(2024·陕西汉中)袋中有除颜色外完全相同的6个小球,其中4个白球和2个红球,现从袋中不放回地连取两个.在第一次取得白球前提下,则第二次取得红球的概率为()A .0.25B .0.4C .0.5D .0.6【答案】B【解析】设第一次取得白球为事件A ,第二次取得红球为事件B ,所以在第一次取得红球前提下,则第二次取得白球的概率为:42()265(|)0.445()565P AB P B A P A ⨯⨯====⨯⨯.故选:B.【一隅三反】1.(2024·辽宁)小张、小王两家计划国庆节期间去辽宁游玩,他们分别从“丹东凤凰山,鞍山千山,本溪水洞,锦州笔架山,盘锦红海滩”这五个景点中随机选择一个游玩,记事件A :“两家至少有一家选择丹东风凰山”,事件B :“两家选择景点不同”.则概率()P B A =()A .23B .59C .45D .89【答案】D【解析】由题意可知:A 两家都没选择丹东凤凰山,即()44165525P A =⨯=,所以()()9125P A P A =-=,而:AB 有一家选择丹东凤凰山,另一家选别的景点,则()4255P AB ⨯=⨯,所以()()()88259925P AB P B A P A ===.故选:D2.(2024·全国·高二假期作业)现有若干大小、质地完全相同的黑球和白球,已知某袋子中装有3个白球、2个黑球,现从袋中随机依次摸出2个球,若第一次摸出的是白球,则放回袋中;若第一次摸出的是黑球,则把黑球换作白球,放回袋中.记事件A =“第一次摸球摸出黑球”,事件B =“第二次摸球摸出白球”,则()P B A =()A .625B .825C .35D .45【答案】D【解析】根据题意可知,2()5P A =第一次摸出黑球且第二次摸出白球的概率()2485525P A B ⋂=⨯=,则()8()4252()55P A B P B A P A ⋂===,故选:D.3.(2024·北京)俗话说“斜风细雨不须归”,在自然界中,下雨大多伴随着刮风.已知某地8月份刮风的概率为1331,下雨的概率为1131,既刮风又下雨的概率为731.记事件A 为“8月份某天刮风”,事件B 为“8月份某天下雨”,则()P B A =()A .711B .713C .731D .1131【答案】B【解析】根据题意可得()()()1311,,1317331P A P B P AB ===利用条件概率公式可得()()()7731131331P AB P B A P A ===.故选:B4.(2024·江西)我国的生态环境越来越好,旅游的人越来越多.现有两位游客慕名来江苏旅游,他们分别从“太湖鼋头渚、苏州拙政园、镇江金山寺、常州恐龙园、南京夫子庙、扬州瘦西湖”这6个景点中随机选择1个景点游玩.记事件A 为“两位游客中至少有一人选择太湖鼋头渚”,事件B 为“两位游客选择的景点相同”,则()P B A 等于()A .111B .211C .19D .29【答案】A【解析】由题意,知()()66551111,66366636P A P AB ⨯-⨯====⨯⨯,所以()()()111P AB P B A P A ==.故选:A .考法二条件概率性质【例2-1】(2024·湖北)已知A ,B 是一个随机试验中的两个事件,若()12P A B =,()13P B A =,则()()()P AB P AB P AB +等于()A .3B .4C .5D .6【答案】A【解析】因为()12P A B =,所以()1()2P AB P B =,即()2()P B P AB =,同理,由()13P B A =得()3()P A P AB =,因为()()()2()P B P AB P AB P AB =+=,所以()()P AB P AB =,()()()3()P A P AB P AB P AB =+=,所以()2()P AB P AB =,所以()()3()3()()P AB P AB P AB P AB P AB +==.故选:A.【例2-2】(2023上·高二课时练习)下列式子成立的是()A .()()P AB P B A =∣∣B .()01P BA <<∣C .()()()P AB P A P BA =⋅∣D .()()()P AB P B P BA =⋅∣【答案】C【解析】由条件概率公式知()()()()(),()P AB P AB P AB P B A P B P A ==∣∣,但是()P A 不一定等于()P B ,所以选项A 错误;根据条件概率的性质可知()01P B A ≤≤∣,所以选项B 错误;由条件概率公式()()()P AB P BA P A =∣可得出()()()P AB P A P BA =⋅∣,所以选项C 正确;由条件概率公式()()()P AB P AB P B =∣可得出()()()P AB P B P AB =⋅∣,所以选项D 错误.故选:C【例2-3】(2023·云南保山)(多选),A B 为随机事件,已知()0.5P A =,()0.3P B =,下列结论中正确的是()A .若,AB 为互斥事件,则()0.8P A B +=B .若,A B 为互斥事件,则()0.8P A B +=C .若,A B 相互独立,则()0.65P A B +=D .若()|0.3P B A =,则,A B 相互独立【答案】ACD【解析】A 选项,根据互斥事件的加法公式可得,()()()0.50.30.8P A B P A P B +=+=+=,A 选项正确;B 选项,若,A B 为互斥事件,故()0P AB =,类似集合的运算:A B A B = ,由()()()()1()101P A B P A B P A B P AB P AB +====-=-= ,故B 选项不正确;C 选项,由于,A B 是相互独立事件,故()()()P AB P A P B =,于是()()()()0.50.30.50.30.65P A B P A P B P AB +=+-=+-⨯=,C 选项正确;D 选项:)()(|)0.3()(P AB P B A P B A P ===,即()()()P AB P A P B =,于是,A B 相互独立,D 选项正确.故选:ACD.【一隅三反】1.(2024·广西)(多选)设A ,B 是一个随机试验中的两个事件,且1()2P A =,11()24P B =,7(24P AB AB +=,则下列结论中正确的是()A .1()8P AB =B .5()6P A B +=C .9()11|P A B =D .()||)(P A B P B A =【答案】AB【解析】因为1()2P A =,11()24P B =,所以1()2P A =,13(24P B =.因为AB 与AB 为互斥事件,所以()0P AB AB ⋅=,所以(()()()()(P AB AB P AB P AB P AB AB P AB P AB +=+-⋅=+()()()()P B P AB P A P AB =-+-1112()224P AB =+-724=,所以1()3P AB =,故111()1()8()243P B P A P B AB =-=-=,故A 正确;115()(()()()()[()()](()236P A B P A P B P AB P A P B P B P AB P A P AB +=+-=+--=+=+=,故B 正确;1()83()11()1124|P AB P A B P B ===,故C 错误;1()38()11()1124|P AB P A B P B ===,11()()()123()1()()3|2P AB P A P AB P B A P A P A --===,所以()||)(P A B P B A ≠,故D 错误.故选:AB.2.(2024·福建)(多选)已知随机事件,,A B C 满足()01P A <<,()01P B <<,()01P C <<,则下列说法正确的是()A .不可能事件∅与事件A 互斥B .必然事件Ω与事件A 相互独立C .()()()P AC P AB C P AB C =+∣∣∣D .若()()||P A B P A B =,则()()12P A P A ==【答案】ABC【解析】因为不可能事件∅与事件 A 不会同时发生,所以互斥,故选项A 正确;因为)1,()(),())()((P A P A P P A P P AΩ=Ω=Ω=,所以()()()P A P A P Ω=Ω,所以必然事件Ω与事件 A 相互独立,故选项B 正确;因为AB AB A = ,且,AB AB 互斥,所以()()()P AC P AB C P AB C =+∣∣∣,故选项C 正确;对于选项D ,假如做抛掷一枚骰子1次的试验,设事件B 为出现点数小于等于4,事件A 为出现点数小于等于2,则()()||P A B P A B =,但12(),(),()(),33P A P A P A P A ==≠故选项D 错误.故选:ABC.3.(2024下·全国·高二随堂练习)(多选)玻璃缸中装有2个黑球和4个白球,现从中先后无放回地取2个球.记“第一次取得黑球”为1A ,“第一次取得白球”为2A ,“第二次取得黑球”为1B ,“第二次取得白球”为2B ,则()A .()()1122P AB P A B =B .()()1221P A B P A B =C .()()11211P B A P B A +<∣∣D .()()21121P B A P B A +>∣∣【答案】BD【解析】由题意,第一次取得黑球的概率()12116C 1C 3P A ==,第一次取得白球的概率()14216C 2C 3P A ==,第一次取黑球、第二次取黑球的概率()1121111165C C 1C C 15P A B ==,第一次取白球、第二次取白球的概率()1143221165C C 2C C 5P A B ==,()()1122P A B P A B ≠,所以A 错误;第一次取黑球、第二次取白球的概率()1124121165C C 4C C 15P A B ==,第一次取白球、第二次取黑球的概率()1142211165C C 4C C 15P A B ==,()()1221P A B P A B =,所以B 正确;由()()()111111115153P A B P B A P A ===,()()()122114415153P A B P B A P A ===,得()()11211P B A P B A +=,所以C 错误;由()()()211224215253P A B P B A P A ===,得()()2112615P B A P B A +=>,所以D 正确.故选:BD4.(2023·河南平顶山)(多选)一个口袋中有除颜色外完全相同的3个红球和2个白球,每次从中随机取出一个球,若取到红球,则往口袋里再放入一个白球,若取到白球,则往口袋里再放入一个红球,取出的球不放回.像这样取两次球,设事件()1,2i A i =为“第i 次取到红球”,事件()1,2j B j =为“第j 次取到白球”,事件C 为“两次取到的球颜色相同”,则()A .1A 与2A 相互独立B .()2135P B A =∣C .()12825P B A =D .()825P C =【答案】BCD【解析】对于A ,()()()112262414,,5552555552533232P A P A A P A ==⨯==⨯+⨯=,则()()()2112P P A A A P A ≠,所以1A 与2A 不相互独立,故A 错误;对于B ,()21P B A ∣是指在第一次取出红球的条件下,第二次取出白球的概率,第一次取出红球后,再放入一个白球,袋中变为2个红球和3个白球,此时取出白球的概率为35,故B 正确;对于C ,()12P B A 是第一次取到白球且第二次取到红球的概率,()122485525P B A =⨯=,故C 正确;对于D ,事件C 包含“两次都取到红球”和“两次都取到白球”两种情况,()()12123()5P C P A A P B B =+=⨯221855525+⨯=,故D 正确.故选:BCD.考法三全概率公式【例3-1】(2024·黑龙江)某人外出出差,委托邻居给家里盆栽浇一次水,若不浇水,盆栽枯萎的概率为0.8;若浇水,盆栽枯萎的概率为0.1.若邻居浇水的概率为P ,该人回来盆栽没有枯萎的概率为0.83,则实数P 的值为()A .0.9B .0.85C .0.8D .0.75【答案】A【解析】记A 为事件“盆栽没有枯萎”,W 为事件“邻居给盆栽浇水”,由题意可得(),()1P W P P W P ==-,()0.8,()0.1P A W P A W ==∣∣,由对立事件的概率公式可得()1()10.830.17P A P A =-=-=.由全概率公式可得(()()()()0.1(1)0.80.17P A P W P A W P W P A W P P =+=⨯+-⨯=∣∣,解得0.9P =.故选:A【例3-2】(2024·河南南阳)长时间玩手机可能影响视力.据调查,某校学生大约20%的人近视,而该校大约有10%的学生每天玩手机超过1小时,这些人的近视率约为60%,现从每天玩手机不超过1小时的学生中任意调查一名学生,则他近视的概率为()A .521B .940C .745D .720【答案】C【解析】令1A =“玩手机时间超过1小时的学生”,2A =“玩手机时间不超过1小时的学生”,B =“任意调查一人,此人近视”,12A A Ω= ,且12,A A 互斥,()()()()1210.10.9|0.6,0,.2 ,P A P A P B A P B ====,依题意有()()()()()()11222||0.10.60.9|0.2P B P A P B A P A P B A P B A =+=⨯+⨯=,解得()20.1470.945|P B A ==从每天玩手机不超过1小时的学生中任意调查一名学生,则他近视的概率为745.故选:C 【一隅三反】1.(2024·黑龙江)小明参加答题闯关游戏,答题时小明可以从A ,B ,C 三块题板中任选一个进行答题,答对则闯关成功.已知他选中A ,B ,C 三块题板的概率分别为0.2,0.3,0.5,且他答对A ,B ,C 三块题板中题目的概率依次为0.91,0.92,0.93.则小明闯关失败的概率是()A .0.24B .0.14C .0.077D .0.067【答案】C【解析】由题意,小明闯关失败的概率()()()0.210.910.310.920.510.930.077P =⨯-+⨯-+⨯-=.故选:C.2.(2024·全国·高二假期作业)某批麦种中,一等麦种占80%,二等麦种占20%等麦种种植后所结麦含有50粒以上麦粒的概率分别为0.6,0.2,则这批麦种种植后所结麦穗含有50粒以上麦粒的概率为()A .0.48B .0.52C .0.56D .0.65【答案】B【解析】种植一等麦种和二等麦种的事件分别为12,A A ,所结麦穗含有50粒以上麦粒为事件B ,依题意,()10.8P A =,()20.2P A =,()1|0.6P B A =,()2|0.2P B A =,由全概率公式得,()()()12P B P BA P BA =+()()()()1122||P A P B A P A P B A =+0.80.60.20.20.52=⨯+⨯=.故选:B3.(2023·湖北)某卡车为乡村小学运送书籍,共装有10个纸箱,其中5箱英语书、5箱数学书.到目的地时发现丢失一箱,但不知丢失哪一箱.现从剩下9箱中任意打开两箱,结果都是英语书,则丢失的一箱也是英语书的概率为()A .29B .38C .112D .58【答案】B【解析】用A 表示丢失一箱后任取两箱是英语书,用1B 表示丢失的一箱为英语书,2B 表示丢失的一箱为数学书,则()()1212P B P B ==,()24129C 61C 366P A B ===,()25229C 105C 3618P A B ===,由全概率公式可得()()()()()112211152262189P A P B P A B P B P A B =⋅+⋅=⨯+⨯=,所以,()()()1111326289P AB P B A P A ⨯===.故选:B.4.(2023·湖北)(多选)某儿童乐园有甲,乙两个游乐场,小王同学第一天去甲、乙两家游乐场游玩的概率分别为0.3和0.7,如果他第一天去甲游乐场,那么第二天去甲游乐场的概率为0.7;如果第一天去乙游乐场,那么第二天去甲游乐场的概率为0.6,则王同学()A .第二天去甲游乐场的概率为0.63B .第二天去乙游乐场的概率为0.42C .第二天去了甲游乐场,则第一天去乙游乐场的概率为23D .第二天去了乙游乐场,则第一天去甲游乐场的概率为13【答案】AC【解析】设1A :第一天去甲游乐场,2A :第二天去甲游乐场,1B :第一天去乙游乐场,2B :第二天去乙游乐场,依题意可得()10.3P A =,()10.7P B =,()210.7P A A =,()210.6P A B =,对A ,()()()()()21211210.30.70.70.60.63P A P A P A A P B P A B =+=⨯+⨯=,A 正确;对B ,()()2210.37P B P A =-=,B 错误;对C ,()()()()1211220.70.620.633P B P A B P B A P A ⨯===,C 正确;对D ,()()()()()()()()121121122210.310.790.3737P A P A A P A P B A P A B P B P B ⎡⎤-⨯-⎣⎦====,D 错误,故选:AC.5.(2024·陕西汉中)某电子设备厂所用的元件由甲、乙两家元件厂提供,根据以往的记录,这两个厂家的次品率分别为0.01,0.03,提供元件的份额分别为0.90,0.10.设这两个厂家的产品在仓库里是均匀混合的,且无任何区分的标志,现从仓库中随机取出一个元件,取到的元件是次品的概率为.【答案】0.012【解析】设事件:A “取得一件次品”事件1B :“取得次品是甲厂生产”,2B :“取得次品是乙厂生产”,由题意可知()()()()12120.9,0.1,0.01,0.03P B P B P A B P A B ====,所以由全概率公式知取得次品的概率为()()()()()11220.010.900.030.100.012P A P A B P B P A B P B =+=⨯+⨯=.故答案为:0.012考法四贝叶斯公式【例4】(2024·福建)根据曲靖一中食堂人脸识别支付系统后台数据分析发现,高三年级小孔同学一周只去食堂一楼和二楼吃饭.周一去食堂一楼和二楼的概率分别为13和23,若他周一去了食堂一楼,那么周二去食堂二楼的概率为34,若他周一去了食堂二楼,那么周二去食堂一楼的概率为12,现已知小孔同学周二去了食堂二楼,则周一去食堂一楼的概率为().A .37B .47C .15D .45【答案】A【解析】记小孔同学周一去食堂一楼为事件A ,周二去食堂一楼为事件B ,则本题所求()()()()()()()13334132173432P B A P A P A B P B A P A P B A P A ⨯⋅===⋅+⋅⨯+⨯.故选:A .【一隅三反】1.(2024湖南)设有5个袋子中放有白球,黑球,其中1号袋中白球占13,另外2,3,4,5号4个袋子中白球都占14,今从中随机取1个袋子,从所取的袋子中随机取1个球,结果是白球,则这个球是来自1号袋子中的概率为()A .14B .13C .12D .23【答案】A【解析】设事件i A 表示“取到第i 号袋子”(i =1,2,3,4,5),事件B 表示“取到白球”,则由贝叶斯公式得1115111()()153()11111114()()5354444j j j P A P B A P A B P A P B A =⨯===⎛⎫⨯+⨯+++ ⎪⎝⎭∑,故选:A2.(2023·全国·高二课堂例题)张宇去某地参加会议,他乘汽车或飞机去的概率分别为0.6、0.4.如果他乘汽车或飞机前去,迟到的概率如图所示.结果他迟到了,求张宇乘的是汽车的概率.【答案】917【解析】记事件A 为“张宇乘汽车”,则事件A 为“张宇乘飞机”,事件B 为“张宇迟到”,则()0.6P A =,()0.4P A =,()14P B A =,()13P B A =.根据贝叶斯公式可得()()()()()()()10.69411170.60.443P A P B A P A B P A P B A P A P B A⨯===+⨯+⨯.因此,张宇迟到了,他乘的是汽车的概率为917.3.(2023·湖南)某一地区患有某疾病的人占0.005,患者对一种试验反应是阳性的概率为0.95,正常人对这种试验反应是阳性的概率为0.04.现抽查了一个人,试验反应是阳性,问此人是患者的概率有多大?(保留小数点后四位)【答案】0.1066【解析】设“抽查的人是患者”为事件A ,“试验反应是阳性”为事件B ,则“抽查的人不是患者”为事件A ,由题意可知()0.005P A =,()()10.995P A P A =-=,()0.95P B A =,()0.04P B A =,则由贝叶斯公式可得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.0050.950.10660.0050.950.9950.04⨯==⨯+⨯,即抽查一个人,试验反应是阳性,此人是患者的概率为0.1066.考法五综合运用【例5-1】(2024·吉林)中国传统文化中,过春节吃饺子,饺子是我国的传统美食,不仅味道鲜美而且寓意美好.现有甲、乙两个箱子装有大小、外观均相同的速冻饺子,已知甲箱中有3盒肉馅的“饺子”,2盒三鲜馅的“饺子”和5盒青菜馅的“饺子”,乙箱中有3盒肉馅的“饺子”,3个三鲜馅的“饺子”和4个青菜馅的“饺子”.问:(1)从甲箱中取出一盒“饺子”是肉馅的概率是多少?(2)若依次从甲箱中取出两盒“饺子”,求第一盒是肉馅的条件下,第二盒是三鲜馅的概率;(3)若先从甲箱中随机取出一盒“饺子”放入乙箱,再从乙箱中随机取出一盒“饺子”,从乙箱取出的“饺子”是肉馅的概率.【答案】(1)310(2)29(3)310【解析】(1)设事件A =“取出饺子是肉馅”,()310P A =,(2)设事件B =“甲箱中取出的第一盒饺子是肉馅”,事件C =“取出第二个盒饺子是三鲜馅”,()()()3221093910P BC P C B P B ⨯===(3)设事件D =“从乙箱取出的“饺子”是肉馅”.设事件1A ,2A ,3A 分别是甲箱中取出肉馅的“饺子”,三鲜馅的“饺子”和青菜馅的“饺子”,()()()()()()()112233P D P A P D A P A P D A P A P D A =++342353310111011101110=⨯+⨯+⨯=【例5-2】(2023·河北保定)某地举办了一次地区性的中国象棋比赛,小明作为选手参加.除小明外的其他参赛选手中,一、二、三类棋手的人数之比为5:7:8,小明与一、二、三类棋手比赛获胜的概率分别是0.6、0.5、0.4.(1)从参赛选手中随机抽取一位棋手与小明比赛,求小明获胜的概率;(2)如果小明获胜,求与小明比赛的棋手分别为一、二、三类棋手的概率.【答案】(1)0.485(2)3097、3597、3297.【解析】(1)记事件B :“小明获胜”,记事件i A :“小明与第()1,2,3i i =类棋手相遇”,由题可得,()150.2520P A ==,()270.3520P A ==,()380.420P A ==,()10.6P B A =,()20.5P B A =,()30.4P B A =(1)由全概率公式可知()()()()()()()112233P B P A P B A P A P B A P A P B A =++0.250.60.350.50.40.40.485=⨯+⨯+⨯=.(2)由条件概率公式可得()()()()()()11110.250.6300.48597P A P B A P A B P A B P B P B ⨯====,()()()()()()22220.350.5350.48597P A P B A P A B P A B P B P B ⨯====,()()()()()()33330.40.4320.48597P A P B A P A B P A B P B P B ⨯====.即小明获胜,对手分别为一、二、三类棋手的概率为3097、3597、3297.【一隅三反】1.(2023下·安徽芜湖·高二统考期末)(多选)一个不透明的袋子里,装有大小相同的3个红球和2个白球,每次从中不放回地取出一球,现取出2个球,则下列说法正确的是()A .两个都是红球的概率为625B .在第一次取到红球的条件下,第二次取到白球的概率为12C .第二次取到红球的概率为35D .第二次取到红球的条件下,第一次取到白球的概率为12【答案】BCD【解析】对于A 选项,抽取的两个都是红球的概率为2325C 3C 10=,A 错;对于B 选项,记事件:M 第一次取红球,事件:N 第二次取白球,则()35P M =,()3235410P MN ⨯==⨯,所以,()()()3511032P MN P N M P M ==⨯=,B 对;对于C 选项,记事件:M 第一次取红球,事件:Q 第二次取红球,则()35P M =,()25P M =,()12P Q M =,()34P Q M =,由全概率公式可得()()()()()3123352545P Q P M P Q M P M P Q M =+=⨯+⨯=,C 对;对于D 选项,记事件:M 第一次取红球,事件:Q 第二次取红球,则()()()2335410P MQ P M P Q M ==⨯=,所以,()()()3511032P MQ P M Q P Q ==⨯=,D 对.故选:BCD.2.(2024上·黑龙江·高二校联考期末)(多选)已知编号为1,2,3的三个盒子,其中1号盒子内装有一个1号球,一个2号球和两个3号球;2号盒子内装有一个1号球,两个3号球;3号盒子内装有两个1号球,三个2号球.若第一次先从1号盒子内随机抽取1个球,将取出的球放入与球同编号的盒子中,第二次从该盒子中任取一个球,则下列说法正确的是()A .在第一次抽到3号球的条件下,第二次抽到2号球的概率为12B .第一次抽到3号球且第二次抽到2号球的概率为14C .第二次抽到2号球的概率为316D .如果第二次抽到的是2号球,则它来自1号盒子的概率最大【答案】AB【解析】记第一次取得()1,2,3i i =号球为事件i A ,则()()()123111,442P A P A P A ===,在第一次抽到3号球的条件下,第二次抽到2号球的概率为31512P ==+,即A 正确;第一次抽到3号球且第二次抽到2号球的概率为111224P =⨯=,即B 正确;记第二次在第i 号盒子内抽到2号球的事件分别为()1,2,3i B i =,而123,,A A A 两两互斥,和为Ω,且()()()112233111,,442P B A P B A P B A ===∣∣∣,记第二次抽到2号球的事件为B ,则()()()33111111113()4444228i i i i ii i P B P A B P A P B A =====⨯+⨯+⨯=∑∑∣,即C 错误;由于原先2号盒子没有2号球,如果第二次取到的是2号球,则它来自1号盒子的概率为()()()112211111616338P A B P A B P P B ++===,它来自3号盒子的概率()()333124338P A B P P B ===,即如果第二次抽到的是2号球,则它来自3号盒子的概率最大,故D 错误.故选:AB3.(2023下·湖北武汉·高二校联考期末)某中学篮球队根据以往比赛统计:甲球员能够胜任前锋,中锋,后卫三个位置,且出场概率分别为0.1,0.5,0.4.在甲球员出任前锋,中锋,后卫的条件下,篮球队输球的概率依次为0.2,0.2,0.7.(1)当甲球员参加比赛时,求该篮球队某场比赛输球的概率;(2)当甲球员参加比赛时,在该篮球队输了某场比赛的条件下,求甲球员在这一场出任中锋的概率;(3)如果你是教练员,应用概率统计的有关知识该如何使用甲球员?【答案】(1)0.4(2)0.25(3)应该多让甲球员出任前锋来增加赢球场次【解析】(1)设1A 表示“甲球员出任前锋”,2A 表示“甲球员出任中锋”,3A 表示“甲球员出任后卫”,则123A A A Ω= ,设B 表示“球队输掉某场比赛”,则()10.1P A =,()20.5P A =,()30.4P A =,()()120.2P B A P B A ==||,()30.7P B A =|,所以()()()123()P B P A B P A B P A B =++()()()()()()112233P A P B A P A P B A P A P B A =⋅+⋅+⋅|||0.10.20.50.20.40.7=⨯+⨯+⨯0.4=.所以当甲球员参加比赛时,该球队某场比赛输球的概率是0.4.(2)由(1)知,球队输了某场比赛的条件下,甲球员在这一场出任中锋的概率()()()()22220.50.20.25()()0.4P B A P A P A B P A B P B P B ⨯====||.(3)由(1)知,已知球队输了某场比赛的条件下,甲球员在这场出任前锋的概率()()110.10.20.05()0.4P A B P A B P B ⨯===∣;甲球员在这场出任后卫的概率()()()330.40.70.70.4P A B P A B P B ⨯===∣;由(2)知,甲球员在这一场出任中锋的概率()20.25P A B =|.所以有,()()()123P A B P A B P A B <<∣∣∣,所以应该多让甲球员出任前锋来增加赢球场次.一.单选题1.(2024·北京昌平)已知某班级中,喜欢文学阅读的学生占75%,喜欢文学阅读而且喜欢科普阅读的学生占30%.若从这个班级的学生中任意抽取一人、则在抽到的学生喜欢文学阅读的条件下,该学生也喜欢科普阅读的概率为()A .22.5%B .30%C .40%D .75%【答案】C【解析】设事件A 为“抽到喜欢文学阅读的学生”,设事件B 为“抽到喜欢科普阅读的学生”,则()0.75P A =,()0.3P AB =,则()()()0.320.755P AB P B A P A ===,即在抽到的学生喜欢文学阅读的条件下,该学生也喜欢科普阅读的概率为40%.故选:C.2.(2023·广东肇庆)已知()0.5P A =,()0.3P B =,()0.1P B A ⋂=,求()|P B A =()A .110B .13C .15D .1【答案】C【解析】由题可得()()()0.110.55|P AB P B A P A ===.故选:C.3.(2023·山东德州)掷一个均匀的骰子.记A 为“掷得点数大于2”,B 为“掷得点数为奇数”,则()P B A 为()A .56B .34C .23D .12【答案】D【解析】掷一个均匀的骰子,有1,2,3,4,5,6共6种结果,事件A 包含点数为3,4,5,6,共4种结果,所以()4263P A ==;事件AB 包含点数为3,5共2种结果,所以()2163P AB ==,所以()()()12P AB P B A P A ==.故选:D4.(2023下·辽宁·高二辽宁实验中学校考阶段练习)某货车为某书店运送书籍,共10箱,其中5箱语文书、3箱数学书、2箱英语书.到达目的地时发现丢失一箱,但不知丢失哪一箱.现从剩下的9箱书中随机打开2箱,结果是1箱语文书、1箱数学书,则丢失的一箱是英语书的概率为()A .15B .14C .13D .38【答案】B【解析】记事件:A 从剩下的9箱书中随机打开2箱,结果是1箱语文书、1箱数学书,记事件2:B 丢失的一箱是语文书,事件2:B 丢失的一箱是数学书,事件3:B 丢失的一箱是英语书,则()()()3222199914335215312C 10C 5C 3i i i P A P B P A B =⨯⨯⨯==⨯+⨯+⨯=∑,()()()3332915315C 12P AB P B P A B ⨯==⨯=,由贝叶斯公式可得()()()33113124P AB P B A P A ==⨯=.故选:B.5.(2024下·全国·高二随堂练习)袋子中装有大小、形状完全相同的3个白球和2个红球,现从中不放回地摸取两个球,已知第二次摸到的是红球,则第一次摸到红球的概率为()A .14B .16C .110D .25【答案】A【解析】记i A 为第i 次摸到的是红球,则()()()12122P A A P A A P A =,又()()()121212115410P A A P A P A A ==⨯=,()()()()()()()212121211212132254545P A P A A P A A P A P A A P A P A A =+=+=⨯+⨯=,所以()1214P A A =,故选:A.6.(2023上·上海·高二上海市第二中学校考阶段练习)下列各式中不能判断事件A 与事件B 独立的是()A .()()()P A B P A P B ⋂=B .()()()()()P A B P A P B P A P B =+- C .()()1P A B P A +=D .()()1P A B P A B +=【答案】D【解析】选项A :因为()()P A B P AB = ,所以()()()P AB P A P B =,由事件相互独立意义可知,事件A 与事件B 独立;故A 正确;选项B :因为()()()()P A B P A P B P A B =+- ,又()()()()()P A B P A P B P A P B =+- ,所以()()()P A B P A P B ⋂=,由选项A 可知,事件A 与事件B 独立;故B 正确;选项C :因为()()()()()1P AB P A B P A P A P B +=+=,即()()()()1P ABP A PA PB =-=所以()()()P AB P A P B =,即事件A 与事件B 独立,所以事件A 与事件B 独立,故C 正确;故选:D.7.(2023下·黑龙江齐齐哈尔·高二齐齐哈尔市恒昌中学校校考期末)下列有关事件的说法正确的是()A .事件A ,B 中至少有一个发生的概率一定比A ,B 中恰有一个发生的概率大B .若()()()1P A B P A P B =+= ,则事件A ,B 为对立事件C .若A ,B 为互斥事件,则()()1P A P B +≤D .若事件A ,B ,C 满足条件()0P B >,A 和C 为互斥事件,则()()()()P A C B P A B P C B <+∣∣∣ 【答案】C【解析】对于A 中,若事件A 和B 都为不可能事件,此时两个概率相等,所以A 错误;对于B 中,若在不同试验下,虽然有()()()1P A B P A P B =+= ,但事件A 和B 不对立;若在同一试验下,说明事件A 和B 对立,则B 错误;对于C 中,若A ,B 互斥,且A ,B 对立,则()()1P A P B +=,若A ,B 不对立,则()()1P A P B +<,所以C 正确;对于D 中,若事件A ,B ,C 满足条件()0P B >,A 和C 为互斥事件,则()()()()|||P A C B P A B P C B =+ ,所以D 错误,故选:C.8.(2023下·浙江台州·高二统考期末)已知()P A ,()P B ,()P C ,()P AC ,()P AB ,()P BC 均大于0,则下列说法不正确的是()A .()()()P AB P A P B =B .若()()P B A P B =,则()()P A B P A =C .若()()P B A P A B =,则()()P A P B =D .()()()()P ABC P A P C A P B AC =【答案】A【解析】对于A ,若,A B 相互独立,则()()()P AB P A P B =,故A 错误;对于B ,若()()P B A P B =,则()()()P AB P B P A =,即()()()P AB P A P B =,所以()()()()()()()P AB P A P B P A B P A P B P B ===,故B 正确;对于C ,若()()P B A P A B =,则()()()()P AB P AB P A P B =,则()()P A P B =,故C 正确;对于D ,()()()()()()()()()P AC P ABC P A P C A P B AC P A P ABC P A P AC =⋅⋅=,故D 正确.故选:A.二.多选题9.(2023·吉林长春·)盒子中有12个乒乓球,其中8个白球4个黄球,白球中有6个正品2个次品,黄球中有3个正品1个次品.依次不放回取出两个球,记事件=i A “第i 次取球,取到白球”,事件i B =“第i 次取球,取到正品”,1,2i =.则下列结论正确的是()A .()1123P A B =B .()212P B =C .()2113P A B =D .()2134P B A =【答案】AD【解析】对A ,()193==124P B ,()1161==122P A B ,所以()()()111112==3P A B P A B P B ,故A 正确;对B ,事件2B =“第2次取球,取到正品”,()2119392212A A A 3A 4P B +==,故B 错误;对C ,事件21A B =“第1次取球,取到正品且第2次取球,取到白球”,包括(正白,正白),(正白,次白),(正黄,正白),(正黄,次白),共有65+62+36+32=66⨯⨯⨯⨯种情况,()21212661=A 2P A B =,故C 错误;对D ,事件12A B =“第1次取球,取到白球且第2次取球,取到正品”,包括(白正,白正),(白正,黄正),(白次,白正),(白次,黄正),共有65+63+26+23=66⨯⨯⨯⨯种情况,()12212661=A 2P A B =,又因为()182==123P A ,()()()122113==4P A B P B A P A ,故D 正确;故选:AD.10.(2024·全国·高二假期作业)口袋里装有2红,2白共4个形状相同的小球,对其编号红球1,2,白球3,4,从中不放回的依次取出两个球,事件A =“第一次取出的是红球”,事件B =“第二次取出的是红球”,事件C =“取出的两球同色”,事件D =“取出的两球不同色”,则()A .A 与B 互斥B .C 与D 互为对立事件C .A 与C 相互独立D .()13P D B =【答案】BC【解析】基本事件有12,13,14,23,24,34,21,31,41,32,42,43,共12种,事件A =“12,13,14,21,23,24”;事件B =“12,21,31,41,32,42”;事件C =“12,21,34,43”;事件D =“13,14,23,24,31,41,32,42”.∵A B ⋂≠∅,∴A 与B 不是互斥事件,故A 错误;C D =Ω ,C D ⋂=∅,∴C 与D 互为对立事件,故B 正确;事件AC =“12,21”,∴()61122P A ==,()41123P C ==,()21126P AC ==,()()()P AC P A P C =,∴A 与C 相互独立,故C 正确;事件BD =“31,41,32,42”,()12P B =,()41123P BD ==,∴()()()23P BD P D B P B ==,故D 错误.故选:BC.11.(2023下·山东聊城·高二统考期末)若A 、B 分别为随机事件A 、B 的对立事件,()0P A >,()0P B >,则下列结论正确的是()A .()()1P B A P B A +=B .()()()()P A B P B P B A P A=C .()()()P A B P A B P B +=D .若()()P A B P A =,则()()P B A P B =【答案】BD【解析】对于A 选项,因为()()()()()()()()()()()1P AB P AB P AB P AB P A P B A P B A P A P A P A P A ++=+===,但()P B A 与()P B A 不一定相等,故()()P B A P B A +不一定等于1,A 错;对于B 选项,因为()()()P A B P B P AB =,()()()P B A P A P AB =,所以,()()()()P A B P B P B A P A =,B 对;对于C 选项,()()()()()()()()1P AB P AB P B P A B P A B P B P B P B +=+==,C 错;对于D 选项,因为()()()()P AB P A B P A P B ==,所以,()()()P AB P A P B =,所以,事件A 、B 独立,故()()()()P AB P B A P B P A ==,D 对.故选:BD.12.(2024·河南)深圳某中学社团招新活动开展得如火如荼,小王、小李、小张三位同学计划篮球社、足球社、羽毛球社三个社团中各自任选一个,每人选择各社团的概率均为13,且每人选择相互独立,则()A .三人选择社团一样的概率为19B .三人选择社团各不相同的概率为227C .至少有两人选择篮球社的概率为727D .在至少有两人选择羽毛球社的前提下,小王选择羽毛球社的概率为57【答案】ACD【解析】对于A ,三人选择社团一样的事件是都选篮球社的事件、都选足球社的事件、都选羽毛球社的事件的和,它们互斥,三人选择社团一样的概率为3113(39⨯=,A 正确;对于B ,三人选择社团各不相同的事件,是小王从3个社团中任选1个,小李从余下两个中任选1个,最后1个社团给小张的事件,共6个不同结果,因此三人选择社团各不相同的概率为3126()39⨯=,B 错误;对于C ,至少有两人选择篮球社的事件是恰有2人选篮球社与3人都选篮球社的事件和,其概率为213332117C C ()()3327⨯+=,C 正确;对于D ,令至少有两人选择羽毛球社的事件为A ,由选项C 知,7()27P A =,小王选择羽毛球社的事件为B ,则事件AB 是含小王只有2人择羽毛球社的事件和3人都择羽毛球社的事件和,其概率113322115()C C ((3327P AB =⨯+=,所以在至少有两人选择羽毛球社的前提下,小王选择羽毛球社的概率为()5(|)()7P AB P B A P A ==,D 正确.故选:ACD三.填空题13.(2024上·山东潍坊·高二昌乐二中校考期末)已知某地区内狗的寿命超过15岁的概率是0.6,超过20岁的概率是0.2.那么该地区内,一只寿命超过15岁的狗,寿命能超过20岁的概率是.【答案】13【解析】设A :狗的寿命超过15岁,B :狗的寿命超过20岁,则所要求的就是(|)P B A .依题意有2,()0.6()0.P A P B ==.又因为B A ⊆,所以B A B =I ,从而()()0.2P B A P B == ,因此()()()0.21|0.63P B A P B A P A ⋂===.所以一只寿命超过15岁的狗,寿命能超过20岁的概率是13,故答案为:13.14.(2023上·河南南阳·高二南阳中学校考阶段练习)口袋里装有2红,2白共4个形状相同的小球,对其编号红球1,2,白球3,4,从中不放回的依次取出两个球,事件A =“第一次取出的是红球”,事件B =“第二次取出的是红球”,事件C =“取出的两球同色”,事件D =“取出的两球不同色”,则以下命题所有正确的序号是.①A 与B 互斥②C 与D 互为对立事件③A 与C 相互独立④1(|)3P D B =【答案】②③【解析】依题意,按取球先后次序排列取球编号,得试验的样本空间{12,13,14,21,23,24,31,32,34,41,42,43}Ω=,事件{12,13,14,21,23,24}A =,事件{12,21,31,32,41,42}B =,事件{12,21,34,43}C =,事件{13,14,23,24,31,41,32,42}D =,显然事件,A B 有公共的基本事件12,21,即,A B 不互斥,①错误;事件,C D 不能同时发生,但必有一个发生,则C 与D 互为对立事件,②正确;6141(),()122123P A P C ====,事件{12,21}AC =,21()()()126P AC P A P C ===,A 与C 相互独立,③正确;61()122P B ==,事件{31,41,32,42}BD =,41()123P BD ==,()2(|)()3P BD P D B P B ==,④错误,所以命题中所有正确的序号是②③.故答案为:②③15.(2024下·全国·高二随堂练习)甲、乙两名游客慕名来到四川旅游,准备分别从九寨沟、峨眉山、海螺沟、都江堰、青城山这5个景点中随机选一个.事件:A 甲和乙选择的景点不同,事件:B 甲和乙恰好有一人。
高中人教B版数学必修第三册第七章 7.1 7.1.1 课后课时精练

所以 45°<m7 ·180°<90°,45°<n7·180°<90°, 即74<m<72,74<n<72, 又 α<β,所以 m<n,从而可得 m=2,n=3, 即 α=3670°,β=5470°.
答案15
本课结束
13
解 根据题意,可知 14α,14β 均为 360°的整数倍, 故可设 14α=m·360°,m∈Z,14β=n·360°,n∈Z, 则 α=m7 ·180°,m∈Z,β=n7·180°,n∈Z. 由两只蚂蚁在第 2 s 时均位于第二象限, 知 2α,2β 均为第二象限角. 因为 0°<α<β<180°,所以 0°<2α<2β<360°, 所以 2α,2β 均为钝角,即 90°<2α<2β<180°, 于是 45°<α<90°,45°<β<90°.
答案
解析
7.已知角 2α 的终边在 x 轴的上方,那么 α 是第______象限角.
答案 一或三
解析 由 题 意 知 k·360°<2α<180°+ k·360°(k∈ Z), 故 k·180°<α<90°+ k·180°(k∈Z),按照 k 的奇偶性进行讨论.当 k=2n(n∈Z)时,n·360°<α<90° +n·360°(n∈Z),∴α 在第一象限;当 k=2n+1(n∈Z)时,180°+n·360°<α<270° +n·360°(n∈Z),∴α 在第三象限.故 α 是第一或第三象限角.
答案12
2. 一只红蚂蚁与一只黑蚂蚁在一个半径为 1 的圆上爬动,两只蚂蚁均从 点 A(1,0)同时逆时针匀速爬动,红蚂蚁每秒爬过 α 角,黑蚂蚁每秒爬过 β 角(其 中 0°<α<β<180°),如果两只蚂蚁都在第 14 s 时回到 A 点,并且在第 2 s 时均 位于第二象限,求 α,β 的值.
高三数学 课堂训练2-9人教版

第2章 第9节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. [2012·杭州学军中学模拟]下列各函数的导数: (1)(x )′=12x -12;(2)(a x )′=a 2ln x ;(3)(x cos x )′=cos x +x sin x ; (4)(x x +1)′=1x +1, 其中正确的有( ) A. 0个 B. 1个 C. 2个 D. 3个答案:B解析:根据导数的求导公式知只有(1)正确,选B. 2. 已知y =12sin2x +sin x ,则y ′是( )A. 仅有最小值的奇函数B. 既有最大值又有最小值的偶函数C. 仅有最大值的偶函数D. 非奇非偶函数 答案:B解析:∵y ′=12cos2x ·2+cos x =cos2x +cos x=2cos 2x -1+cos x =2(cos x +14)2-98.又当x ∈R 时,cos x ∈[-1,1],函数y ′=2(cos x +14)2-98是既有最大值又有最小值的偶函数.3. [2012·厦门质检]曲线f (x )=x 3+x -2在P 0点处的切线平行于直线y =4x -1,则P 0点的坐标为( )A. (1,0)或(-1,-4)B. (0,1)C. (1,0)D. (-1,-4) 答案:A解析:由题意得f ′(x )=3x 2+1.设P 0(x 0,y 0).∵曲线f (x )=x 3+x -2在P 0点处的切线平行于直线y =4x -1,∴f ′(x 0)=4,则⎩⎪⎨⎪⎧ y 0=x 30+x 0-23x 20+1=4,得⎩⎪⎨⎪⎧ x 0=1y 0=0或⎩⎪⎨⎪⎧x 0=-1y 0=-4,∴P 0点坐标为(1,0)或(-1,-4),故选A.4. 已知曲线xy =a (a ≠0),则过曲线上任意一点的切线与两坐标轴所围成的三角形的面积是( )A .2a 2B .a 2C .2|a |D .|a |答案:C解析:设切点的坐标为(x 0,y 0),曲线的方程即为y =a x ,y ′=-ax 2,故切线的斜率为-a x 20,切线方程为y -a x 0=-ax 20(x -x 0).令y =0得x =2x 0,即切线与x 轴的交点坐标为(2x 0,0);令x =0得y =2a x 0,即切线与y 轴的交点坐标为(0,2ax 0).故切线与两坐标轴所围成的三角形的面积为12×|2x 0|×|2ax 0|=2|a |.5.[2012·重庆南开中学月考试卷]函数f (x )在定义域R 内可导,若f (x )=f (2-x ),(x -1)f ′(x )<0,设a =f (0),b =f (12),c =f (3),则( )A. a <b <cB. c <a <bC. c <b <aD. b <c <a 答案:B解析:由题知函数的对称轴为x =1.当x >1时,f ′(x )<0;当x <1时,f ′(x )>0,∴c <a <b . 6. [2012·云南一检]点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x +2的最小距离为( )A.22B. 2C. 2 2D. 2 答案:B解析:当点P 为直线y =x +2平移到与曲线y =x 2-ln x 相切的切点时,点P 到直线y =x +2的距离最小.设点P (x 0,y 0),f (x )=x 2-ln x ,则f ′(x 0)=1,∵f ′(x )=2x -1x ,∴2x 0-1x 0=1,又x 0>0,∴x 0=1,∴点P 的坐标为(1,1),此时点P 到直线y =x +2的距离为22=2,故选B.二、填空题(每小题7分,共21分)7. 已知函数f (x )=f ′(π4)cos x +sin x ,则f (π4)的值为________.答案:1解析:∵f (x )=f ′(π4)cos x +sin x ,∴f ′(x )=-f ′(π4)sin x +cos x ,∴f ′(π4)=-f ′(π4)×22+22,∴f ′(π4)=11+2=2-1.故f (π4)=(2-1)×22+22=1.8. 设点P 是曲线y =x 3-3x +23上的任意一点,曲线在P 点处切线的倾斜角为α,则角α的取值范围是__________.答案:[0,π2)∪[2π3,π)解析:y ′=3x 2-3≥-3,即倾斜角的正切值的取值范围是[-3,+∞),当倾斜角的正切值的取值范围为[0,+∞)时,倾斜角的取值范围是[0,π2),当倾斜角的正切值的取值范围为[-3,0)时,倾斜角的取值范围是[2π3,π),故所求倾斜角的取值范围是[0,π2)∪[2π3,π). 9. [2012·无锡质检]y =x 3+ax +1的一条切线方程为y =2x +1,则a =__________. 答案:2解析:设切点为(x 0,y 0),∵y ′=3x 2+a ,则过切点(x 0,y 0)的切线为y -y 0=(3x 20+a )(x -x 0),即y =(3x 20+a )(x -x 0)+y 0=(3x 20+a )x -2x 3+1,则有⎩⎪⎨⎪⎧3x 20+a =2,-2x 30+1=1,解得x 0=0,a=2.三、解答题(10、11题12分、12题13分) 10. 求下列函数的导数: (1)y =15x 5-43x 3+3x 2+2;(2)y =(3x 3-4x )(2x +1); (3)y =x 1-x +x 2.解:(1)y ′=(15x 5)′-(43x 3)′+(3x 2)′+(2)′=x 4-4x 2+6x .(2)法一:∵y =(3x 3-4x )(2x +1)=6x 4+3x 3-8x 2-4x , ∴y ′=24x 3+9x 2-16x -4.法二:y ′=(3x 3-4x )′(2x +1)+(3x 3-4x )(2x +1)′ =(9x 2-4)(2x +1)+(3x 3-4x )·2 =24x 3+9x 2-16x -4.(3)y ′=x ′(1-x +x 2)-x (1-x +x 2)′(1-x +x 2)2=(1-x +x 2)-x (-1+2x )(1-x +x 2)2=1-x 2(1-x +x 2)2.11. [2011·湖北]设函数f (x )=x 3+2ax 2+bx +a ,g (x )=x 2-3x +2,其中x ∈R ,a 、b 为常数,已知曲线y =f (x )与y =g (x )在点(2,0)处有相同的切线l ,求a ,b 的值,并写出切线l 的方程.解:f ′(x )=3x 2+4ax +b ,g ′(x )=2x -3,由于曲线y =f (x )与y =g (x )在点(2,0)处有相同的切线. 故f (2)=g (2)=0,f ′(2)=g ′(2)=1,由此得⎩⎪⎨⎪⎧ 8+8a +2b +a =0,12+8a +b =1,解得⎩⎪⎨⎪⎧a =-2,b =5.所以a =-2,b =5,切线l 的方程为x -y -2=0. 12. 已知函数f (x )=x 2-8ln x ,g (x )=-x 2+14x . (1)求函数f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )与g (x )在区间(a ,a +1)上均为增函数,求a 的取值范围; (3)若方程f (x )=g (x )+m 有唯一解,试求实数m 的值. 解:(1)因为f ′(x )=2x -8x ,所以切线的斜率k =f ′(1)=-6.又f (1)=1,故所求的切线方程为y -1=-6(x -1),即y =-6x +7. (2)因为f ′(x )=2(x +2)(x -2)x,又x >0,所以当x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0. 即f (x )在(2,+∞)上单调递增,在(0,2)上单调递减.又g (x )=-(x -7)2+49,所以g (x )在(-∞,7)上单调递增,在(7,+∞)上单调递减,欲使函数f (x )与g (x )在区间(a ,a +1)上均为增函数,则⎩⎪⎨⎪⎧a ≥2a +1≤7,解得2≤a ≤6.(3)原方程等价于2x 2-8ln x -14x =m ,令h (x )=2x 2-8ln x -14x ,则原方程即为h (x )=m .因为当x >0时原方程有唯一解,所以函数y =h (x )与y =m 的图像在y 轴右侧有唯一的交点.又h ′(x )=4x -8x -14=2(x -4)(2x +1)x ,且x >0,所以当x >4时,h ′(x )>0;当0<x <4时,h ′(x )<0.即h (x )在(4,+∞)上单调递增,在(0,4)上单调递减,故h (x )在x =4处取得最小值,从而当x >0时原方程有唯一解的充要条件是m =h (4)=-16ln2-24.。
2021年高考数学 第七章第1课时 知能演练轻松闯关 新人教A版(1)

2021年高考数学第七章第1课时知能演练轻松闯关新人教A版一、选择题1.(2021·高考湖南卷)某几何体的正视图和侧视图均如下图,那么该几何体的俯视图不可能是( )解析:选C.由于该几何体的正视图和侧视图相同,且上部份是一个矩形,矩形中间无实线和虚线,因此俯视图不可能是C.2.如图是一个物体的三视图,那么此三视图所描述物体的直观图是( )解析:选D.由俯视图可知是B和D中的一个,由正视图和侧视图可知B错.3.一梯形的直观图是一个如下图的等腰梯形,且该梯形面积为2,那么原梯形的面积为( )A.2C.2 2 D.4解析:选D.设直观图中梯形的上底为x,下底为y,高为h.那么原梯形的上底为x,下底为y,高为22h,故原梯形的面积为4.4.如图是长和宽别离相等的两个矩形,给定以下三个命题:①存在三棱柱,其正视图、俯视图如右图;②存在四棱柱,其正视图、俯视图如右图;③存在圆柱,其正视图、俯视图如右图.其中真命题的个数是( ) A.3 B.2C.1 D.0解析:选A.底面是等腰直角三角形的三棱柱,当它的一个矩形侧面放置在水平面上时,它的正视图和俯视图能够是全等的矩形,因此①正确;假设长方体的高和宽相等,那么存在知足题意的两个相等的矩形,因此②正确;当圆柱侧放时(即侧视图为圆时),它的正视图和俯视图能够是全等的矩形,因此③正确.5.以下四个命题:①正棱锥的所有侧棱相等;②直棱柱的侧面都是全等的矩形;③圆柱的母线垂直于底面;④用通过旋转轴的平面截圆锥,所得的截面必然是全等的等腰三角形.其中,真命题的个数为( )A.4 B.3C.2 D.1解析:选B.由正棱锥的概念可知所有侧棱相等,故①正确;由于直棱柱的底面不必然是正多边形,故侧面矩形不必然全等,因此②不正确;由圆柱母线的概念可知③正确;结合圆锥轴截面的作法可知④正确.综上,正确的命题有3个.二、填空题6.一正方体内接于一个球,通过球心作一个截面,那么截面的可能图形为__________(只填写序号).解析:当截面与正方体的某一面平行时,可得①,将截面旋转可得②,继续旋转,过正方体两极点时可得③,即正方体的对角面,不可能得④.答案:①②③7.(2021·高考辽宁卷)一个几何体的三视图如下图,那么该几何体的体积为__________.解析:该几何体的上面是一个圆柱,下面是一个长方体,因此V=4×3×1+π×12×1=12+π.答案:12+π8.以下命题中,说法正确的选项是________.①底面是矩形的四棱柱是长方体;②直角三角形绕着它的一边旋转一周形成的几何体叫做圆锥;③四棱锥的四个侧面能够都是直角三角形.解析:命题①不是真命题,假设侧棱不垂直于底面,这时四棱柱是斜四棱柱;命题②不是真命题,直角三角形绕着它的一条直角边旋转一周形成的几何体叫做圆锥,若是绕着它的斜边旋转一周,形成的几何体那么是两个具有一起底面的圆锥;命题③是真命题,如下图,在四棱锥PABCD中,底面ABCD是矩形,PA⊥平面ABCD,那么能够取得四个侧面都是直角三角形.三、解答题9.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392,母线与轴的夹角为45°,求那个圆台的高、母线长和底面半径.解:作出圆台的轴截面如图.设O ′A ′=r .∵一底面周长是另一底面周长的3倍,∴OA =3r ,SA ′=2r ,SA =32r ,OO ′=2r .由轴截面的面积为12(2r +6r )·2r =392,得r =7. 故上底面半径为7,下底面半径为21,高为14,母线长为14 2.10.如下图,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图.假设A 1D 1∥O 1y ,A 1B 1∥C 1D 1,A 1B 1=23C 1D 1=2,A 1D 1=O 1D 1=1. 请画出原先的平面几何图形的形状,并求原图形的面积.解:如图,成立直角坐标系xOy ,在x 轴上截取OD =O 1D 1=1;OC =O 1C 1=2.在过点D 的y 轴的平行线上截取DA =2D 1A 1=2.在过点A 的x 轴的平行线上截取AB =A 1B 1=2.连接BC ,即取得了原图形.由作法可知,原四边形ABCD 是直角梯形,上、下底长度别离为AB =2,CD =3,直角腰长度为AD =2,因此面积为S =2+32×2=5. 一、选择题 1.(2021·宁波模拟)如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA 1⊥面A 1B 1C 1,正视图是正方形,俯视图是正三角形,该三棱柱的侧视图面积为( )A .23 C .2 2 D .4选A.由题意可知,该三棱柱的侧视图应为矩形,如下图.在该矩形中,MM1=CC1=2,CM=C1M1=32·AB= 3.因此侧视图的面积为S=2 3.2.如下图的几何体的正视图和侧视图可能正确的选项是( )解析:选A.由于几何体是规那么的对称几何体,因此其正视图和侧视图是相同的,应选A.二、填空题3.(2021·盐城调研)用一些棱长为1 cm的小正方体放成一个几何体,图1为其俯视图,图2为其正(主)视图,那么那个几何体的体积最大是__________.解析:由正视图和俯视图可推知,正方体的个数为6个或7个,因此最大体积为7 cm3.答案:7 cm34.如图,在正方体ABCDA1B1C1D1中,点P是上底面A1B1C1D1内一动点,那么三棱锥PABC的正视图与侧视图的面积的比值为________.解析:依题意得三棱锥PABC的正视图与侧视图别离是一个三角形,且这两个三角形的底边长都等于正方体的棱长,底边上的高也都相等,因此三棱锥PABC的正视图与侧视图的面积之比等于1.答案:1三、解答题5.如图,在四棱锥PABCD中,底面为正方形,PC与底面ABCD垂直,图为该四棱锥的正视图和侧视图,它们是腰长为6 cm的全等的等腰直角三角形.(1)依照图所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA.解:(1)该四棱锥的俯视图为(内含对角线),边长为6 cm的正方形,如图,其面积为36 cm2.(2)由侧视图可求得PD=PC2+CD2=62+62=6 2.由正视图可知AD=6,且AD⊥PD,因此在Rt△APD中,PA=PD2+AD2=622+62=6 3 (cm).。
高三数学 课堂训练_2-1人教版

第2章 第1节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. [2012·浙江嘉兴一中模拟]设集合M ={x |-2≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )答案:B解析:利用函数的定义,要求定义域内的任一变量都有唯一的函数值与之对应,A 中(0,2]没有函数值,C 中函数值不唯一,D 中的值域不是N ,所以选B.2. 已知f :x →-sin x 是集合A (A ⊆[0,2π])到集合B ={0,12}的一个映射,则集合A 中的元素个数最多有( )A. 4个B. 5个C. 6个D. 7个答案:B解析:A ⊆[0,2π],由-sin x =0得x =0,π,2π;由-sin x =12得x =7π6,11π6,∴A 中最多有5个元素.3. 定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(4-x ), x ≤0f (x -1)-f (x -2), x >0,则f (3)的值为( )A. -1B. -2C. 1D. 2答案:B解析:f (3)=f (3-1)-f (3-2)=f (2)-f (1) =f (2-1)-f (2-2)-f (1)=f (1)-f (0)-f (1)=-f (0)=-log 24=-2.4. [2012·天津模拟]若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f (x )=x 2,值域为{1,4}的“同族函数”共有 ( )A. 7个B. 8个C. 9个D. 10个答案:C解析:先确定定义域的构成元素,再分类计数得到满足条件的定义域. 由已知x 2=1,得x =±1; x 2=4,得x =±2.∴“同族函数”的定义域必须是由±1,±2两组数中至少各取一个构成的集合. 当定义域中有两个元素时有{-1,-2},{-1,2},{1,-2},{1,2}共4个. 有三个元素时有{-1,-2,2},{-1,-2,1},{-1,2,1},{-2,2,1}共4个. 有四个元素时有{-2,-1,1,2}1个. 综上共有:4+4+1=9个.5. [2012·福建省宁德市模拟]若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是( )A. (0,34]B. (0,34)C. [0,34]D. [0,34)答案:D解析:∵y =mx -1mx 2+4mx +3的定义域为R ,当m =0,∴mx 2+4mx +3=3满足题意. 当m >0时,Δ=16m 2-12m <0, 解得0<m <34,当m <0时,Δ=16m 2-12m <0,无解. 综上,0≤m <34,即m ∈[0,34).6. [2012·宁波市“十校联考”]设集合A =[0,12),B =[12,1],函数f (x )=⎩⎪⎨⎪⎧x +12,x ∈A 2(1-x ),x ∈B ,若x 0∈A ,且f [f (x 0)]∈A ,则x 0的取值范围是( )A. (0,14]B. (14,12)C. (14,12]D. [0,38]答案:B解析:因为f [f (x 0)]=f (x 0+12)=2(1-x 0-12)=1-2x 0,所以0≤1-2x 0<12,故14<x 0≤12,又x 0∈A ,所以14<x 0<12.二、填空题(每小题7分,共21分)7. 如图,函数f (x )的图像是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f [1f (3)]的值等于__________.答案:2解析:f [1f (3)]=f (1)=2.8. (1)若2f (x )-f (-x )=x +1,则f (x )=__________;(2)若函数f (x )=xax +b ,f (2)=1,又方程f (x )=x 有唯一解,则f (x )=__________.答案:(1)x 3+1 (2)2xx +2解析:(1)∵2f (x )-f (-x )=x +1,用-x 去替换式子中的x , 得2f (-x )-f (x )=-x +1,即有⎩⎪⎨⎪⎧2f (x )-f (-x )=x +12f (-x )-f (x )=-x +1,解方程组消去f (-x ),得f (x )=x3+1.(2)由f (2)=1得22a +b =1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x (1ax +b-1)=0,解此方程得x =0或x =1-b a ,又∵方程有唯一解,∴1-b a =0,解得b =1,代入2a +b =2得a =12,∴f (x )=2xx +2.9. [2012·南通六校联考(一)]定义新运算“⊕”如下:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为__________.答案:[-4,6]解析:由题意知f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1]x 3-2,x ∈(1,2],当x ∈[-2,1]时,f (x )∈[-4,-1],当x∈(1,2]时,f (x )∈(-1,6],故当x ∈[-2,2]时,f (x )∈[-4,6].三、解答题(10、11题12分、12题13分)10. (1)已知f (x )的定义域为[0,1),求函数f (x +1)及f (x 2)的定义域; (2)已知f (x 2-3)=lg x 2x 2-6,求f (x )的定义域.解:(1)依题意,0≤x +1<1,∴-1≤x <0, ∴f (x +1)的定义域为[-1,0).由0≤x 2<1得-1<x <1,∴f (x 2)的定义域为(-1,1). (2)令u =x 2-3,则f (x )的定义域就是u 的值域. 要使lg x 2x 2-6有意义,只需x 2>6,即x 2-3>3,∴u >3, 即f (x )的定义域是(3,+∞).11.如图,在△AOB 中,点A (2,1),B (3,0),点E 在射线OB 上自O 开始移动.设OE =x ,过E 作OB 的垂线l ,记△AOB 在直线l 左边部分的面积为S ,试写出S 与x 的函数关系式,并画出大致的图像.解:当0≤x ≤2时,△OEF 的高EF =12x ,∴S =12x ·12x =14x 2;当2<x ≤3时,△BEF 的高EF =3-x ,∴S =12×3×1-12(3-x )·(3-x )=-12x 2+3x -3;当x >3时,S =32.所以S =f (x )=⎩⎪⎨⎪⎧x 24(0≤x ≤2)-12x 2+3x -3(2<x ≤3).32(x >3)函数图像如图所示.12. 定义在正整数集上的函数f (x )对任意m ,n ∈N *,都有f (m +n )=f (m )+f (n )+4(m +n )-2,且f (1)=1.(1)求函数f (x )的表达式;(2)若m 2-tm -1≤f (x )对于任意的m ∈[-1,1],x ∈N *恒成立,求实数t 的取值范围. 解:(1)取m =1,则有f (n +1)-f (n )=f (1)+4(1+n )-2=4n +3,当n ≥2时,f (n )=f (1)+[f (2)-f (1)]+[f (3)-f (2)]+…+[f (n )-f (n -1)]=2n 2+n -2, 又f (1)=1,∴f (x )=2x 2+x -2(x ∈N *). (2)f (x )=2(x +14)2-178,∴x =1时f (x )min =1,由条件得m 2-tm -1≤1在m ∈[-1,1]上恒成立,即m 2-tm -2≤0, 若m =0,则t ∈R ,若0<m ≤1,则t ≥m -2m ,即t ≥-1,若-1≤m <0,则t ≤m -2m ,即t ≤1,综上-1≤t ≤1.。
高考数学总复习高效课时作业7-1文新人教版

一、选择题1.利用斜二测画法能够获得:①三角形的直观图是三角形,②平行四边形的直观图是平行四边形,③正方形的直观图是正方形,④菱形的直观图是菱形,以上结论正确的选项是() A.①②B.①C.③④D.①②③④分析:由于斜二测画法例则依照的是平行投影的性质,则①②正确;关于③④,只有平行于 x 轴的线段长度不变,因此不正确,应选 A.答案: A2. (2012 年日照二模 ) 已知正三棱柱ABC— A′ B′ C′的主视图和左视图如下图.设△ABC,△ A′ B′ C′的中心分别是O,O′,现将此三棱柱绕直线OO′旋转,在旋转过程中对应的俯视图的面积为S,则 S 的最大值为 ()A.8B.4C. 12D. 16分析:由题中图可知,正三棱柱的高为4,底面正三角形的边长是 2. 底面一边水平常,俯视图面积最大,此时俯视图一边长为4,另一边长为2,面积为8. 选 A.答案: A3. (2011 北京 ) 某四棱锥的三视图如下图,该四棱锥的表面积是()A. 32B. 16+162C. 48D. 16+322分析:该空间几何体是底面边长为4、高为 2 的正四棱锥,这个四棱锥的斜高为 2 2,故1其表面积是4×4+4×2×4× 22= 16+ 16 2.答案: B4. (2011 山东 ) 右图是长和宽分别相等的两个矩形.给定以下三个命题:①存在三棱柱,其正( 主 ) 视图、俯视图如右图;②存在四棱柱,其正( 主)视图、俯视图如右图;③存在圆柱,其正( 主) 视图、俯视图如右图.此中真命题的个数是()A. 3B. 2C. 1D. 0分析:把底面三角形为等腰直角三角形的直三棱柱的一个侧面放在水平面上,当这个直三棱柱的底面三角形的高等于放在水平面上的侧面的宽度就能够使得这个三棱柱的正视图和俯视图切合要求,故命题①是真命题;把一个正四棱柱的一个侧面搁置在水平面上即可知足要求,故命题②是真命题;只需把圆柱侧面的一条母线搁置在水平面上即可切合要求,故命题③是真命题,选 A.答案: A5. (2012 年陕西卷 ) 将正方体 ( 如图 1 所示 ) 截去两个三棱锥,获得图 2 所示的几何体,则该几何体的左视图为()分析:由长对正,高平齐,宽相等选择 B.答案: B二、填空题6. (2011 辽宁 ) 一个正三棱柱的侧棱长和底面边长相等,体积为 2 3,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是______.分析:设正三棱柱的底面边长为a,利用体积为 2 3,很简单求出这个正三棱柱的底面边长和侧棱长都是2,因此底面正三角形的高为3,故所求矩形的面积为 2 3.答案:237. (2012 年安徽卷 ) 某几何体的三视图如下图,该几何体的体积是________.分析:该几何体是底面是直角梯形,高为 4 的直四棱柱.1几何体的体积是V=2×(2+5)×4×4=56.答案: 568.如图,点O为正方体ABCD- A′ B′ C′ D′的中心,点 E为面 B′BCC′的中心,点 F为 B′ C′的中点,则空间四边形D′ OEF在该正方体的面上的正投影可能是________( 填出全部可能的序号).分析:空间四边形D′ OEF在面 ABB′ A′,面 DCC′ D′上的正投影为①,在面ADD′ A′,面 BCC′ B′上的正投影为②,在面 ABCD,面 A′B′ C′ D′上的正投影为③,故可能是①②③.答案:①②③9. (2011 天津 ) 一个几何体的三视图如下图( 单位: m),则该几何体的体积为______m3.分析:由题中三视图可知该几何体是组合体,下边是长方体,长、宽、高分别为3、2、1;上边是一个圆锥,底面圆半径为1,高为 3,因此该几何体的体积为13 3×2×1+π× 3= (6 +π )m . 3答案: (6 +π )三、解答题10.如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体;(2)画出其侧视图,并求该平面图形的面积.分析: (1) 由该几何体的正视图和俯视图可知该几何体是一个正六棱锥.(2)该几何体的侧视图,如图.此中 AB= AC, AD⊥ BC,且 BC的长是俯视图正六边形对边间的距离,即BC=3a. AD是正1 3 2棱锥的高,即AD=3a,因此该平面图形的面积为S=2×3a×3a=2a .11.已知正三棱锥V- ABC的正视图和俯视图如下图.(1)画出该三棱锥的侧视图和直观图;(2)求出侧视图的面积.分析: (1) 如图.(2) 依据三视图间的关系可得= 2 3 ,侧视图中VA BC42232为-3×2×23=12= 2 3,1∴S△VBC=×2 3×2 3=6.212. (2010 年上海卷 ) 如下图,为了制作一个圆柱形灯笼,先要制作 4 个全等的矩形骨架,总计耗用 9.6 米铁丝.再用S平方米塑料片制成圆柱的侧面和下底面( 不安装上底面 ) .(1) 当圆柱底面半径r 取何值时, S 获得最大值?并求出该最大值( 结果精准到0.01 平方米 ) ;(2)若要制作一个如图搁置的、底面半径为0.3 米的灯笼,请作出用于制作灯笼的三视图( 作图时,不需考虑骨架等要素 ) .分析: (1) 由题意得 16r+8l= 9.6( l为圆柱母线长 ) ,即 2r+l= 1.2 ,S=2πr · l +π r 2=2π r (1.2-2r )+π r 2=-3πr 2+2.4πr ,即 S=3π(- r 2+0.8 r )(0< r <0.6),故当 r =0.4时, S 有最大值,S max=3π×(-0.42+0.8×0.4)=1.5072 ≈1.51( 平方米 ) .(2)当 r =0.3时, l =0.6,三视图为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章第1节
时间:45分钟满分:100分
一、选择题(每小题7分,共42分)
1. 下列说法正确的是()
A.互相垂直的两条直线的直观图一定是互相垂直的两条直线
B.梯形的直观图可能是平行四边形
C.矩形的直观图可能是梯形
D.正方形的直观图可能是平行四边形
答案:D
解析:由于梯形中有一组对边不相等,故其直观图不可能是平行四边形;矩形的两组对边相等,其直观图不可能是梯形;A显然不正确;所以只有D正确.
2. [2012·北京海淀一模]一个锥体的主视图和左视图如图所示,下面选项中,不可能是
....该锥体的俯视图的是()
答案:C
解析:由于C选项不符合三视图中“宽相等”的要求,故选C.
3.已知某一几何体的正视图与侧视图如图所示,则在下列图形中,可以是该几何体的俯视图的图形有()
A.①②③⑤B.②③④⑤
C.①②④⑤D.①②③④
答案:D
解析:因几何体的正视图和侧视图一样,所以易判断出其俯视图可能为①②③④,故选D.
4. [2012·湖南联考]若一几何体的正视图与侧视图均为边长是1的正方形,且其体积为4
5,
则该几何体的俯视图可以是( )
答案:D
解析:可分别计算出俯视图为A 、B 、C 三种情形时的体积为1、π4、π
4,均不合题意,
故选D.
5. [2012·广东一模]已知△ABC 的斜二测直观图是边长为2的等边△A 1B 1C 1,那么原△ABC 的面积为( )
A. 2 3
B. 3
C. 2 6
D. 6
答案:C 解析:如图:
在△A 1D 1C 1中,由正弦定理
a sin 2π3=2sin π4
,得a =6,故S △ABC =1
2×2×26=2 6. 6. 如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的图像可能是 ( )
答案:B
解析:根据容器的三视图可知,该容器是一倒立的圆锥,则匀速注水时,水面高度h
随时间t变化越来越慢.故选B.
二、填空题(每小题7分,共21分)
7. [2011·辽宁]一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是__________.
答案:23
解析:如图,设底面边长为a,则侧棱长也为a,
3
4a
2·a=23,故a3=8,a=2.左视图
与矩形DCC1D1相同,S四边形DCC1D1=
3
2a·a=2 3.
8.如图,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的正投影可能是________(填出所有可能的序号).
解析:①是四边形在平面ABB′A′或CDD′C′上的投影;②是四边形在平面ADD′A′或BCC′B′上的投影;③是四边形在平面ABCD或A′B′C′D′上的投影.答案:①②③
9.如图,已知正三棱柱ABC-A1B1C1的底面边长为2cm,高为5cm,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为________cm.
答案:13
解析:根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如
图所示的实线部分,则可知所求最短路线的长为52+122=13cm.
三、解答题(10、11题12分、12题13分)
10.从一个底面半径和高都是R的圆柱中,挖去一个以圆柱上底面为底,下底面中心为顶点的圆锥,得到如右图所示的几何体,如果用一个与圆柱下底面距离等于l并且平行于
底面的平面去截它,求所得截面的面积.
解:轴截面如右图所示:被平行于下底面的平面所截的圆柱的截面圆的半径O1C=R,圆锥的截面圆的半径O1D设为x.
∵OA=AB=R,
∴△OAB是等腰直角三角形.
又CD∥OA,则CD=BC,故x=l.
∴截面面积S=πR2-πl2=π(R2-l2).
11.如图是某几何体的三视图(单位:cm).
(1)画出这个几何体的直观图(不要求写画法);
(2)求这个几何体的表面积及体积.
解:(1)这个几何体的直观图如图所示.
(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q —A 1D 1P 的组合体.由P A 1=PD 1
=2,A 1D 1=AD =2,可得P A 1⊥PD 1.故所求几何体的表面积S =5×22+2×2×2+2×
1
2×(2)2=22+42(cm 2),所求几何体的体积V =23+1
2
×(2)2×2=10(cm 3).
12.直三棱柱A 1B 1C 1-ABC 的三视图如下图所示,D ,E 分别是棱CC 1和棱B 1C 1的中点,求图中三棱锥E -ABD 的侧视图的面积.
解:通过三视图可知直三棱柱A 1B 1C 1-ABC 的前侧面是边长为2的正方形,左侧面与前侧面互相垂直.将直三棱柱补形成正方体的方法,找到正方体右侧面作为几何体侧视图的投影面,可知三棱锥E -ABD 的侧视图为正方体右侧阴影部分.故有:三棱锥E -ABD 的侧视图的面积S △BB 1G =2.。