2016_2017学年高中数学第二章框图2.1流程图学业分层测评含解析
高中数学 第二章 框图 2.1“亲密接触”几个流程图素材 北师大版选修12

“亲密接触”几个流程图我们知道,框图可分为流程图和结构图,是一种表示一个系统各部分和各环节之间关系的图示,直观形象,让人一目了然,正因为如此,生活中处处有框图,下面让我们一个“亲密接触”几个生活中的流程图。
1. 工业生产中的流程图例1 某工厂加工某种零件有三道工序:粗加工、返修加工和精加工;每道工序完成时,都要对产品进行检验;初加工的合格品进入精加工,不合格品进入返修加工;返修加工的合格品进入精加工,不合格品作为废品处理;精加工的合格品为成品,不合格品为废品。
用流程图表示这个零件的加工过程。
解析:按照工序要求,可以画出下面的工序流程图:说明:有关工序流程图应先理清工序大体分几个阶段,再对每一阶段细分,每一步应注意先后顺序,这是十分关键的,否则会产生错误。
2. 商业买卖中的流程图例2某自助餐厅准备进行优惠酬宾活动:80岁以上老人免费;70岁以上老人享受5折优惠;60岁以上老人享受6折优惠;其余嘉宾享受9折优惠。
想要一个程序,可以输入用餐者的年龄、消费额,输出应付金额。
请画出程序框图。
解析:本题中程序的流程流向取决于条件的判断,是条件结构嵌套。
程序框图如下:3、申办奥运会的流程图例3北京获得2008年第29届奥运会主办权,你知道在申办奥运会的最后阶段,国际奥委会是如何通过投标决定主办归属的吗?对选出的5个申办城市进行表决的操作程序是:首先进行第一轮投票,如果有一个城市得票超过总票数的一半,那么该城市就获得主办权;如果所有申办城市的得票数都不超过总票数的一半,则将得票最少的城市淘汰,然后重复上述过程,直到选出一个申办城市为止。
试画出该过程的流程图。
分析:从选举的方法可以看出,应选择类似循环结构来描述其选举过程,画图前,应先将上述流程分解成若干比较明确的步骤,并确定这些步骤之间的关系。
解:流程图:4.亲子活动的流程图例4某“儿童之家”开展亲子活动,计划活动按以下步骤进行:首先,儿童与家长按事先约定的时间来到“儿童之家”。
2016-2017学年高中数学第二章概率2.2超几何分布学业分层测评苏教版选修2-3

【课堂新坐标】2016-2017学年高中数学 第二章 概率 2.2 超几何分布学业分层测评 苏教版选修2-3(建议用时:45分钟)学业达标]一、填空题1.10件产品中有7件正品、3件次品,从中任取4件,则恰好取到1件次品的概率是________.【解析】 由超几何分布的概率公式可得P (恰好取到一件次品)=C 13C 37C 410=12.【答案】 122.有同一型号的电视机100台,其中一级品97台,二级品3台,从中任取4台,则二级品不多于1台的概率为________.(用式子表示)【解析】 二级品不多于1台,即一级品有3台或者4台,其概率为C 13C 397+C 497C 4100. 【答案】 C 13C 397+C 497C 41003.下列随机事件中的随机变量X 服从超几何分布的是________. ①将一枚硬币连抛3次,正面向上的次数为X ;②从7男3女的10名学生干部中选出5名优秀学生干部,女生的人数为X ; ③某射手的命中率为0.8,现对目标射击1次,记命中的次数为X ;④盒中有4个白球和3个黑球,每次从中摸出1球且不放回,X 是首次摸出黑球时摸球的总次数.【解析】 ①③均为重复试验,不符合超几何分布总体的分类要求;②④总体分为明确的两类,但④中的随机变量X 不是抽取样本中一类元素的个数.【答案】 ②4.一个盒子里装有相同大小的黑球10个,红球12个,白球4个,从中任取2个,其中白球的个数记为X ,则P (X ≤1)=________.【解析】 由已知X ~H (2,4,26), 则P (X =0)=C 04C 222C 226,P (X =1)=C 14C 122C 226,故P (X ≤1)=P (X =0)+P (X =1)=C 222+C 122C 14C 226=319325. 【答案】3193255.从3台甲型彩电和2台乙型彩电中任取3台,其中两种品牌的彩电齐全的概率是________.【解析】 P =C 13C 22C 35+C 23C 12C 35=910.【答案】9106.某校从学生会中的10名女生干部与5名男生干部中随机选取6名学生干部组成“文明校园督察队”,则组成4女2男的“文明校园督察队”的概率是________.(用式子表示)【解析】 组成4女2男的“文明校园督察队”的概率为C 410C 25C 615.【答案】 C 410C 25C 6157.在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到1瓶已过了保质期饮料的概率为________.(结果用最简分数表示)【解析】 从这30瓶饮料中任取2瓶,设至少取到1瓶已过了保质期饮料为事件A ,则P (A )=C 127C 13C 230+C 23C 230=28145.【答案】281458.50张彩票中只有2张中奖票,今从中任取n 张,为了使这n 张彩票里至少有一张中奖的概率大于0.5,n 至少为________. 【导学号:29440040】【解析】 用X 表示中奖票数, P (X ≥1)=C 12C n -148C n 50+C 22C n -248C n 50>0.5,解得n ≥15. 【答案】 15 二、解答题9.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的分布列; (2)他能及格的概率.【解】 (1)设抽到他能背诵的课文的数量为X ,X ~H (3,6,10). 则P (X =k )=C k 6C 3-k4C 310(k =0,1,2,3),P (X =0)=C 06C 34C 310=130,P (X =1)=C 16C 24C 310=310,P (X =2)=C 26C 14C 310=12,P (X =3)=C 36C 04C 310=16.所以X 的分布列为(2)他能及格的概率为P (X ≥2)=P (X =2)+P (X =3)=2+6=23.10.袋中有形状大小完全相同的4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取4个球.(1)求得分X 的概率分布; (2)求得分大于6分的概率.【解】 (1)从袋中随机取4个球有1红3黑,2红2黑,3红1黑,4红四种情况,分别得分为5分,6分,7分,8分,故X 的可能取值为5,6,7,8.∴P (X =5)=C 14C 33C 47=435,P (X =6)=C 24C 23C 47=1835,P (X =7)=C 34C 13C 47=1235,P (X =8)=C 44C 03C 47=135.故所求概率分布为(2)根据随机变量X P (X >6)=P (X =7)+P (X =8)=1235+135=1335.能力提升]1.在六个数字1,2,3,4,5,7中,若随机取出三个数字,则剩下三个数字都是奇数的概率是________.【解析】 剩下三个数字都是奇数,则取出的三个数字为两偶一奇.故P =C 22·C 14C 36=420=0.2.【答案】 0.22.现有语文、数学课本共7本(其中语文课本不少于2本),从中任取2本,至多有1本语文课本的概率是57,则语文课本有________本. 【导学号:29440041】【解析】 设语文课本有m 本,任取2本书中的语文课本数为X ,则X 服从参数为N =7,M =m ,n =2的超几何分布,其中X 的所有可能取值为0,1,2,且P (X =k )=C k m C 2-k7-mC 27(k =0,1,2).由题意,得P (X ≤1)=P (X =0)+P (X =1)=C 0m C 27-m C 27+C 1m C 17-m C 27=12×7-m6-m21+m 7-m21=57, ∴m 2-m -12=0,解得m =4或m =-3(舍去). 即7本书中语文课本有4本. 【答案】 43.某电视台在一次对收看新闻节目观众的抽样调查中,随机抽取了45名电视观众,其中20至40岁的有18人,大于40岁的有27人.用分层抽样方法在收看新闻节目的观众中随机抽取5名,在这5名观众中再任取2名,则恰有1名观众的年龄为20至40岁的概率为_____________________________________.【解析】 由于是分层抽样,所以5名观众中,年龄为20至40岁的有1845×5=2人.设随机变量X 表示20至40岁的人数,则X 服从超几何分布H (2,2,5),故P (X =1)=C 12C 13C 25=35.【答案】 354.从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A “取出的2件产品都是二等品”的概率P (A )=0.04.(1)求从该批产品中任取1件是二等品的概率;(2)若该批产品共10件,从中任意抽取2件,X 表示取出的2件产品中二等品的件数,求X 的概率分布.【解】 (1)设任取一件产品是二等品的概率为p ,依题意有P (A )=p 2=0.04,解得p 1=0.2,p 2=-0.2(舍去).故从该批产品中任取1件是二等品的概率为0.2.(2)若该批产品共10件,由(1)知其二等品有10×0.2=2件,故X 的可能取值为0,1,2. P (X =0)=C 28C 210=2845,P (X =1)=C 18C 12C 210=1645,P (X =2)=C 22C 210=145.所以X 的概率分布为X 0 1 2 P28451645145。
高中数学 第二章 框图单元测试(含解析)北师大版选修1-2(2021年最新整理)

2016-2017学年高中数学第二章框图单元测试(含解析)北师大版选修1-2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第二章框图单元测试(含解析)北师大版选修1-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第二章框图单元测试(含解析)北师大版选修1-2的全部内容。
(二)框图章末综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要描述一工厂某产品的生产工艺,应用()A.程序框图B.工艺流程图C.知识结构图D.组织结构图【解析】这是设计生产过程,应为工艺流程图,选B.【答案】B2.在下面的图示中,是结构图的是()A.错误!→错误!→错误!→错误!C.D.【解析】A是流程图;C是图表;D是图示;B是知识结构图.【答案】B3.如图1是一结构图,在处应填入( )A.图像变换B.奇偶性C.对称性D.解析式【解析】函数的性质包括单调性、奇偶性、周期性等,故选B.【答案】B4.某市质量技术监督局计量认证审查流程图如图2所示:图2从图中可知在审查过程中可能不被通过审查的环节的处数有()A.1 B.2C.3 D.4【解析】该题是一个实际问题,由审查流程图可知有3个判断框,即3处可能不被审查通过,故选C.【答案】C5.(2015·湖南高考)执行如图3所示的程序框图,如果输入n=3,则输出的S=( )图3 A.错误!B.错误!C.89D.错误!【解析】第一次循环:S=错误!,i=2;第二次循环:S=错误!+错误!,i=3;第三次循环:S=11×3+错误!+错误!,i=4,满足循环条件,结束循环.故输出S=错误!+错误!+错误!=错误!错误!=错误!,故选B.【答案】B6.学校教职成员、教师、后勤人员、理科教师、文科教师的结构图正确的是( )【解析】由学校教职工组织结构易知选A.【答案】A7.(2015·重庆高考)执行如图4所示的程序框图,若输出k的值为8,则判断框内可填入的条件是()图4A.s≤错误!?B.s≤错误!?C.s≤错误!?D.s≤错误!?【解析】由s=0,k=0满足条件,则k=2,s=错误!,满足条件;k=4,s=错误!+错误!=错误!,满足条件;k=6,s=错误!+错误!=错误!,满足条件;k=8,s=错误!+错误!=错误!,不满足条件,输出k=8,所以应填s≤错误!?。
高中数学 第二章 框图 1 流程图教案(含解析)北师大版选修1-2-北师大版高二选修1-2数学教案

1流程图流程图随着网络的普及,电子以其方便、快捷、易于保存、全球畅通无阻的特点被广泛应用,使人们的交流方式得到了极大的改变,深受人们的喜爱.问题1:小明同学想给小刚同学发电子,你如何用直观、清楚的方式告诉小明该如何做?提示:用流程图.问题2:请帮小明设计一个发电子的流程图.提示:如图.1.流程图的构成流程图是由一些图形符号和文字说明构成的图示.2.流程图的特点流程图是表述工作方式、工艺流程的一种常用手段,它的特点是直观、清楚.3.画流程图的步骤第一步:确定主要步骤和顺序;第二步:补足其他步骤;第三步:用流程图表示.画工序流程图注意事项将一个工作或工程从头至尾依先后顺序分为若干道工序(即自顶向下),每一道工序用矩形框表示,并在该矩形框内用高度概括、简洁、清楚的语言将该道工序表述清楚.注明此工序的名称或代号.两相邻工序之间用流程线相连.明确各工作或工序之间的关系.即:(1)衔接关系:各工作或各工序之间的先后顺序.(2)平等关系:各工作或各工序之间可以独立进行,根据实际情况,可以安排它们同时进行.(3)交叉关系:一些工作或工序进行时,另外一些工作或工序可以穿插进行.有时为合理安排工程进度,还在每道工序框上注明完成该工序所需时间.开始时工序流程图可以画得粗疏,然后再对每一框逐步细化.即:分解步骤→分析结构→明确关系→确定工时→绘制图形→调整细化.绘制流程图[例1] 在工业上用黄铁矿制取硫酸大致经过三个程序:造气、接触氧化和SO3的吸收.造气即黄铁矿与空气在沸腾炉中反应产生SO2,矿渣作废物处理,SO2再经过净化处理;接触氧化是SO2在接触室中反应产生SO3和SO2,其中SO2再循环进行接触氧化;吸收阶段是SO3在吸收塔内反应产生硫酸和尾气.请根据上述简介,画出制备硫酸的工序流程图.[思路点拨] 按照工序要求和实际情况,分清工序的先后次序,画出流程图.[精解详析] 制备硫酸的流程图为:[一点通] 画工序流程图时,首先弄清工程应划分为多少道工序,其次考虑各道工序的先后顺序及其相互联系、相互制约的程度,最后考虑哪些工序可以平行进行,哪些工序可以交叉进行,安排各工序的顺序,画出流程图.1.旅客乘火车要完成四个步骤:候车、买票、上车、检票,完成这四步的正确流程图是________________________.答案:买票→候车→检票→上车2.考生参加某培训中心的考试需按以下程序进行:考前咨询,若是新考生则需注册、编号、明确考试事宜、交费、考试、领取成绩单,最后发证;若不是新考生,需出示考生编号,直接到明确考试事宜阶段,以下同新考生程序,设计一个考试流程图.解:如图所示.算法流程图[例2] 设计一个计算10个数的平均数的算法,画出流程图.[思路点拨] 先求和再求平均数,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.[精解详析] 可以逐个输入10个数,再用变量存放数的累加和,求出总和后,除以10,即得平均数,流程图如图所示.[一点通] 画算法框图的规则:使用标准的框图符号;框图一般按从上到下,从左到右的方向画;除判断框外,大多数程序框图的符号只有一个进入点和一个退出点,而判断框是唯一具有超过一个进入点和一个退出点的符号.3.如图所示,程序框图的功能是( )A .求⎩⎨⎧⎭⎬⎫1n 前10项和B .求⎩⎨⎧⎭⎬⎫12n 前10项和C .求⎩⎨⎧⎭⎬⎫1n 前11项和D .求⎩⎨⎧⎭⎬⎫12n 前11项和解析:选B 第一次循环前:S =0,n =2,k =1; 第一次循环:S =12,n =4,k =2;第二次循环:S =12+14,n =6,k =3;第三次循环:S =12+14+16,n =8,k =4,由此可知程序框图的功能是求⎩⎨⎧⎭⎬⎫12n 前10项和.4.执行如图所示的程序框图,若输出k 的值为8,则判断框内可填入的条件是( )A .s ≤34?B .s ≤56?C .s ≤1112?D .s ≤2524?解析:选C k =2,s =12;k =4,s =12+14=34;k =6,s =12+14+16=1112;k =8,s =12+14+16+18=2524.此时循环结束,所以判断框中可填入的条件是“s ≤1112?”,故选C.流程图的画法、要求及遵循的原则(1)画法:一般要按照从左到右,从上到下的顺序来画.(2)要求:直观,流向明确,内容准确,易于操作,即简捷、明了、高效. (3)遵循的原则:开始时工序流程图可以画得粗疏,然后对每一框逐步细化.1.下列关于流程图的说法中不正确的是( ) A .流程图用来描述一个动态过程 B .算法框图是一种特殊的流程图C .流程图只能用带箭头的流程线表示各单元的先后关系D .解决某一问题的流程图的画法是唯一的解析:选D A ,C 均符合流程图的特征,算法框图是一种特殊的流程图,故B 正确. 2.某人带着包裹进入超市购物的流程图如图所示,则在空白处应填( ) 进入超市―→存放包裹―→在货架上选择物品―→付款―→ ―→离开超市A .退换物品B .归还货车C .取回包裹D .参加抽奖答案:C3.如图所示,已知集合A ={x |框图中输出的x 的值},集合B ={y |框图中输出的y 的值}.全集U =Z ,Z 为整数集.当x =-1时,(∁U A )∩B =( )A .{-3,-1,5}B .{-3,-1,5,7}C.{-3,-1,7}D.{-3,-1,7,9}解析:选D 根据程序框图功能知:y=-3,x=0;y=-1,x=1;y=1,x=2;…;y=9,x=6.所以A={0,1,2,3,4,5,6}.B={-3,-1,1,3,5,7,9}.则(∁U A)∩B={-3,-1,7,9}.4.执行如图所示的程序框图,如果输入的a=-1,则输出的S等于( )A.2 B.3C.4 D.5解析:选B 运行程序框图,a=-1,S=0,K=1,K≤6成立;S=0+(-1)×1=-1,a=1,K=2,K≤6成立;S=-1+1×2=1,a=-1,K=3,K≤6成立;S=1+(-1)×3=-2,a=1,K=4,K≤6成立;S=-2+1×4=2,a=-1,K=5,K≤6成立;S=2+(-1)×5=-3,a=1,K=6,K≤6成立;S=-3+1×6=3,a=-1,K=7,K≤6不成立,输出S=3.5.某工程的工序流程图如图,则该工程的总工时最多为________天.解析:因为各个不同工序中用时最多的是①→②→④→⑥→⑦,即9天. 答案:96.执行如图所示的程序框图,若输入n =3,则输出T =________.解析:输入n =3,则i =0,S =0,T =0,i ≤n 成立,故i =1,S =0+1=1,T =0+1=1,此时i =1≤n 成立,故i =2,S =1+2=3,T =1+3=4,此时i =2≤n 成立,故i =3,S =3+3=6,T =4+6=10,此时i =3≤n 成立,故i =4,S =6+4=10,T =10+10=20,此时i =4≤n 不成立,故输出T =20.答案:207.如图是某工厂加工某种零件的一个工序操作流程图.按照这个工序流程图,回答下列问题: (1)一件成品最多经过几道加工和检验程序; (2)导致废品的产生有几种不同的情形.解:由流程图可得:(1)最多经过“粗加工”“检验”“返修加工”“返修检验”“精加工”“最后检验”六道加工和检验程序.(2)三种不同情形:①返修加工―→返修检验不合格. ②检验――→合格精加工―→最后检验不合格. ③返修检验――→合格精加工―→最后检验不合格.8.求两底面半径分别为1和4,高为4的圆台的表面积及体积,写出解决该问题的一个算法,并画出程序框图.解:算法步骤如下:第一步 r 1=1,r 2=4,h =4. 第二步 计算l =r 2-r 12+h 2.第三步 计算S 1=πr 21,S 2=πr 22,S 3=π(r 1+r 2)l . 第四步 计算S =S 1+S 2+S 3,V =13(S 1+S 1S 2+S 2)h .第五步 输出S 和V . 该算法的程序框图如下:9.高考成绩公布后,考生如果认为公布的高考成绩与本人估算的成绩不符,可以在规定的时间内申请查分,其步骤如下:①本人填写《查分登记表》,交县(区)招生办申请查分,县(区)招生办呈交市招生办,再报省招生办.②省招生办复查,若无误,则查分工作结束后通知市招生办;若有误,则再具体认定并改正,也在查分工作结束后通知市招生办.③市招生办接通知后通知县(区)招生办,再由县(区)招生办通知考生. 试画出该事件的流程图.解:流程图如图所示.。
2016-2017学年高中数学人教B版必修二学业分层测评 第

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.(2016·淄博高一检测)下列说法正确的是()A.经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示B.经过任意两个不同点P(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示C.不经过原点的直线都可以用方程xa+yb=1表示D.经过定点A(0,b)的直线都可以用方程y=kx+b表示【解析】当直线与y轴重合时,斜率不存在,选项A、D不正确;当直线垂直于x轴或y轴时,直线方程不能用截距式表示,选项C不正确;当x1≠x2,y1≠y2时由直线方程的两点式知选项B正确,当x1=x2,y1≠y2时直线方程为x-x1=0,即(x-x1)(y2-y1)=(y-y1)(x2-x1),同理x1≠x2,y1=y2时也可用此方程表示.故选B.【答案】 B2.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是()A.3x-y-8=0B.3x+y+4=0C.3x-y+6=0 D.3x+y+2=0【解析】k AB=1-3-5-1=13,AB的中点坐标为(-2,2),所以所求方程为:y-2=-3(x+2),化简为3x+y+4=0.【答案】 B3.若直线ax+by+c=0经过第一、二、三象限,则() A.ab>0,bc>0 B.ab>0,bc>0C.ab<0,bc>0 D.ab<0,bc<0【解析】直线经过第一、二、三象限,则由y=-ab x-cb可知,⎩⎨⎧ -a b>0, -cb >0,⇒{ ab <0, bc <0,选D.【答案】 D4.两条直线l 1:x a -y b =1和l 2:x b -ya=1在同一直角坐标系中的图象可以是( )【解析】 化为截距式x a +y -b =1,x b +y -a =1.假定l 1,判断a ,b ,确定l 2的位置,知A 项符合. 【答案】 A5.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m 是( )【导学号:60870064】 A .1 B .2 C .-12D .2或-12【解析】 当2m 2+m -3≠0时,在x 轴上的截距为4m -12m 2+m -3=1,即2m 2-3m -2=0,∴m =2或m =-12.【答案】 D 二、填空题6.直线y=ax-3a+2(a∈R)必过定点________.【解析】将直线方程变形为y-2=a(x-3),由直线方程的点斜式可知,直线的斜率为a,过定点(3,2).【答案】(3,2)7.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【解析】直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y -1=-(x-2).【答案】y-1=-(x-2)8.已知光线经过点A(4,6),经x轴上的B(2,0)反射照到y轴上,则光线照在y 轴上的点的坐标为________.【解析】点A(4,6)关于x轴的对称点A1(4,-6),则直线A1B即是反射光线所在直线,由两点式可得其方程为:3x+y-6=0,令x=0,得y=6,所以反射光线经过y轴上的点的坐标为(0,6).【答案】(0,6)三、解答题9.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.【解】(1)由{m2-3m+2=0, m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-(m2-3m+2)m-2=1,解得m=0.10.求过点(4,-3)且在两坐标轴上截距的绝对值相等的直线l的方程.【解析】法一设直线在x轴、y轴上的截距分别为a,b.①当a≠0,b≠0时,设l的方程为xa+yb=1.∵点(4,-3)在直线上,∴4a+-3b=1,若a=b,则a=b=1,直线方程为x+y=1.若a=-b,则a=7,b=-7,此时直线的方程为x-y=7.②当a =b =0时,直线过原点,且过点(4,-3), ∴直线的方程为3x +4y =0.综上知,所求直线方程为x +y -1=0或x -y -7=0或3x +4y =0. 法二 设直线l 的方程为y +3=k (x -4), 令x =0,得y =-4k -3;令y =0,得x =4k +3k .又∵直线在两坐标轴上的截距的绝对值相等, ∴|-4k -3|=⎪⎪⎪⎪⎪⎪4k +3k , 解得k =1或k =-1或k =-34. ∴所求的直线方程为x -y -7=0或x +y -1=0或3x +4y =0.[能力提升]1.直线x -y +1=0关于y 轴对称的直线的方程为( ) A .x -y -1=0 B .x -y -2=0 C .x +y -1=0D .x +y +1=0【解析】 令y =0,则x =-1,令x =0,则y =1, ∴直线x -y +1=0关于y 轴对称的直线过点(0,1)和(1,0), 由直线的截距式方程可知,x +y =1,即x +y -1=0. 【答案】 C2.(2016·潍坊高一检测)已知两直线的方程分别为l 1:x +ay +b =0,l 2:x +cy +d =0,它们在坐标系中的位置如图2-2-4所示,则( )图2-2-4A .b >0,d <0,a <cB .b >0,d <0,a >cC .b <0,d >0,a >cD .b <0,d >0,a <c【解析】 由题图可知直线l 1、l 2的斜率都大于0,即k 1=-1a >0,k 2=-1c >0且k 1>k 2,∴a <0,c <0且a >c .又l 1的纵截距-b a <0,l 2的纵截距-dc >0, ∴b <0,d >0,故选C. 【答案】 C3.已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________. 【解析】 直线AB 的方程为x 3+y4=1, 设P (x ,y ),则x =3-34y , ∴xy =3y -34y 2=34(-y 2+4y ) =34[-(y -2)2+4]≤3.即当P 点坐标为⎝ ⎛⎭⎪⎫32,2时,xy 取得最大值3.【答案】 34.直线过点P ⎝ ⎛⎭⎪⎫43,2且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线同时满足下列条件:(1)△AOB 的周长为12; (2)△AOB 的面积为6.若存在,求出直线的方程;若不存在,请说明理由. 【导学号:60870065】【解】 设直线方程为x a +yb =1(a >0,b >0), 若满足条件(1),则a +b +a 2+b 2=12.① 又∵直线过点P ⎝ ⎛⎭⎪⎫43,2,∴43a +2b =1.② 由①②可得5a 2-32a +48=0,解得{a =4,b =3或⎩⎨⎧a =125,b =92,∴所求直线的方程为x4+y3=1或5x12+2y9=1,即3x+4y-12=0或15x+8y-36=0. 若满足条件(2),则ab=12,③由题意得:43a+2b=1,④由③④整理得a2-6a+8=0,解得{a=4, b=3,或{a=2, b=6,∴所求直线的方程为x4+y3=1或x2+y6=1,即3x+4y-12=0或3x+y-6=0.综上所述:存在同时满足(1)(2)两个条件的直线方程,为3x+4y-12=0.。
高中数学 第2章 概率 2.2 超几何分布学业分层测评 北师大版选修2-3-北师大版高二选修2-3数

【课堂新坐标】2016-2017学年高中数学 第2章 概率 2.2 超几何分布学业分层测评 北师大版选修2-3(建议用时:45分钟)学业达标]一、选择题1.从一副不含大、小王的52X 扑克牌中任意抽出5X ,则至少有3X 是A 的概率为( ) A.C 34C 248C 552 B.C 348C 24C 552 C .1-C 148C 44C 552D.C 34C 248+C 44C 148C 552【解析】 从52X 扑克牌中任意抽出5X ,至少有3X A 的结果数是C 34C 248+C 44C 148,故所求概率为C 34C 248+C 44C 148C 552. 【答案】 D2.一个盒子里装有相同大小的黑球10个,红球12个,白球4个,从中任取2个,其中白球的个数记为X ,则P (X ≤1)等于( )A.C 122C 14+C 222C 226 B.C 112C 14+C 24C 226 C.C 110C 14+C 222C 226 D.C 110C 14+C 24C 226【解析】 由已知得,X 的可能取值为0,1,2. P (X =0)=C 222C 226;P (X =1)=C 122C 14C 226;P (X =2)=C 24C 226,∴P (X ≤1)=P (X =0)+P (X =1)=C 122C 14+C 222C 226. 【答案】 A3.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么310等于( )A .恰有1只是坏的的概率B .恰有两只是好的的概率C .4只全是好的的概率D .至多有两只是坏的的概率【解析】 恰好两只是好的概率为P =C 23C 27C 410=310.【答案】 B4.某12人的兴趣小组中,有5名“特困生”,现从中任意选6人参加竞赛,用ξ表示这6人中“特困生”的人数,则下列概率中等于C 35C 37C 612的是( )A .P (ξ=2)B .P (ξ=3)C .P (ξ≤2)D .P (ξ≤3)【解析】 6人中“特困生”的人数为ξ,则其选法数为C ξ5·C 6-ξ7,当ξ=3时,选法数为C 35C 37,故P (ξ=3)=C 35C 37C 612.【答案】 B5.一个盒子里装有相同大小的红球、白球共30个,其中白球4个.从中任取两个,则概率为C 126C 14+C 24C 230的事件是( ) 【导学号:62690032】 A .没有白球 B .至少有一个白球 C .至少有一个红球D .至多有一个白球【解析】C 126C 14+C 24C 230=C 126C 14C 230+C 24C 230表示任取的两个球中只有一个白球和两个都是白球的概率,即至少有一个白球的概率.【答案】 B 二、填空题6.一批产品共50件,其中5件次品,其余均为合格品,从这批产品中任意抽取两件,其中出现次品的概率为________.【解析】 设抽取的两件产品中次品的件数为X , 则P (X =k )=C k 5C 2-k45C 250(k =0,1,2).∴P (X >0)=P (X =1)+P (X =2)=C 15C 145C 250+C 25C 250=47245.【答案】472457.在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到1瓶已过了保质期饮料的概率为________.(结果用最简分数表示)【解析】 从这30瓶饮料中任取2瓶,设至少取到1瓶已过了保质期饮料为事件A ,则P (A )=C 127C 13C 230+C 23C 230=28145.【答案】281458.(2016·某某高二检测)袋中有3个黑球,4个红球,除颜色外,其他均相同,从袋中任取3个球,则至少有一个红球的概率为________.【解析】 令X 表示取出的黑球个数,则X =0,1,2,3,P (X =0)=C 33C 37=135,故至少有一个红球的概率为P (X ≥1)=1-135=3435.【答案】3435三、解答题9.现有10X 奖券,其中8X1元,2X5元,从中同时任取3X ,求所得金额的分布列. 【解】 设所得金额为X ,X 的可能取值为3,7,11. P (X =3)=C 38C 310=715,P (X =7)=C 28C 12C 310=715,P (X =11)=C 18·C 22C 310=115.故X 的分布列为10.老师要从102篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的分布列; (2)他能及格的概率.【解】 (1)设抽到他能背诵的课文的数量为X ,则P (X =k )=C k 6C 3-k 4C 310(k =0,1,2,3).P (X =0)=C 06C 34C 310=130,P (X =1)=C 16C 24C 310=310,P (X =2)=C 26C 14C 310=12,P (X =3)=C 36C 04C 310=16.所以X 的分布列为(2)他能及格的概率为P (X ≥2)=P (X =2)+P (X =3)=2+6=23.能力提升]1.一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10.现从中任取4个球,有如下几种变量:①X 表示取出的最大; ②X 表示取出的最小;③取出一个黑球记2分,取出一个白球记1分,X 表示取出的4个球的总得分; ④X 表示取出的黑球个数.这四种变量中服从超几何分布的是( ) A .①② B .③④ C .①②④D .①②③④【解析】 由超几何分布的概念知③④符合,故选B. 【答案】 B2.现有语文、数学课本共7本(其中语文课本不少于2本),从中任取2本,至多有1本语文课本的概率是57,则语文课本的本数为( ) 【导学号:62690033】A .2B .3C .4D .5【解析】 设语文课本有m 本,任取2本书中的语文课本数为X ,则X 服从参数为N =7,M =m ,n =2的超几何分布,其中X 的所有可能取值为0,1,2,且P (X =k )=C k m C 2-k7-mC 27(k =0,1,2).由题意,得P (X ≤1)=P (X =0)+P (X =1)=C 0m C 27-m C 27+C 1m C 17-mC 27=12×7-m 6-m 21+m 7-m 21=57. ∴m 2-m -12=0,解得m =4或m =-3(舍去). 即7本书中语文课本有4本. 【答案】 C3.口袋内装有10个大小相同的球,其中5个球标有数字0,5个球标有数字1,若从口袋中摸出5个球,那么摸出的5个球所标数字之和小于2或大于3的概率是________(用数字作答).【解析】 设摸出标有数字1的球的个数为X ,则所求的概率为: 1-P (X =2)-P (X =3)=1-C 25C 35C 510-C 35C 25C 510=1-5063=1363.【答案】13634.盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球.(1)求取出的3个球中至少有一个红球的概率; (2)求取出的3个球得分之和恰为1分的概率;(3)设ξ为取出的3个球中白色球的个数,求ξ的分布列. 【解】 (1)P =1-C 37C 39=712.(2)记“取出1个红色球,2个白色球”为事件B ,“取出2个红色球,1个黑色球”为事件C ,则P (B +C )=P (B )+P (C )=C 12C 23C 39+C 22C 14C 39=542.(3)ξ可能的取值为0,1,2,3,ξ服从超几何分布, 且P (ξ=k )=C k 3C 3-k6C 39,k =0,1,2,3.故P (ξ=0)=C 36C 39=521,P (ξ=1)=C 13C 26C 39=1528,P (ξ=2)=C 23C 16C 39=314,P (ξ=3)=C 33C 39=184,ξ的分布列为。
2016-2017学年高二数学北师大版选修1-2练习:第二章 框图 Word版含解析

1 解读两种常见的流程图流程图是一种动态图示,通常用来描述一种过程性活动,它由图形符号和文字说明构成,每一个明确的步骤构成了流程图的基本单元,常见的流程图主要有如下两种:一、算法框图画算法框图时,一般需要将每一个算法步骤分解为若干输入、输出、选择结构、循环结构等基本算法单元,然后根据各单元的逻辑关系,用流程线将这些基本单元连结起来.例1 请画出S=1×22+2×23+3×24+…+10×211的算法框图.解 该算法的框图如图所示.点评 画算法框图的要求:(1)使用标准的图形符号;(2)框图一般按从上到下、从左到右的方向画;(3)在图形符号内描述的语言要简洁、清楚.例2 根据下图所示的算法框图,回答下面问题:(1)若a>b>c,则输出的数是________.(2)若a=50.6,b=0.65,c=log0.65,则输出的数是________.分析 算法框图的判断框是判断出a,b,c三个数中的最大数,若为a,则程序结束,否则比较b,c的大小.解析 (2)当a=50.6,b=0.65,c=log0.65时,有a=50.6>1>b=0.65>0>c=log0.65,所以仍然输出a.故填50.6.答案 (1)a (2)50.6二、工艺流程图工艺流程图是用来描述一个过程性的活动,活动的每一个明确的步骤构成流程图的一个基本单元,其基本单元之间通过流程线产生联系.例3 我们生活中用的纸杯从原材料(纸张)到商品(纸杯)主要经过四道工序:淋膜、印刷、模切、成型.首先用淋膜机给原纸淋膜PE(聚乙烯),然后用分切机把已经淋膜好的纸分切成矩形纸张(印刷后做纸杯壁用)和卷筒纸(纸杯底部用),再将矩形纸印刷并切成扇环形杯片,最后成型,请用流程图表示纸杯的加工过程.分析 画工艺流程图应先理清工序大体分几个阶段,再对每一阶段细分,每一步应注意先后顺序,这是十分关键的,否则会产生错误.在画工艺流程图时,不能出现几道工序首尾相接的圈图或循环回路.解 这是一道工艺流程图题目,描述纸杯制作的整个过程.由题意得流程图如下: 2 体验工艺流程图工艺流程图又可称统筹图,具有简单明了,直观形象等特点.它反映任务全貌,实现管理过程模型化,然后进行时间参数计算,找出计算中的关键工作和关键路径,对任务的各项工作或工序所需的人、财、物通过改进统筹图作出合理安排,进而得到最优方案,并付诸实施.工艺流程图在实际工作中应用的比较广泛,为合理安排工程作业进度,分配调整工程作业人员,节省时间,提高效率,缩短工期等提供了帮助,下面通过具体实例体验其应用.例1 设下表是某部件生产计划中有关项目的明细表.项目工期(天)代号设计锻模10A制造锻模15B生产锻模10C制造木模25D生产铸件15E设计工装20F制造工装40G作出该部件的生产计划流程图并加以分析,再提出使完工期缩短的改进措施.解 本题可称为“生产过程的优化问题”,衡量的数量指标是“完成工程的时间”越短越好.鉴于工厂生产的实际情况,可知明细表中所列各项目的先后顺序关系不允许更动,也不可能对任一项目进行分解.例如,依照工序流程,必须先制造木模,才能生产铸件,这样就可得到下图所示的生产计划流程的一个方案.从图中可见,A、D、F三个项目同时开工,随后分成三条支路.先考察上、中、下三条支路上各项目总共所用的时间,具体地说,有上支路10+15+10=35,中支路25+15=40,下支路20+40=60.比较之,可见F与G两个项目合成的下支路所花时间最长.该部件生产计划的完工期实质上受F与G两个项目工时的制约.设想一下,即使A、B、C、D、E都如期完工,但是由于F、G还在进行中,先完工的人员与设备如不及时利用只能闲置起来,造成所谓的“窝工”现象.这就是生产的浪费;要是有可能重新调配力量,适当地让A、B、C或D、E慢点完工,同时力求F、G快点完工,那么就可能缩短工程的完工期.于是可以采取如下措施:把上支路或中支路上的资源(人员、设备等)适当抽调一部分到下支路上去,以加快完工期.当然,这里已设被抽调的资源适用于下支路上的项目.例如,设计锻模(A)的人也要会设计工装(F),从而可以去支援F.此外,从某项目上被抽调的资源数量必须适当,抽调过多,原项目的完工时间将大为延长,反过来又会影响完工期.因此,时间最长的那条支路对于完工期起着关键的作用,所以被称为关键路线.可见统筹法的基本思想,简单地说就是:向关键路线要时间,向非关键路线要资源,以达到预期目标的最优.例2 用流程图表示翻修库房的工序流程.某单位要翻修一栋库房,预计作业17项,其各工序进展的要求如下:①首先要建立工程办公室;接着进行图纸设计及倒库,设计图纸结束后要编报预算;预算结束后便可以订购设备、备料和签订施工合同;订购设备结束后可以提运设备;②倒库结束后就拆除库房旧设备;这些任务完成后就拆除旧库房和对施工现场进行监督检查;在备料和拆除旧房后依次进行库房翻修和库房验收,之后可清理施工现场,安装新设备,并对新设备进行试运行和验收的工作;③最后一项是编报决算.请用流程图表示上述工序流程.解 3 结构图在实际中的应用结构图的作用很特别,它不仅可以应用于数学知识的学习,还可以广泛应用在我们日常生活中的方方面面.本文将介绍结构图的三大应用,也许对你全面了解结构图的作用会有帮助.请看:1.利用结构图,构建知识网络当某一章节内容学完后,老师为了让我们理清知识脉络,抓住重点,通常会画一个“树形”网络图,其实,这个“树形”图就是我们所学的结构图.它对我们充分认识、掌握知识很有帮助.例1 用结构图来描述数学必修①第二章《函数》的知识结构.解 2.利用结构图,理清从属关系一个单位或一个企业的人事关系往往较为复杂,如果一个一个的介绍或说明则很不方便,若借助结构图,则非常清晰.例2 某企业的人事情况是这样的:总经理一人;下设四个副总经理,一个分管行政,一个分管财务,一个分管生产,一个分管销售;在行政部门,下设了办公室主任、厂报编辑部主任;财务部门,下设了总务处主任、监察处主任;生产部门,下设了信息部主任、开发部主任及四个生产车间主任;销售部门,下设了咨询部主任、售后服务部主任及十个销售门市部主任.根据上述情况,请绘制该企业的人事结构图.解 由题意可知,结构图如下:点评 通过结构图可以很清楚的看出该企业的人事结构,有这样的结构图当然可以提高办事效率.其实,我们学习过的知识中也有很多存在着从属关系,也可以通过结构图将它们显现出来.3.利用结构图,快速找准位置现在一栋楼的可用面积越来越大,容纳的单位也越来越多,正常情况下,在一栋大楼的大堂中都会有一个平面图,这个平面图就是结构图.例3 某行政大楼的二楼是大会议厅;三楼是教育类,其中从左至右是成人教育办公室、特殊教育办公室、小学教育办公室、中学教育办公室、主任办公室;四楼是计生类,从左至右是办证室、外来务工人员登记室、主任室;五楼是安全类,从左至右是消防办公室、安检办公室、主任室;六楼是行政类,从左至右是局长办公室、四个副局长办公室、接待室.请根据上述资料,绘制一个平面图.解 从下往上,分别为一楼、二楼、三楼、四楼、五楼、六楼,因此,得结构图如下:点评 假若你到该行政部门办事,借助这个结构图可以很快找到自己要去的地方,由此可以体会到结构图给我们带来很大的方便.以上介绍了结构图的三种应用,在实际生活中结构图的应用远不止这三种,只要认真学好该部分知识,你会发现结构图的应用无处不在、无处不有.。
17学年高中数学第二章框图2.1流程图课件北师大版选修1_2

【精彩点拨】 根据题意写出算法步骤,然后用流程图表示该算法即可.
【自主解答】
依题意知
10<x≤100, y=0.01x100<x≤5 000, 505 000<x≤1 000 000, 流程图如图所示.
程序框图的一般读法: (1)按照从左到右,从上到下的顺序. (2)理清算法的输入、输出、条件、循环等基本单元,并注意各要素之间 的流向是如何建立的. (3)当程序框图中含有循环结构时,需要首先明确循环的判断条件是什么, 以便确定循环的次数.
图 212 是某基金公司的客服热线的服务内容和流程图.某人在该基 金公司建立了账户并购买了基金,但忘记了基金账户,他想通过客服热线查询自 己的基金账号,应如何操作?
图 212
【精彩点拨】
客服热线查询通常都是用流程图的形式给出各种业务的操作
方式,另外也可以根据语音提示来完成操作.
【自主解答】 他要查询自己的基金账号,可进行如下操作:
程序框图如图所示.
工艺流程图的画法
某药厂生产某产品的过程如下: (1)备料、前处理、提取、制粒、压片、包衣、颗粒分装、包装; (2)提取环节经检验合格,进入下一工序,否则返回前处理; (3)包衣、颗粒分装两环节分别检验合格进入下一工序,否则为废品,画出生 产该产品的工序流程图.
【精彩点拨】 按照画工艺流程图的三个步骤进行.
预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问 1:_________________________________ 解惑:_________________________________ 疑问 2:_________________________________ 解惑:_________________________________ 疑问 3:_________________________________ 解惑:_________________________________
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 流程图
学业分层测评 (建议用时:45分钟)
[学业达标]
一、选择题
1.(2016·广东测试)执行如图218的程度框图,如果输入的N =100,则输出的X =( )
图218
A .0.95
B .0.98
C .0.99
D .1.00
【解析】 由程序框图知,输出X =11×2+12×3+13×4+…+199×100=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1
99-1100=99100
=0.99. 【答案】 C
2.进入互联网时代,发电子邮件是不可少的,一般而言,发电子邮件要分成以下几个步骤:a.打开电子信箱;b.输入发送地址;c.输入主题;d.输入信件内容;e.点击“写邮件”;f.点击“发送邮件”.则正确的是( )
A .a→b→c→d→e→f
B .a→c→d→f→e→b
C .a→e→b→c→d→f
D .b→a→c→d→f→e
【解析】 依题意知发送电子邮件的步骤应是:a→e→b→c→d→f. 【答案】 C
3.如图219,小黑点表示网络的结点,结点之间的连线表示它们有网线相连,连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,
信息可分开沿不同的路线同时传递,则单位时间内传递的最大信息量是( )
图219
A .26
B .24
C .20
D .19
【解析】 由A →B 有4条路线,4条路线单位时间内传递的最大信息量为6+8+12=26.
【答案】 A
4.小明每天早晨起床后要做如下事情:洗漱用5分钟,收拾床褥用4分钟,听广播用15分钟,吃早饭用8分钟,要完成这些事情,小明要花费的最少时间为( )
A .17分钟
B .19分钟
C .23分钟
D .27分钟
【解析】 把过程简化,把能放在同一个时间内完成的并列,如听广播的同时可以洗涮、收拾被褥、吃早饭,共用5+4+8=17(分钟).
【答案】 A
5.(2014·全国卷Ⅰ)执行下面的程序框图2110,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )
图2110
A .203
B .165
C .72
D .158
【解析】 当n =1时,M =1+12=32,a =2,b =3
2;
当n =2时,M =2+23=83,a =32,b =8
3;
当n =3时,M =32+38=158,a =83,b =15
8
;
n =4时,终止循环.输出M =15
8
.
【答案】 D 二、填空题
6.椭圆x 2a 2+y 2
b
2=1(a >b >0)的面积为S =πab ,当a =4,b =2时,计算椭圆面积的流程
图如图2111所示,则空白处应为________.
图2111
【解析】 由S =πab 知,需要输入a ,b 的值,由已知a =4,b =2,而且用的是框,故为赋值.
【答案】 a =4,b =2
7.如图2112是计算1+13+15+…+1
99的程序框图,判断框中应填的内容是________,
处理框中应填的内容是________.
图2112
【解析】用i来表示计数变量,故判断框内为“i>99?”,处理框内为“i=i+2”.【答案】i>99?i=i+2
8.(2014·辽宁高考)执行如图2113所示的程序框图,若输入n=3,则输出T=________.
图2113
【解析】初始值:i=0,S=0,T=0,n=3,
①i=1,S=1,T=1;
②i=2,S=3;T=4;
③i=3,S=6,T=10;
④i=4,S=10,T=20,
由于此时4≤3不成立,停止循环,输出T=20.
【答案】20
三、解答题
9.设计一个计算1+2+…+100的值的程序框图.
【解】程序框图设计如下:
10.数学建模过程的流程图如图2114.
图2114
根据这个流程图,说明数学建模的过程.
【解】数学建模的过程:根据实际情境提出问题,从而建立数学模型得出数学结果,然后检验是否合乎实际,如果不合乎实际,进行修改后重新提出问题.如果合乎实际,则成为可用的结果.
[能力提升]
1.某工厂加工某种零件的工序流程图如图2115:
图2115
按照这个工序流程图,一件成品至少经过几道加工和检验程序( )
A.3 B.4
C.5 D.6
【解析】由流程图可知加工零件有三道工序:粗加工、返修加工和精加工,每道工序完成都要对产品进行检验,粗加工的合格品进入精加工,不合格品进入返修加工;返修加工的合格品进入精加工,不合格品作为废品处理;精加工的合格品为成品,不合格品为废品.由上可知一件成品至少要经过粗加工、检验、精加工、最后检验四道程序.
【答案】 B
2.执行两次如图2116所示的程序框图,若第一次输入的a的值为-1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为( )
图2116
A.0.2,0.2 B.0.2,0.8
C.0.8,0.2 D.0.8,0.8
【解析】第一次:a=-1.2<0,a=-1.2+1=-0.2,-0.2<0,a=-0.2+1=0.8>0,a=0.8≥1不成立,输出0.8.
第二次:a=1.2<0不成立,a=1.2≥1成立,a=1.2-1=0.2≥1不成立,输出0.2.
【答案】 C
3.如图2117所示算法程序框图中,令a=tan 315°,b=sin 315°,c=cos 315°,则输出结果为________.
图2117
【解析】程序框图的算法是求出a,b,c三个数中的最大值.对于tan 315°=-1,
sin 315°=-
2
2
,cos 315°=
2
2
,故输出的结果为
2
2
.
【答案】
2 2
4.栽种一棵梧桐树,其种树过程是:(1)取树苗;(2)挖直径1米,深1.5米的树坑;
(3)将树苗放至树坑中央;(4)向树坑中培土到树坑边,离边缘0.2米;(5)向树坑中浇水;
(6)判断水是否浇透,若水未浇透,则转(5);否则转(7);(7)栽种完毕.试画出该过程的流程图.
【解】流程图如图所示.。