2016届高考物理总复习8.3带电粒子在复合场中的运动考题演练(含解析)
高考物理带电粒子在复合场中的运动题20套(带答案)及解析

一、带电粒子在复合场中的运动专项训练1.两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。
在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力),若电场强度E0、磁感应强度B0、粒子的比荷qm均已知,且2mtqBπ=,两板间距2210mEhqBπ=。
(1)求粒子在0~t0时间内的位移大小与极板间距h的比值。
(2)求粒子在板板间做圆周运动的最大半径(用h表示)。
(3)若板间电场强度E随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。
【来源】带电粒子的偏转【答案】(1)粒子在0~t0时间内的位移大小与极板间距h的比值115sh=(2)粒子在极板间做圆周运动的最大半径225hRπ=(3)粒子在板间运动的轨迹如图:【解析】【分析】【详解】(1)设粒子在0~t0时间内运动的位移大小为s121012s at =① 0qEa m=②又已知200200102,mE m t h qB qB ππ== 联立解得:115s h = (2)解法一粒子在t 0~2t 0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。
设运动速度大小为v 1,轨道半径为R 1,周期为T ,则10v at =21101mv qv B R =联立解得:15h R π= 又002mT t qB π== 即粒子在t 0~2t 0时间内恰好完成一个周期的圆周运动。
在2t 0~3t 0时间内,粒子做初速度为v 1的匀加速直线运动,设位移大小为s 22210012s v t at =+解得:235s h =由于s 1+s 2<h ,所以粒子在3t 0~4t 0时间内继续做匀速圆周运动,设速度大小为v 2,半径为R 2,有:210v v at =+22202mv qv B R =解得225h R π=由于s 1+s 2+R 2<h ,粒子恰好又完成一个周期的圆周运动。
高考物理带电粒子在复合场中的运动技巧(很有用)及练习题含解析

一、带电粒子在复合场中的运动专项训练1.扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆.其简化模型如图:Ⅰ、Ⅱ两处的条形匀强磁场区边界竖直,相距为L ,磁场方向相反且垂直纸面.一质量为m ,电量为-q ,重力不计的粒子,从靠近平行板电容器MN 板处由静止释放,极板间电压为U ,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角30θ=︒(1)当Ⅰ区宽度1L L =、磁感应强度大小10B B =时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为30︒,求B 0及粒子在Ⅰ区运动的时间t 0(2)若Ⅱ区宽度21L L L ==磁感应强度大小210B B B ==,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h(3)若21L L L ==、10B B =,为使粒子能返回Ⅰ区,求B 2应满足的条件(4)若12B B ≠,12L L ≠,且已保证了粒子能从Ⅱ区右边界射出.为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射出的方向总相同,求B 1、B 2、L 1、、L 2、之间应满足的关系式.【来源】2011年普通高等学校招生全国统一考试物理卷(山东) 【答案】(1)32lm t qU π=(2)2233h L ⎛⎫=- ⎪⎝⎭(3)232mU B L q >(或232mUB L q≥)(4)1122B L B L =【解析】图1(1)如图1所示,设粒子射入磁场Ⅰ区的速度为v ,在磁场Ⅰ区中做圆周运动的半径为1R ,由动能定理和牛顿第二定律得212qU mv =①211v qvB m R = ②由几何知识得12sin L R θ= ③联立①②③,带入数据得012mUB L q=④设粒子在磁场Ⅰ区中做圆周运动的周期为T ,运动的时间为t12R T v π= ⑤ 22t T θπ=⑥ 联立②④⑤⑥式,带入数据得32Lmt qUπ=⑦ (2)设粒子在磁场Ⅱ区做圆周运动的半径为2R ,有牛顿第二定律得222v qvB m R = ⑧由几何知识得()()121cos tan h R R L θθ=+-+ ⑨联立②③⑧⑨式,带入数据得2233h L ⎛⎫=- ⎪⎝⎭⑩图2(3)如图2所示,为时粒子能再次回到Ⅰ区,应满足()21sin R L θ+<[或()21sin R L θ+≤] ⑾联立①⑧⑾式,带入数据得232mU B L q >(或232mUB L q≥) ⑿图3图4(4)如图3(或图4)所示,设粒子射出磁场Ⅰ区时速度与水平方向得夹角为α,有几何知识得()11sin sin L R θα=+ ⒀ [或()11sin sin L R θα=-]()22sin sin L R θα=+ ⒁[或]()22sin sin L R θα=- 联立②⑧式得1122B R B R = ⒂联立⒀⒁⒂式得1122B L B L = ⒃【点睛】(1)加速电场中,由动能定理求出粒子获得的速度.画出轨迹,由几何知识求出半径,根据牛顿定律求出B 0.找出轨迹的圆心角,求出时间;(2)由几何知识求出高度差;(3)当粒子在区域Ⅱ中轨迹恰好与右侧边界相切时,粒子恰能返回Ⅰ区,由几何知识求出半径,由牛顿定律求出B 2满足的条件;(4)由几何知识分析L 1、L 2与半径的关系,再牛顿定律研究关系式.2.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
(物理)带电粒子在复合场中的运动练习题含答案及解析

解得: <0.63%
5.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为
d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为 m 、带电量 q 、重力不计的 带电粒子,以初速度 v1 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然
后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中 运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:
由题知 vm=kym
若 E=0 时,粒子以初速度 v0 沿 y 轴正向入射,有 qv0B=m v02 R0
在最高处有 v0=kR0
联立解得 vm
E B
(
E B
)2
v02
考点:带电粒子在符合场中的运动;动能定理.
2.在 xOy 平面的第一象限有一匀强电磁,电场的方向平行于 y 轴向下,在 x 轴和第四象限 的射线 OC 之间有一匀强电场,磁感应强度为 B,方向垂直于纸面向里,有一质量为 m,带 有电荷量+q 的质点由电场左侧平行于 x 轴射入电场,质点到达 x 轴上 A 点,速度方向与 x 轴的夹角为 φ,A 点与原点 O 的距离为 d,接着,质点进入磁场,并垂直与 OC 飞离磁场, 不计重力影响,若 OC 与 x 轴的夹角为 φ.求:
(3)由以上分析可得:R = 设 m/为铀 238 离子质量,由于电压在 U±ΔU 之间有微小变化,铀 235 离子在磁场中最大半 径为:Rmax=
铀 238 离子在磁场中最小半径为:Rmin=
这两种离子在磁场中运动的轨迹不发生交叠的条件为:Rmax<Rmin
即:
<
得:
<
< 其中铀 235 离子的质量 m = 235u(u 为原子质量单位),铀 238 离子的质量 m,= 238u 则: <
2021年高考物理总复习 8.3带电粒子在复合场中的运动考题演练(含解析)

2021年高考物理总复习 8.3带电粒子在复合场中的运动考题演练(含解析)1.(多选)(xx·江苏高考)如图所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为I,线圈间产生匀强磁场,磁感应强度大小B与I成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为IH ,与其前后表面相连的电压表测出的霍尔电压UH满足:UH=k,式中k为霍尔系数,d为霍尔元件两侧面间的距离。
电阻R远大于RL,霍尔元件的电阻可以忽略,则( )A.霍尔元件前表面的电势低于后表面B.若电源的正负极对调,电压表将反偏C.IH与I成正比D.电压表的示数与RL消耗的电功率成正比【解析】选C、D。
根据左手定则判断电子受到洛伦兹力偏到霍尔元件的后表面,所以前表面电势高于后表面,A项错误;若电源的正负极对调,线圈中产生的磁场反向,根据左手定则判断依然是前表面电势高于后表面,B项错误;根据q=Bqv,有U H=Bvd,因为B=kI,I=nqSv,v∝I,联立解得U H∝I2,而P=I2R L,所以U H∝P,D项正确;根据题中U H=k,因为U H∝I2、B=kI,所以得到I H与I成正比,C项正确。
2.(多选)(xx·浙江高考)在半导体离子注入工艺中,初速度可忽略的磷离子P+和P3+,经电压为U的电场加速后,垂直进入磁感应强度大小为B、方向垂直纸面向里、有一定宽度的匀强磁场区域,如图所示。
已知离子P+在磁场中转过θ=30°后从磁场右边界射出。
在电场和磁场中运动时,离子P+和P3+( )A.在电场中的加速度之比为1∶1B.在磁场中运动的半径之比为∶1C.在磁场中转过的角度之比为1∶2D.离开电场区域时的动能之比为1∶3【解题指南】解答本题可按以下思路进行:(1)正离子在电场中,由于电场力的作用做加速运动。
(2)正离子在磁场中,洛伦兹力提供向心力,做圆周运动。
【解析】选B、C、D。
磷离子P+和P3+的质量相等,在电场中所受的电场力之比为1∶3,所以加速度之比为1∶3,A项错误;离开电场区域时的动能之比为1∶3,初速度可忽略的磷离子P+和P3+,经电压为U的电场加速后,由动能定理可得,离开电场区域时的动能之比为它们的带电量之比,即1∶3,D项正确;在磁场中做圆周运动时洛伦兹力提供向心力qvB=m,可得r=,==,B项正确;设P+在磁场中的运动半径为R,由几何知识可得磁场的宽度为R,而P3+的半径为R,由几何知识可得P3+在磁场中转过的角度为60°,P+在磁场中转过的角度为30°,所以磷离子P+和P3+在磁场中转过的角度之比为1∶2,C项正确。
高考物理带电粒子在复合场中的运动练习题及答案含解析

一、带电粒子在复合场中的运动专项训练1.离子推进器是太空飞行器常用的动力系统,某种推进器设计的简化原理如图所示,截面半径为R 的圆柱腔分为两个工作区.I 为电离区,将氙气电离获得1价正离子;II 为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.I 区产生的正离子以接近0的初速度进入II 区,被加速后以速度v M 从右侧喷出.I 区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出一定速度范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α<90◦).推进器工作时,向I 区注入稀薄的氙气.电子使氙气电离的最小速度为v 0,电子在I 区内不与器壁相碰且能到达的区域越大,电离效果越好.......................已知离子质量为M ;电子质量为m ,电量为e .(电子碰到器壁即被吸收,不考虑电子间的碰撞).(1)求II 区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请判断I 区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围; (4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系.【来源】2014年全国普通高等学校招生统一考试理科综合能力测试物理(浙江卷带解析)【答案】(1)22Mv L(2)垂直于纸面向外(3)043mv B eR >(4)()max 342sin eRB v m α=-【解析】 【分析】 【详解】(1)离子在电场中加速,由动能定理得:212M eU Mv =,得:22M Mv U e =.离子做匀加速直线运动,由运动学关系得:22Mv aL =,得:22Mv a L=.(2)要取得较好的电离效果,电子须在出射方向左边做匀速圆周运动,即为按逆时针方向旋转,根据左手定则可知,此刻Ⅰ区磁场应该是垂直纸面向外.(3)当90α=︒时,最大速度对应的轨迹圆如图一所示,与Ⅰ区相切,此时圆周运动的半径为34r R =洛伦兹力提供向心力,有2maxmaxv Bev m r= 得34max BeRv m=即速度小于等于34BeRm 此刻必须保证043mv B BR>. (4)当电子以α角入射时,最大速度对应轨迹如图二所示,轨迹圆与圆柱腔相切,此时有:90OCO α∠'=︒﹣2ROC =,OC r '=,OO R r '=﹣ 由余弦定理有222(29022R R R r r r cos α⎛⎫=+⨯⨯︒ ⎪⎝⎭﹣)﹣(﹣),90cos sin αα︒-=() 联立解得:()342Rr sin α=⨯-再由:maxmv r Be=,得 ()342max eBRv m sin α=-.考点:带电粒子在匀强磁场中的运动、带电粒子在匀强电场中的运动 【名师点睛】该题的文字叙述较长,要求要快速的从中找出物理信息,创设物理情境;平时要注意读图能力的培养,以及几何知识在物理学中的应用,解答此类问题要有画草图的习惯,以便有助于对问题的分析和理解;再者就是要熟练的掌握带电粒子在磁场中做匀速圆周运动的周期和半径公式的应用.2.如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。
高考物理带电粒子在复合场中的运动练习题及答案含解析

一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U 。
质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过。
忽略相对论效应和离子所受的重力。
求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUmB =,2(1,2,3,,1)n k =-(3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。
【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。
设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。
高考物理带电粒子在复合场中的运动专项训练100(附答案)含解析

一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U 。
质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过。
忽略相对论效应和离子所受的重力。
求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUmB =,2(1,2,3,,1)n k =-(3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。
【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。
设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。
重难点08 带电粒子在复合场中的运动(解析版)

2022年高考物理【热点·重点·难点】专练(全国通用)重难点08 带电粒子在复合场中的运动【知识梳理】考点带电粒子在组合场中的运动1.带电粒子在组合场中的运动是力电综合的重点和高考热点.这类问题的特点是电场、磁场或重力场依次出现,包含空间上先后出现和时间上先后出现,磁场或电场与无场区交替出现相组合的场等.其运动形式包含匀速直线运动、匀变速直线运动、类平抛运动、圆周运动等,涉及牛顿运动定律、功能关系等知识的应用.复习指导:1.理解掌握带电粒子的电偏转和磁偏转的条件、运动性质,会应用牛顿运动定律进行分析研究,掌握研究带电粒子的电偏转和磁偏转的方法,能够熟练处理类平抛运动和圆周运动.2.学会按照时间先后或空间先后顺序对运动进行分析,分析运动速度的承前启后关联、空间位置的距离关系、运动时间的分配组合等信息将各个运动联系起来.2.解题时要弄清楚场的性质、场的方向、强弱、范围等.3.要进行正确的受力分析,确定带电粒子的运动状态.4.分析带电粒子的运动过程,画出运动轨迹是解题的关键【重点归纳】1、求解带电粒子在组合复合场中运动问题的分析方法(1)正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析.(2)确定带电粒子的运动状态,注意运动情况和受力情况的结合.(3)对于粒子连续通过几个不同区域、不同种类的场时,要分阶段进行处理.(4)画出粒子运动轨迹,灵活选择不同的运动规律.2、带电粒子在复合场中运动的应用实例(1)质谱仪(2)回旋加速器(3)速度选择器(4)磁流体发电机(5)电磁流量计工作原理【限时检测】(建议用时:30分钟)一、单选题1.如图所示,两个平行金属板水平放置,要使一个电荷量为-q、质量为m的微粒,以速度v沿两板中心轴线S1S2向右运动,可在两板间施加匀强电场或匀强磁场。
设电场强度为E,磁感应强度为B,不计空气阻力,已知重力加速度为g。
下列选项可行的是()A.只施加垂直向里的磁场,且满足mg Bqv =B.同时施加竖直向下的电场和垂直纸面向里的磁场,且满足mg Bv Eq=+C.同时施加竖直向下的电场和水平向右的磁场,且满足mgq E=D.同时施加竖直向上的电场和垂直纸面向外的磁场,且满足mg E Bvq =+【答案】 C【解析】A.只施加垂直向里的磁场,根据左手定则,洛伦兹力竖直向下,无法跟重力平衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【全程复习方略】(全国通用)2016届高考物理总复习 8.3带电粒子在复合场中的运动考题演练(含解析)1.(多选)(2014·江苏高考)如图所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为I,线圈间产生匀强磁场,磁感应强度大小B与I成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为I H,与其前后表面相连的电压表测出的霍尔电压U H满足:U H=k,式中k为霍尔系数,d为霍尔元件两侧面间的距离。
电阻R远大于R L,霍尔元件的电阻可以忽略,则( )A.霍尔元件前表面的电势低于后表面B.若电源的正负极对调,电压表将反偏C.I H与I成正比D.电压表的示数与R L消耗的电功率成正比【解析】选C、D。
根据左手定则判断电子受到洛伦兹力偏到霍尔元件的后表面,所以前表面电势高于后表面,A项错误;若电源的正负极对调,线圈中产生的磁场反向,根据左手定则判断依然是前表面电势高于后表面,B项错误;根据q=Bqv,有U H=Bvd,因为B=kI,I=nqSv,v∝I,联立解得U H∝I2,而P=I2R L,所以U H∝P,D项正确;根据题中U H=k,因为U H∝I2、B=kI,所以得到I H与I成正比,C项正确。
2.(多选)(2013·浙江高考)在半导体离子注入工艺中,初速度可忽略的磷离子P+和P3+,经电压为U的电场加速后,垂直进入磁感应强度大小为B、方向垂直纸面向里、有一定宽度的匀强磁场区域,如图所示。
已知离子P+在磁场中转过θ=30°后从磁场右边界射出。
在电场和磁场中运动时,离子P+和P3+( )A.在电场中的加速度之比为1∶1B.在磁场中运动的半径之比为∶1C.在磁场中转过的角度之比为1∶2D.离开电场区域时的动能之比为1∶3【解题指南】解答本题可按以下思路进行:(1)正离子在电场中,由于电场力的作用做加速运动。
(2)正离子在磁场中,洛伦兹力提供向心力,做圆周运动。
【解析】选B、C、D。
磷离子P+和P3+的质量相等,在电场中所受的电场力之比为1∶3,所以加速度之比为1∶3,A项错误;离开电场区域时的动能之比为1∶3,初速度可忽略的磷离子P+和P3+,经电压为U的电场加速后,由动能定理可得,离开电场区域时的动能之比为它们的带电量之比,即1∶3,D项正确;在磁场中做圆周运动时洛伦兹力提供向心力qvB=m,可得r=,==,B项正确;设P+在磁场中的运动半径为R,由几何知识可得磁场的宽度为R,而P3+的半径为R,由几何知识可得P3+在磁场中转过的角度为60°,P+在磁场中转过的角度为30°,所以磷离子P+和P3+在磁场中转过的角度之比为1∶2,C项正确。
3.(2015·南宁模拟)如图所示,一电子束垂直于电场线与磁感线方向入射后偏向A极板,为了使电子束沿射入方向做直线运动,可采用的方法是( )A.将变阻器滑动触头P向右滑动B.将变阻器滑动触头P向左滑动C.将极板间距离适当减小D.将极板间距离适当增大【解析】选D。
电子射入极板后,偏向A板,说明Eq>Bvq,由E=可知,减小场强E的方法有增大板间距离和减小板间电压,C错误,D正确;而移动变阻器滑动触头P并不能改变板间电压,A、B错误。
4.如图所示,在xOy平面内,匀强电场的方向沿x轴正向,匀强磁场的方向垂直于xOy平面向里。
一电子在xOy平面内运动时,速度方向保持不变。
则电子的运动方向沿( )A.x轴正向B.x轴负向C.y轴正向D.y轴负向【解析】选C。
电子受电场力方向一定水平向左,所以需要受向右的洛伦兹力才能做匀速运动,根据左手定则进行判断可得电子应沿y轴正向运动。
【加固训练】(多选)如图所示,两虚线之间的空间内存在着正交或平行的匀强电场E和匀强磁场B,有一个带正电的小球(电荷量为+q、质量为m)从电磁复合场上方的某一高度处自由落下,那么,带电小球可能沿直线通过的电磁复合场是( )【解析】选C、D。
A图中小球受重力、向左的电场力、向右的洛伦兹力,下降过程中速度一定变大,故洛伦兹力一定增大,不可能一直与电场力平衡,故合力不可能一直向下,故一定做曲线运动,故A错误;B图中小球受重力、向上的电场力、垂直向外的洛伦兹力,合力与速度一定不共线,故一定做曲线运动,故B错误;C图中小球受重力、向左上方的电场力、水平向右的洛伦兹力,若三力平衡,则小球做匀速直线运动,故C正确;D 图中小球受向下的重力和向上的电场力,合力一定与速度共线,故小球一定做直线运动,故D正确。
5.如图所示,沿直线通过速度选择器的正离子从狭缝S射入磁感应强度为B2的匀强磁场中,偏转后出现的轨迹半径之比为R1∶R2=1∶2,则下列说法正确的是( )A.离子的速度之比为1∶2B.离子的电荷量之比为1∶2C.离子的质量之比为1∶2D.以上说法都不对【解析】选D。
因为两离子能沿直线通过速度选择器,则Bvq=Eq,即v=,所以两离子的速度相同,选项A错误;根据r=,则∶==,所以选项B、C均不对,故选D。
6.(多选)(2015·河南省实验中学模拟)如图是医用回旋加速器示意图,其核心部分是两个D形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连。
现分别加速氘核H)和氦核He)。
下列说法中正确的是( )A.它们的最大速度相同B.它们的最大动能相同C.它们在D形盒中运动的周期相同D.仅增大高频电源的频率可增大粒子的最大动能【解析】选A、C。
因为H和He的比荷相同。
由T=可得它们在D形盒中运动的周期相同,C正确;根据R=,粒子的最大速度v=,所以它们的最大速度相同,A正确;由粒子的最大动能E k=知,最大动能和f无关,且它们的最大动能也不同。
所以B、D错误。
7.如图所示的平面直角坐标系xOy,在第Ⅰ象限内有平行于y轴的匀强电场,方向沿y轴正方向;在第Ⅳ象限的圆形区域内有垂直于xOy平面的匀强磁场,磁场左侧与x=2h相切,上边界与x轴相切于x=3h,一质量为m、电荷量为q的粒子,从y轴上的P(0,h)点,以大小为v0的速度沿x轴正方向射入电场,通过电场后从x轴上的a(2h,0)点进入第Ⅳ象限,又经过磁场从y轴上的M点进入第Ⅲ象限,且速度与y轴负方向成45°角,不计粒子所受的重力。
求:(1)电场强度E的大小。
(2)圆形区域内磁场的磁感应强度B的大小和方向。
(3)M点的纵坐标。
【解析】(1)设粒子在电场中的运动时间为t,则有x=v0t=2h y=at2=h qE=ma联立以上三式可得E=(2)粒子到达a点时,沿负y方向的分速度v y=at=v0粒子到达a点时速度的大小v==v0,方向指向第Ⅳ象限,与x轴正方向成45°角。
由几何关系知圆形磁场区域的半径为h,粒子到达a点时速度方向恰好指向磁场区域的圆心。
粒子在磁场中偏转90度,半径r=h,粒子在磁场中运动时,洛伦兹力提供向心力qvB=m,得B=,粒子在电场中的偏转方向与电场方向相反,故粒子带负电,在磁场中向下偏转,根据左手定则可知磁场方向垂直平面向里。
(3)粒子射出磁场后的速度反向延长线通过磁场的圆心,由几何关系可得M点纵坐标为-4h。
答案:(1)(2),垂直xOy平面向里(3)-4h8.(2013·天津高考)一圆筒的横截面如图所示,其圆心为O。
筒内有垂直于纸面向里的匀强磁场,磁感应强度为B。
圆筒下面有相距为d的平行金属板M、N,其中M板带正电荷,N板带等量负电荷。
质量为m、电荷量为q的带正电粒子自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方向射入磁场中。
粒子与圆筒发生两次碰撞后仍从S孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:(1)M、N间电场强度E的大小。
(2)圆筒的半径R。
(3)保持M、N间电场强度E不变,仅将M板向上平移d,粒子仍从M板边缘的P处由静止释放,粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。
【解题指南】解答本题时应从以下三点进行分析:(1)先根据带电粒子在磁场中碰撞前后速度的大小没有变化,确定粒子做圆周运动的半径相同,运动具有对称性。
(2)再根据对称性确定带电粒子做圆周运动的圆心角和半径。
(3)最后根据加速电场电压变化前后的比例关系,找出速度变化前后的比例关系,进而确定变化后的圆心角和半径及碰撞次数。
【解析】(1)设两板间的电压为U,由动能定理得qU=mv2①由匀强电场中电势差与电场强度的关系得U=Ed ②联立以上式子可得E=③(2)粒子进入磁场后做匀速圆周运动,运用几何关系作出圆心为O′,圆半径为r。
设第一次碰撞点为A,由于粒子与圆筒发生两次碰撞又从S孔射出,因此,SA弧所对的圆心角∠AOS等于。
由几何关系得r=Rtan④粒子运动过程中洛伦兹力充当向心力,由牛顿第二定律得qvB=m⑤联立④⑤式得R=⑥(3)保持M、N间电场强度E不变,M板向上平移d后,设板间电压为U′,则U′==⑦设粒子进入S孔时的速度为v′,由①式看出=综合⑦式可得v′=v ⑧设粒子做圆周运动的半径为r′,则r′=⑨设粒子从S到第一次与圆筒碰撞期间的轨迹所对圆心角为θ,比较⑥⑨两式得到r′=R,可见θ=⑩粒子经过四个这样的圆弧才能从S孔射出,故n=3答案:(1)(2)(3)3。