2019-2020年高中数学第一章空间几何体章末检测新人教A版
2019_2020学年高中数学第一章空间几何体单元质量测评(含解析)新人教A版必修2

第一章 单元质量测评对应学生用书P21 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.下列命题中正确的是( )A .由五个平面围成的多面体只能是四棱锥B .棱锥的高线可能在几何体之外C .仅有一组对面平行的六面体是棱台D .有一个面是多边形,其余各面是三角形的几何体是棱锥 答案 B解析 由五个平面围成的多面体可能是四棱锥或三棱柱,故A 不正确;根据棱锥的定义,棱锥的高线可能在几何体之外,故B 正确;仅有一组对面平行的六面体可能是四棱台,也可能是四棱柱,故C 不正确;因为棱锥的定义中要求这些三角形必须有公共的顶点,故D 不正确.所以选B .2.如果把圆锥的母线长扩大到原来的n 倍,底面半径缩小为原来的1n ,那么它的侧面积变为原来的( )A .1倍B .n 倍C .n 2倍 D .1n答案 A解析 设圆锥的底面半径为r ,母线长为l ,则侧面积S =πrl,变化后其底面半径为1n r ,母线长为nl ,故变化后的侧面积S′=π·1nr·nl=πrl,所以S′=S .3.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.其实际直观图中四边形不存在,当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是( )A.a,b B.a,c C.c,b D.b,d答案 A解析正视图和侧视图完全相同时,牟合方盖相对的两个曲面正对前方,正视图为一个圆,而俯视图为一个正方形,且有两条实线的对角线.故选A.4.若干毫升水倒入底面半径为2 cm的圆柱形器皿中,量得水面的高度为6 cm,若将这些水全部倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( ) A.6 3 cm B.6 cmC .2318 cmD .3312 cm 答案 B解析 水的体积V =π×22×6=24π(cm 3).设圆锥中水的底面半径为r ,则水的高度为3r ,∴13πr 2·3r =24π,∴r 3=243. ∴(3r)3=216,∴3r =6,即圆锥中水面的高度为6 cm .5.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的体积为( )A .4π3B .3π C.3π2 D .π答案 C解析 由三视图知,如图,此四面体的外接球即为棱长为1的正方体的外接球,设外接球的半径为R ,则2R =3,R =32.所以球的体积为V =43π×⎝ ⎛⎭⎪⎫323=3π2.6.如图所示是古希腊数学家阿基米德墓碑上刻着的一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟大发现.圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为( )A .32,1B .23,1C .32,32D .23,32 答案 C解析 设球的半径为R ,则圆柱的底面半径为R ,高为2R . ∵V 圆柱=πR 2×2R=2πR 3,V 球=43πR 3,∴V 圆柱V 球=2πR 343πR 3=32. ∵S 圆柱表面积=2πR×2R+2×πR 2=6πR 2,S 球表面积=4πR 2, ∴S 圆柱表面积S 球表面积=6πR 24πR 2=32. 7.一个棱台上、下底面的面积分别为16,81,有一平行于底面的截面,其面积为36,则截得的两棱台的高之比为( )A .1∶1 B.1∶2 C.2∶3 D.3∶4 答案 C解析 设截得的上面的棱台的高为h 1,下面的棱台的高为h 2,以棱台上底面为底面将棱台补为棱锥,设最上面的小棱锥的高为h ,根据棱锥的性质可得16∶36∶81=h 2∶(h+h 1)2∶(h +h 1+h 2)2,解得h 1∶h 2=2∶3.8.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =6,AD =4,AA 1=3,分别过BC ,A 1D 1的两个平行截面将长方体分成三部分,其体积分别记为V 1=V 三棱柱AEA 1-DFD1,V 2=V 四棱柱EBE 1A 1-FCF 1D 1,V 3=V 三棱柱B 1E 1B -C 1F 1C .若V 1∶V 2∶V 3=1∶4∶1,则截面A 1EFD 1的面积为( )A .213B .413C .613D .813 答案 B解析 由题意可知,V 长方体=6×4×3=72,V 1=16V =16×72=12.其中体积为V 1的几何体是三棱柱AEA 1-DFD 1,其高为AD =4,∴其底面积S△AEA 1=3.在Rt△AEA 1中,∵AA 1=3,∴AE=2. ∴A 1E =32+22=13.又∵截面A 1EFD 1为矩形,∴其面积S =413.9.已知一个棱长为2的正方体,被一个平面截去一部分后所得几何体的三视图如图所示,则该几何体的体积是( )A .143B .173C .203 D .8答案 B解析由三视图,知该几何体的直观图是如图所示的多面体B 1C 1D 1-BCDFE ,该多面体可补全为棱长为2的正方体,其中E ,F 分别为AB ,AD 的中点,多面体AEF -A 1B 1D 1为棱台,棱台高为2,上、下底面均为等腰直角三角形.则该几何体的体积是2×2×2-13×2×12+2+2×12=8-73=173,故选B .10.用斜二测画法画水平放置的△ABC 的直观图,得到如图所示的等腰直角三角形A′B′C′.已知点O′是斜边B′C′的中点,且A′O′=1,则△ABC 的边BC 上的高为( )A .1B .2C . 2D .2 2 答案 D解析 ∵△ABC 的直观图是等腰直角三角形A′B′C′,∠B′A′C′=90°,A′O′=1,∴A′C′=2.根据直观图平行于y 轴的长度变为原来的一半,∴△ABC 的BC 边上的高为AC =2A′C′=22.故选D .11.设长方体的三条棱长分别为a ,b ,c ,若长方体的所有棱的长度之和为24,一条体对角线长为5,体积为2,则1a +1b +1c等于( )A .114B .411C .112D .211答案 A解析 由题意可知a +b +c =6,① a 2+b 2+c 2=25,② abc =2.由①两边平方,得a 2+b 2+c 2+2(ab +ac +bc)=36,把②代入此式,得ab +ac +bc =112.∴1a +1b +1c =bc +ac +ab abc =1122=114.12.如图,直三棱柱(侧棱垂直于底面)ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,且AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( )A .2B .1C . 2D .22答案 C解析 连接BC 1,B 1C ,设交于点O ,则O 为侧面BCC 1B 1的中心,由题意知,球心为侧面BCC 1B 1的中心O ,BC 为截面圆的直径,所以∠BAC=90°,则△ABC 的外接圆的圆心N 位于BC 的中点.同理,△A 1B 1C 1的外接圆的圆心M 位于B 1C 1的中点,设正方形BCC 1B 1的边长为x ,在Rt△OMC 1中,OM =x 2,MC 1=x 2,OC 1=R =1(R 为球的半径),所以⎝ ⎛⎭⎪⎫x 22+⎝ ⎛⎭⎪⎫x 22=1.解得x =2,所以B 1B =BC =2.同理,在Rt△ABC 中,解得AB =AC =1,所以侧面ABB 1A 1的面积为2×1=2.故选C .第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.用长、宽分别是3π与π的矩形硬纸卷成圆柱的侧面,则圆柱底面的半径为________. 答案 32或12解析 设圆柱底面的半径为R ,当以宽为母线,长为底面圆周长时,则2πR=3π,R =32;当以长为母线,宽为底面圆周长时,则2πR=π,R =12.14.我国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x 为________.答案 1.6解析 由图可得π×⎝ ⎛⎭⎪⎫122×x+3×1×(5.4-x)=12.6,解得x =1.6.15.若一个圆台的轴截面是腰长为a 的等腰梯形,下底边长为2a ,对角线长为3a ,则这个圆台的体积为________.答案7324πa 3解析 圆台的轴截面如图,由AD =a ,AB =2a ,BD =3a ,可知∠ADB=90°,∠D AB =60°.分别过点D ,C 作DH⊥AB,CG⊥AB,所以DH =32a ,所以HB =BD 2-DH 2=3a 2-34a 2=32a ,所以DC =HG =a ,所以圆台的体积为V =π3·⎝ ⎛⎭⎪⎫14a 2+12a 2+a 2·32a =7324πa 3.16.把由折线y =|x|和y =2围成的图形绕x 轴旋转360°,所得旋转体的体积为________.答案32π3解析 由题意,y =|x|和y =2围成图中阴影部分的图形,旋转体为一个圆柱挖去两个共顶点的圆锥.∵V圆柱=π×22×4=16π,2V圆锥=2×π3×22×2=16π3,∴所求几何体的体积为16π-16π3=32π3.三、解答题(本大题共6小题,共70分)17.(本小题满分10分)把长、宽分别为4、2的矩形卷成一个圆柱的侧面,求这个圆柱的体积.解 设圆柱的底面半径为r ,母线长为l ,高为h .当2πr=4,l =2时,r =2π,h =l=2,所以V 圆柱=πr 2h =8π.当2πr=2,l =4时,r =1π,h =l =4,所以V 圆柱=πr 2h =4π.综上所述,这个圆柱的体积为8π或4π.18.(本小题满分12分)如图所示是一个圆台形的纸篓(有底无盖),它的母线长为50 cm ,两底面直径分别为40 cm 和30 cm .现有制作这种纸篓的塑料制品50 m 2,问最多可以做这种纸篓多少个?解 根据题意可知,纸篓底面圆的半径r′=15 cm ,上口的半径r =20 cm ,设母线长为l ,则纸篓的表面积S =πr′2+2πr′+2πr l 2=π(r′2+r′l+rl)=π(152+15×50+20×50)=1975π(cm 2).因为50 m 2=500000 cm 2,故最多可以制作这种纸篓的个数n =500000S≈80.19.(本小题满分12分)如图所示,在正三棱柱(底面为正三角形,侧棱垂直底面)ABC -A 1B 1C 1中,AB =3,AA 1=4,M 为AA 1的中点,P 是BC 上的一点,且由P 沿棱柱侧面经过棱CC 1到M 的最短路线为29.设这条最短路线与CC 1的交点为N ,求:(1)该三棱柱的侧面展开图的对角线的长;(2)PC 和NC 的长.解 (1)该三棱柱的侧面展开图是宽为4,长为9的矩形,所以对角线的长为42+92=97.(2)将该三棱柱的侧面沿棱BB 1展开,如图所示.设PC 的长为x ,则MP 2=MA 2+(AC +x)2. 因为MP =29,MA =2,AC =3, 所以x =2(负值舍去),即PC 的长为2. 又因为NC∥AM,所以PC PA =NC AM ,即25=NC2,所以NC =45.20.(本小题满分12分)如果一个几何体的正视图与侧视图都是全等的长方形,边长分别是4 cm 与2 cm ,如图所示,俯视图是一个边长为4 cm 的正方形.(1)求该几何体的表面积; (2)求该几何体的外接球的体积.解 (1)由题意可知,该几何体是长方体, 底面是正方形,边长是4,高是2,因此该几何体的表面积是:2×4×4+4×4×2=64(cm 2),即该几何体的表面积是64 cm 2. (2)由长方体与球的性质可得,长方体的体对角线是球的直径,记长方体的体对角线长为d ,球的半径为r ,则d =16+16+4=36=6(cm), 所以球的半径为r =3(cm).因此,球的体积V =43πr 3=43×27π=36π(cm 3),即外接球的体积是36π cm 3.21.(本小题满分12分)如图所示,已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,E ,F 分别是A 1A ,CC 1的中点,求四棱锥C 1-B 1EDF 的体积.解 连接EF ,B 1D 1.设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2.∵正方体ABCD -A 1B 1C 1D 1的棱长为a ,E ,F 分别是A 1A ,CC 1的中点,∴h 1+h 2=B 1D 1=2a . 又S△C1EF=12C 1F·EF=12×a 2×2a =24a 2,∴VC1-B1EDF =VB1-C1EF +VD -C1EF =13·S△C1EF·(h 1+h 2)=13×24a 2×2a =16a 3. 22.(本小题满分12分)已知正三棱锥(底面为正三角形,顶点在底面内的正投影为底面的中心)S -ABC ,一个正三棱柱的一个底面的三个顶点在正三棱锥的三条侧棱上,另一底面在正三棱锥的底面上,若正三棱锥的高为15 cm ,底面边长为12 cm ,内接正三棱柱的侧面积为120 cm 2.(1)求三棱柱的高;(2)求棱柱上底面截棱锥所得的小棱锥与原棱锥的侧面积之比. 解 (1)设正三棱柱的高为h cm ,底面边长为x cm ,如图,则15-h 15=x12, ∴x=45(15-h).①又S 三棱柱侧=3x·h=120, ∴xh=40.②解①②得⎩⎪⎨⎪⎧x =4,h =10或⎩⎪⎨⎪⎧x =8,h =5.故正三棱柱的高为10 cm 或5 cm . (2)由棱锥的性质,得S 三棱锥S -A 1B 1C 1侧S 三棱锥S -ABC 侧=⎝ ⎛⎭⎪⎫15-10152=19或S 三棱锥S -A 1B 1C 1侧S 三棱锥S -ABC 侧=⎝ ⎛⎭⎪⎫15-5152=49.。
2019_2020学年高中数学第一章空间几何体章末质量检测(含解析)新人教A版必修2

章末质量检测(一) 空间几何体一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.答案:D2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线( )A.20条 B.15条C.12条 D.10条解析:由题意五棱柱对角线一定为上底面的一个顶点和下底面的一个顶点的连线,因为不同在任何侧面内,故从一个顶点出发的对角线有2条,五棱柱共有对角线2×5=10条.答案:D3.关于直观图画法的说法中,不正确的是( )A.原图形中平行于x轴的线段,其对应线段仍平行于x′轴,其长度不变B.原图形中平行于y轴的线段,其对应线段仍平行于y′轴,其长度不变C.画与坐标系xOy对应的坐标系x′O′y′时,∠x′O′y′可画成135°D.作直观图时,由于选轴不同,所画直观图可能不同解析:根据斜二测画法的规则可知B不正确.答案:B4.若圆柱的轴截面是一个正方形,其面积为4S,则它的一个底面面积是( ) A.4S B.4πSC.πS D.2πS解析:由题意知圆柱的母线长为底面圆的直径2R,则2R·2R=4S,得R2=S.所以底面面积为πR2=πS.答案:C5.如果一个正四面体(各个面都是正三角形)的体积为9 cm3,则其表面积为( ) A.18 3 cm2 B.18 cm2C.12 3 cm2 D.12 cm2解析:设正四面体的棱长为a cm,则底面积为34a2 cm2,易求得高为63a cm,则体积为13×34a2×63a=212a3=9,解得a=32,所以其表面积为4×34a2=183(cm2).答案:A6.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为1,6,3,其四面体的四个顶点在一个球面上,则这个球的表面积为( )A.16πB.32π C.36πD.64π解析:将四面体可补形为长方体,此长方体的对角线即为球的直径,而长方体的对角线长为12+62+32=4,即球的半径为2,故这个球的表面积为4πr2=16π.答案:A7.用斜二测画法得到的一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:直观图中的多边形为正方形,对角线的长为2,所以原图形为平行四边形,位于y轴上的对角线的长为2 2.答案:A8.球O 的截面把垂直于截面的直径分成1:3两部分,若截面圆半径为3,则球O 的体积为( )A .16π B.16π3C.32π3D .43π 解析:设直径被分成的两部分分别为r 、3r ,易知(3)2=r ·3r ,得r =1,则球O 的半径R =2,故V =43π·R 3=323π.答案:C9.[2019·湖北省黄冈中学检测]已知某几何体的直观图如图所示,则该几何体的体积是( )A.233+π B.233+2π C .23+π D.23+2π解析:由直观图可知该几何体由一个半圆柱和一个三棱柱组成,故其体积V =12π×12×2+12×2×3×2=π+2 3. 答案:C 10.如图,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P -BCC 1B 1的体积为( )A.83B.163 C .4 D .5解析:V多面体P-BCC1B1=13S正方形BCC1B1·PB1=13×42×1=163.答案:B11.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥的侧面分成的三部分的面积之比为( )A.1:2:3 B.1:3:5C.1:2:4 D.1:3:9解析:如图,由题意知O1A1O2A2OA=1:2:3,以O1A1,O2A2,OA为半径的圆锥的侧面积之比为1:4:9.故圆锥被截面分成的三部分侧面的面积之比为1:(4-1):(9-4)=1:3:5.答案:B12.已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A.122π B.12πC.82π D.10π解析:过直线O1O2的截面为圆柱的轴截面,设底面半径为r,母线长为l,因为轴截面是面积为8的正方形,所以2r=l=22,所以r=2,所以圆柱的表面积为2πrl+2πr2=8π+4π=12π.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.正方形ABCD绕对角线AC所在直线旋转一周所得组合体的结构特征是________.解析:由圆锥的定义知是两个同底的圆锥形成的组合体.答案:两个同底的圆锥组合体14.[2019·甘肃省兰州市校级检测]若某空间几何体的直观图如图所示,则该几何体的表面积是________.解析:根据直观图可知该几何体是横着放的直三棱柱,所以S 侧=(1+2+3)×2=2+2+6, S 底=12×1×2=22, 故S 表=2+2+6+2×22=2+22+ 6. 答案:2+22+ 6 15.如图所示,已知正三棱柱ABC -A 1B 1C 1的底面边长为2,高为5,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达A 1点的最短路线的长为________.解析:如图所示,将三棱柱沿AA 1剪开,可得一矩形,其长为6,宽为5,其最短路线为两相等线段之和,其长度等于2⎝ ⎛⎭⎪⎫522+62=13.答案:1316.若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为________.解析:过圆锥的旋转轴作轴截面,得△ABC 及其内切圆⊙O 1和外切圆⊙O 2,且两圆同圆心,即△ABC 的内心与外心重合,易得△ABC 为正三角形,由题意知⊙O 1的半径为r =1,△ABC 的边长为23,于是知圆锥的底面半径为3,高为3.故所求体积为V =13×π×3×3=3π.答案:3π三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图所示是一个长方体截去一个角得到的几何体的直观图(单位:cm).按照给出的数据,求该几何体的体积.解:该几何体的体积V =V 长方体-V 三棱锥=4×4×6-13×⎝ ⎛⎭⎪⎫12×2×2×2=2843(cm 3).18.(12分)如图是由正方形ABCE 和正三角形CDE 所组成的平面图形,试画出其水平放置的直观图.解:(1)以AB 所在的直线为x 轴,AB 的中垂线为y 轴建立直角坐标系,如图(1),再建立坐标系x ′O ′y ′,使两轴的夹角为45°,如图(2).(2)以O ′为中点,在x ′轴上截取A ′B ′=AB ,分别过A ′,B ′作y ′轴的平行线,截取A ′E ′=12AE ,B ′C ′=12BC .在y ′轴上截取O ′D ′=12OD .(3)连接E ′D ′,E ′C ′,C ′D ′,并擦去作为辅助线的坐标轴,就得到所求的直观图,如图(3).19.(12分)如图所示,在多面体FE ABCD 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,求该多面体的体积V .解析:如图所示,分别过A ,B 作EF 的垂线AG ,BH ,垂足分别为G ,H .连接DG ,CH ,容易求得EG =HF =12.所以AG =GD =BH =HC =32, S △AGD =S △BHC =12×22×1=24, V =V E ADG +V F BHC +V AGD BHC=⎝ ⎛⎭⎪⎫13×12×24×2+24×1=23. 20.(12分)用一张相邻边长分别为4 cm,8 cm 的矩形硬纸片卷成圆柱的侧面(接缝处忽略不计),求该圆柱的表面积.解析:有两种不同的卷法,分别如下:(1)如图①所示,以矩形8 cm 长的边为母线,把矩形硬纸片卷成圆柱侧面,此时底面圆的周长为2π·OA =4,则OA =r 1=2π cm ,∴两底面面积之和为8π cm 2,∴S 表=⎝ ⎛⎭⎪⎫32+8π cm 2,即该圆柱的表面积为⎝⎛⎭⎪⎫32+8πcm 2.(2)如图②所示,以矩形4 cm 长的边为母线,把矩形硬纸片卷成圆柱侧面,此时底面圆的周长为2π·OB =8,则OB =r 2=4π cm ,∴两底面面积之和为32π cm 2,∴S 表=⎝ ⎛⎭⎪⎫32+32πcm 2,即该圆柱的表面积为⎝⎛⎭⎪⎫32+32πcm 2.21.(12分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′-BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′-BC ′D 的体积.解析:(1)∵ABCD -A ′B ′C ′D ′是正方体, ∴A ′B =A ′C ′=A ′D =BC ′=BD =C ′D =2a ,∴三棱锥A ′-BC ′D 的表面积为4×12×2a ×32×2a =23a 2.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为23a26a2=33. (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的. 故V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3-4×13×12a 2×a =a33.22.(12分)若圆锥与球的体积相等,且圆锥底面半径与球的直径相等,求圆锥侧面积与球的表面积之比.解析:设圆锥的底面半径为r ,高为h ,母线长为l ,球的半径为R , 则由题意得⎩⎪⎨⎪⎧13πr 2·h =43πR 3r =2R∴13π(2R )2·h =43πR 3,∴R =h ,r =2h , ∴l =r 2+h 2=5h ,∴S 圆锥侧=πrl =π×2h ×5h =25πh 2,S 球=4πR 2=4πh 2,∴S 圆锥侧S 球=25πh 24πh 2=52.。
高中数学第一章空间几何体章末检测无答案新人教A版必修

第一章 空间几何体章末综合检测一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中正确的是( )A .棱柱的侧面可以是三角形B .正方体和长方体都是特殊的四棱柱C .所有的几何体的表面都能展成平面图形D .棱柱的各条棱都相等2.正方体的表面积与其外接球的表面积的比为( )A .3∶πB .2∶πC .1∶2πD .1∶3π3.过球的一条半径的中点作垂直于该半径的平面,则所得截面圆的面积与球的表面积的比值为( )A.316 B .916 C.38 D .9324.如图,在长方体ABCD A 1B 1C 1D 1中,棱锥A 1ABCD 的体积与长方体AC 1的体积的比值为( )A.12 B .16 C.13 D .155.如图是一个空间几何体的正视图、侧视图、俯视图,如果直角三角形的直角边长均为1,那么这个几何体的体积为( )A .1B .12 C.13 D .166.某几何体的三视图如图所示,则它的体积是( )A .8-2π3B .8-π3C .8-2πD .2π37.某几何体的三视图如图所示,则该几何体的表面积为( )A .2π+12B .π+12C .2π+24D .π+248.如图甲所示,一只装了水的密封瓶子,其内部可以看成是由底面半径为1 cm 和半径为3 cm 的两个圆柱组成的简单几何体.当这个几何体如图乙水平放置时,液面高度为20 cm ,当这个几何体如图丙水平放置时,液面高度为28 cm ,则这个简单几何体的总高度为( )A .29 cmB .30 cmC .32 cmD .48 cm9.已知四棱锥S ABCD 的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥体积取得最大值时,其表面积等于4+43,则球O 的体积等于( ) A.423π B .823π C.1623π D .3223π 10.已知正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B .16πC .9πD .27π411.(2016·成都质检)已知某几何体的三视图如图所示,该几何体的体积为92,则a =( )A.52 B .3 C.72D .4 12.一个圆锥形容器和一个圆柱形容器的轴截面如图所示,两容器内所盛液体的体积正好相等,且液面高度h 也相等,则h a等于( )A.12 B .22 C.32D .2 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若一个三棱柱的底面是正三角形,其正视图如图所示,则它的体积为________.14.如图,球O 的半径为5,一个内接圆台的两底面半径分别为3和4(球心O 在圆台的两底面之间),则圆台的体积为________.15.某简单组合体的三视图如图所示,其中正视图与侧视图相同(尺寸如图,单位:cm),则该组合体的体积是________cm3(结果保留π).16.已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为________.解析:三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)如图所示,设计一个四棱锥形冷水塔塔顶(无底),四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2 m,高为7 m,制造这个塔顶需要多少铁板?18.(本小题满分12分)某工厂为了制造一个实心工件,先画出了这个工件的三视图(如图),其中正视图与侧视图为两个全等的等腰三角形,俯视图为一个圆(含圆心),三视图尺寸如图所示(单位:cm).(1)求出这个工件的体积;(2)工件做好后,要给表面喷漆,已知喷漆费用是每平方厘米1元,现要制作10个这样的工件,请计算喷漆总费用(精确到整数部分).19.(本小题满分12分) 如图,直三棱柱ABCA1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,求侧面ABB1A1的面积.20.(本小题满分12分)在棱长为1的正方体内,有两球相外切,并且又分别与正方体内切.(1)求两球的半径之和;(2)球的半径是多少时,两球的体积之和最小.21.(本小题满分12分)如图所示,在△ABC中,∠ACB=90°,∠B=30°,AC=2,M是AB 的中点,将△ACM沿CM折起,使A,B间的距离为22,求三棱锥ABCM的体积.22. (本小题满分12分)如图,已知圆锥SO中,底面半径r=1,母线l=4,M为母线SA上的一个点,且SM=x,从点M拉一根绳子,围绕圆锥的侧面转到A点.求(1)绳子的最短长度的平方f(x);(2)绳子最短时,顶点到绳子的最短距离.。
高考数学第一章空间向量与立体几何章末检测试卷一新人教A版选择性必修第一册

章末检测试卷(一)(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分) 1.在长方体ABCD -A 1B 1C 1D 1中,AB →+BC →+CC 1—→-D 1C 1—→等于( ) A.AD 1—→ B.AC 1—→ C.AD → D.AB → 答案 A解析 AB →+BC →+CC 1—→-D 1C 1—→=AC 1—→+C 1D 1—→=AD 1—→.2.若直线l 的方向向量为a ,平面α的法向量为μ,则能使l ∥α的是( ) A .a =(1,0,0),μ=(-2,0,0) B .a =(1,3,5),μ=(1,0,1) C .a =(0,2,1),μ=(-1,0,1) D .a =(1,-1,3),μ=(0,3,1) 答案 D解析 由l ∥α,故a ⊥μ,即a ·μ=0,故选D.3.已知棱长为1的正方体ABCD -A 1B 1C 1D 1的上底面A 1B 1C 1D 1的中心为O 1,则AO 1—→·AC →的值为( )A .-1B .0C .1D .2 答案 C解析 由于AO 1—→=AA 1—→+A 1O 1—→=AA 1—→+12(A 1B 1—→+A 1D 1—→)=AA 1—→+12(AB →+AD →),而AC →=AB →+AD →,则AO 1—→·AC →=⎣⎢⎡⎦⎥⎤AA 1—→+12AB →+AD →·(AB →+AD →)=12(AB →+AD →)2=1.4.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( ) A .2 B .3 C .4 D .5答案 B解析 设BC 边的中点为D , 则AD →=12(AB →+AC →)=(-1,-2,2),所以|AD →|=1+4+4=3.5.若向量a =(x ,4,5),b =(1,-2,2),且a 与b 的夹角的余弦值为26,则x 等于( )A .3B .-3C .-11D .3或-11 答案 A解析 因为a ·b =(x ,4,5)·(1,-2,2)=x -8+10=x +2,且a 与b 的夹角的余弦值为26, 所以26=x +2x 2+42+52×1+4+4,解得x =3或-11(舍去),故选A. 6.平面α的法向量u =(x ,1,-2),平面β的法向量ν=⎝ ⎛⎭⎪⎫-1,y ,12,已知α∥β,则x +y 等于( ) A.154 B.174 C .3 D.52答案 A解析 由题意知,∵α∥β,∴u =λν,即⎩⎪⎨⎪⎧x =-λ,1=λy ,-2=12λ,解得λ=-4,y =-14,x =4,∴x +y =4-14=154.7.已知平面α内两向量a =(1,1,1),b =(0,2,-1)且c =m a +n b +(4,-4,1).若c 为平面α的法向量,则m ,n 的值分别为( ) A .-1,2 B .1,-2 C .1,2 D .-1,-2答案 A解析 c =m a +n b +(4,-4,1)=(m ,m ,m )+(0,2n ,-n )+(4,-4,1) =(m +4,m +2n -4,m -n +1), 由c为平面α的法向量,得⎩⎪⎨⎪⎧c ·a =0,c ·b =0,即⎩⎪⎨⎪⎧3m +n +1=0,m +5n -9=0,解得⎩⎪⎨⎪⎧m =-1,n =2.8.如图,四棱锥P -ABCD 中,PB ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,AB ⊥BC ,AB =AD =PB =3,点E 在棱PA 上,且PE =2EA ,则平面ABE 与平面BED 的夹角的余弦值为( )A.23 B.66 C.33 D.63答案 B解析 如图,以B 为坐标原点,分别以BC ,BA ,BP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系,则B (0,0,0),A (0,3,0),P (0,0,3),D (3,3,0),E (0,2,1), ∴BE →=(0,2,1),BD →=(3,3,0). 设平面BED 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BE →=2y +z =0,n ·BD →=3x +3y =0,取z =1,得n =⎝ ⎛⎭⎪⎫12,-12,1.又平面ABE 的法向量为m =(1,0,0),∴cos〈n ,m 〉=m ·n |n ||m |=1262×1=66.∴平面ABE 与平面BED 的夹角的余弦值为66. 二、多项选择题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知空间三点A (1,0,3),B (-1,1,4),C (2,-1,3).若AP →∥BC →,且|AP →|=14,则点P 的坐标为( ) A .(4,-2,2) B .(-2,2,4) C .(-4,2,-2) D .(2,-2,4)答案 AB解析 设AP →=(3λ,-2λ,-λ).又|AP →|=14, ∴3λ2+-2λ2+-λ2=14,解得λ=±1,∴AP →=(3,-2,-1)或AP →=(-3,2,1).设点P 的坐标为(x ,y ,z ),则AP →=(x -1,y ,z -3),∴⎩⎪⎨⎪⎧ x -1=3,y =-2,z -3=-1或⎩⎪⎨⎪⎧ x -1=-3,y =2,z -3=1,解得⎩⎪⎨⎪⎧x =4,y =-2,z =2或⎩⎪⎨⎪⎧x =-2,y =2,z =4.故点P 的坐标为(4,-2,2)或(-2,2,4).10.在三棱锥A -BCD 中,DA ,DB ,DC 两两垂直,且DB =DC ,E 为BC 的中点,则直线AE 和BC ( )A .垂直 B. 相交 C .共面 D .异面答案 ABC解析 因为E 为BC 的中点,所以AE →=DE →-DA →=12(DB →+DC →)-DA →,因为在三棱锥A -BCD 中,DA ,DB ,DC 两两垂直,且DB =DC , 所以AE →·BC →=⎣⎢⎡⎦⎥⎤12DB →+DC →-DA →·(DC →-DB →)=12(DC →2-DB →2)=0. 所以AE 和BC 垂直.又AE ,BC 显然相交,故选ABC.11.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( ) A .l ∥α B .l ⊥α C .l ⊂α D .l 与α相交答案 BD解析 ∵a =(1,0,2),n =(-2,0,-4), ∴n =-2a ,即a ∥n ,∴l ⊥α.12.已知直线l 过点P (1,0,-1)且平行于向量a =(2,1,1),平面α过直线l 与点M (1,2,3),则平面α的法向量可能是( )A .(1,-4,2) B.⎝ ⎛⎭⎪⎫14,-1,12C.⎝ ⎛⎭⎪⎫-14,1,-12D .(0,-1,1)答案 ABC解析 因为PM →=(0,2,4),直线l 平行于向量a ,若n 是平面α的一个法向量,则必须满足PM →与法向量垂直,把选项代入验证,只有选项D 不满足,故选ABC. 三、填空题(本大题共4小题,每小题5分,共20分)13.已知正方体ABCD -A 1B 1C 1D 1中,若点F 是侧面CD 1的中心,且AF →=AD →+mAB →-nAA 1→,则m =________. 答案 12解析 由于AF →=AD →+DF →=AD →+12(DC →+DD 1—→)=AD →+12AB →+12AA 1—→,所以m =12,n =-12.14.设平面α的法向量为m =(1,2,-2),平面β的法向量为n =(-2,-4,k ),若α∥β,则k =________. 答案 4解析 由α∥β得1-2=2-4=-2k,解得k =4.15.在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为________. 答案55解析 不妨设CB =1,则B (0,0,1),A (2,0,0),C 1(0,2,0),B 1(0,2,1). ∴BC 1—→=(0,2,-1),AB 1—→=(-2,2,1).cos 〈BC 1—→,AB 1—→〉=BC 1—→·AB 1—→|BC 1—→|·|AB 1—→|=0+4-15×3=55.16.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 为CC 1的中点,P ,Q 是正方体表面上相异两点,满足BP ⊥A 1E ,BQ ⊥A 1E .(1)若P ,Q 均在平面A 1B 1C 1D 1内,则PQ 与BD 的位置关系是________;(2)|A 1P |的最小值为________.(本题第一空2分,第二空3分) 答案 (1)平行 (2)324解析 (1)以D 为原点,以DA ,DC ,DD 1 所在的直线为 x ,y ,z 轴,建立空间直角坐标系如图所示,A 1(1,0,1),E ⎝⎛⎭⎪⎫0,1,12,B (1,1,0) ,因为P ,Q 均在平面A 1B 1C 1D 1内,所以设P (a ,b ,1),Q (m ,n ,1),A 1E —→=⎝ ⎛⎭⎪⎫-1,1,-12,BP →=(a -1,b -1,1),BQ →=(m -1,n -1,1) ,因为BP ⊥A 1E , BQ ⊥A 1E ,所以⎩⎪⎨⎪⎧BP →·A 1E —→=-a -1+b -1-12=0,BQ →·A 1E —→=-m -1+n -1-12=0,解得⎩⎪⎨⎪⎧b -a =12,n -m =12,PQ →=(n -b ,n -b ,0),BD →=(-1,-1,0) ,所以PQ 与BD 的位置关系是平行.(2)由(1)可知:b -a =12,|A 1P —→|=a -12+b 2=a -12+⎝ ⎛⎭⎪⎫a +122 =2a 2-a +54=2⎝ ⎛⎭⎪⎫a -142+98, 当a =14时,|A 1P —→|有最小值,最小值为324.四.解答题(本大题共6小题,共70分)17.(10分)已知a =(x ,4,1),b =(-2,y ,-1),c =(3,-2,z ),a ∥b ,b ⊥c ,求: (1)a ,b ,c ;(2)a +c 与b +c 夹角的余弦值.解 (1)因为a ∥b ,所以x -2=4y =1-1,解得x =2,y =-4,则a =(2,4,1),b =(-2,-4,-1). 又b ⊥c ,所以b ·c =0,即-6+8-z =0, 解得z =2,于是c =(3,-2,2).(2)由(1)得a +c =(5,2,3),b +c =(1,-6,1), 设a +c 与b +c 的夹角为θ, 因为cos θ=5-12+338·38=-219.所以a +c 与b +c 夹角的余弦值为-219.18.(12分)如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,CD ∥AB ,∠ABC =∠BCD =90°,AB =4,CD =1,点M 在PB 上,且PB =4PM ,∠PBC =30°,求证:CM ∥平面PAD .证明 建立如图所示的空间直角坐标系Cxyz ,∵∠PBC =30°,PC =2, ∴BC =23,PB =4,∴D (1,0,0),C (0,0,0),A (4,23,0),P (0,0,2), ∵PB =4PM , ∴PM =1,M ⎝ ⎛⎭⎪⎫0,32,32, ∴CM →=⎝ ⎛⎭⎪⎫0,32,32,DP →=(-1,0,2),DA →=(3,23,0),设平面PAD 的一个法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DP →=0,n ·DA →=0,即⎩⎨⎧-x +2z =0,3x +23y =0,令x =1,解得y =-32,z =12,故n =⎝⎛⎭⎪⎫1,-32,12, 又∵CM →·n =⎝ ⎛⎭⎪⎫0,32,32·⎝ ⎛⎭⎪⎫1,-32,12=0,∴CM →⊥n ,又CM ⊄平面PAD , ∴CM ∥平面PAD .19.(12分)如图,正方形ADEF 与梯形ABCD 所在的平面互相垂直,AD ⊥CD ,AB ∥CD ,AB =AD =2,CD =4,M 为CE 的中点.(1)求证:BM ∥平面ADEF ; (2)求证:BC ⊥平面BDE .证明 ∵平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,AD ⊥ED ,ED ⊂平面ADEF , ∴ED ⊥平面ABCD .以D 为原点,DA →,DC →,DE →分别为x 轴,y 轴,z 轴的正方向建立如图所示空间直角坐标系.则D (0,0,0),A (2,0,0),B (2,2,0),C (0,4,0),E (0,0,2),F (2,0,2). (1)∵M 为EC 的中点,∴M (0,2,1),则BM →=(-2,0,1),AD →=(-2,0,0),AF →=(0,0,2), ∴BM →=AD →+12AF →,故BM →,AD →,AF →共面.又BM ⊄平面ADEF ,∴BM ∥平面ADEF .(2)BC →=(-2,2,0),DB →=(2,2,0),DE →=(0,0,2), ∵BC →·DB →=-4+4=0,∴BC ⊥DB . 又BC →·DE →=0,∴BC ⊥DE . 又DE ∩DB =D ,∴BC ⊥平面BDE .20.(12分)在三棱柱ABC -A 1B 1C 1中,底面ABC 为正三角形,且侧棱AA 1⊥底面ABC ,且底面边长与侧棱长都等于2,O ,O 1分别为AC ,A 1C 1的中点,求平面AB 1O 1与平面BC 1O 间的距离. 解 如图,连接OO 1,根据题意,OO 1⊥底面ABC ,则以O 为原点,分别以OB ,OC ,OO 1所在的直线为x ,y ,z 轴建立空间直角坐标系.∵AO 1∥OC 1,OB ∥O 1B 1,AO 1∩O 1B 1=O 1,OC 1∩OB =O , ∴平面AB 1O 1∥平面BC 1O .∴平面AB 1O 1与平面BC 1O 间的距离即为点O 1到平面BC 1O 的距离. ∵O (0,0,0),B (3,0,0),C 1(0,1,2),O 1(0,0,2), ∴OB →=(3,0,0),OC 1—→=(0,1,2),OO 1—→=(0,0,2), 设n =(x ,y ,z )为平面BC 1O 的法向量,则⎩⎪⎨⎪⎧n ·OB →=0,n ·OC 1—→=0,即⎩⎪⎨⎪⎧x =0,y +2z =0,∴可取n =(0,2,-1). 点O 1到平面BC 1O 的距离记为d , 则d =|n ·OO 1—→||n |=25=255.∴平面AB 1O 1与平面BC 1O 间的距离为255.21.(12分)如图,在空间直角坐标系Dxyz 中,四棱柱ABCD -A 1B 1C 1D 1为长方体,AA 1=AB =2AD ,点E ,F 分别为C 1D 1,A 1B 的中点,求平面B 1A 1B 与平面A 1BE 夹角的余弦值.解 设AD =1,则A 1(1,0,2),B (1,2,0),C 1(0,2,2),D 1(0,0,2), 因为E ,F 分别为C 1D 1,A 1B 的中点, 所以E (0,1,2),F (1,1,1),所以A 1E —→=(-1,1,0),A 1B —→=(0,2,-2), 设m =(x ,y ,z )是平面A 1BE 的法向量, 则⎩⎪⎨⎪⎧A 1E —→·m =0,A 1B —→·m =0,所以⎩⎪⎨⎪⎧-x +y =0,2y -2z =0,所以⎩⎪⎨⎪⎧y =x ,y =z ,取x =1,则y =z =1,所以平面A 1BE 的一个法向量为m =(1,1,1). 又DA ⊥平面A 1B 1B ,所以DA →=(1,0,0)是平面A 1B 1B 的一个法向量, 所以cos 〈m ,DA →〉=m ·DA →|m ||DA →|=13=33,所以平面B 1A 1B 与平面A 1BE 夹角的余弦值为33. 22.(12分)如图所示, 已知几何体EFG -ABCD ,其中四边形ABCD ,CDGF ,ADGE 均为正方形,且边长为1,点M 在边DG 上.(1)求证:BM ⊥EF ;(2)是否存在点M ,使得直线MB 与平面BEF 所成的角为45°?若存在,确定点M 的位置;若不存在,请说明理由.(1)证明 因为四边形ABCD ,CDGF ,ADGE 均为正方形,所以GD ⊥DA ,GD ⊥DC ,AD ⊥CD , 又DA ∩DC =D ,所以GD ⊥平面ABCD .以点D 为坐标原点,建立如图所示的空间直角坐标系Dxyz , 则B (1,1,0),E (1,0,1),F (0,1,1).因为点M 在边DG 上,故可设M (0,0,t )(0≤t ≤1).11 可得MB →=(1,1,-t ),EF →=(-1,1,0),所以MB →·EF →=1×(-1)+1×1+(-t )×0=0,所以BM ⊥EF .(2)解 假设存在点M ,使得直线MB 与平面BEF 所成的角为45°. 设平面BEF 的法向量为n =(x ,y ,z ),因为BE →=(0,-1,1),BF →=(-1,0,1),所以⎩⎪⎨⎪⎧n ·BE →=0,n ·BF →=0,所以⎩⎪⎨⎪⎧ -y +z =0,-x +z =0, 令z =1,得x =y =1,所以n =(1,1,1)为平面BEF 的一个法向量, 所以cos 〈n ,MB →〉=n ·MB →|n ||MB →|=2-t3×2+t 2.因为直线MB 与平面BEF 所成的角为45°,所以sin 45°=|cos 〈n ,MB →〉|,所以⎪⎪⎪⎪⎪⎪2-t 3×2+t 2=22,解得t =-4±3 2.又0≤t ≤1,所以t =32-4. 所以存在点M (0,0,32-4).当点M 位于DG 上,且DM =32-4时,直线MB 与平面BEF 所成的角为45°.。
高中数学人教A版(2019)选择性必修一空间向量与立体几何单元测试

高中数学人教A 版(2019)选择性必修一空间向量与立体几何单元测试一、单选题(共8题;共16分)1.(2分)已知点 A(−3,1,−4) , B(3,−5,10) ,则线段 AB 的中点 M 的坐标为( )A .(0,−4,6)B .(0,−2,3)C .(0,2,3)D .(0,−2,6)2.(2分)如果向量 a⃗ =(2,−1,3) , b ⃗ =(−1,4,2) , c ⃗ =(1,−1,m) 共面,则实数 m 的值是( ) A .-1 B .1 C .-5 D .53.(2分)已知O ,A ,B ,C 为空间不共面的四点,且向量 a ⃗ = OA ⃗⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ ,向量 b ⃗ = OA ⃗⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ −OC ⃗⃗⃗⃗⃗ ,则不能与 a ⃗ ,b ⃗ 构成空间的一个基底的是( ) A .OA⃗⃗⃗⃗⃗⃗ B .OB ⃗⃗⃗⃗⃗⃗ C .OC ⃗⃗⃗⃗⃗D .OA ⃗⃗⃗⃗⃗⃗ 或 OB⃗⃗⃗⃗⃗⃗ 4.(2分)已知向量 a ⃗ =(0,3,3) 和 b⃗ =(−1,1,0) 分别是直线 l 和 m 的方向向量,则直线 l 与 m 所成的角为( )A .π6B .π4C .π3D .π25.(2分)若向量 a ⃗ =(1,λ,1) , b⃗ =(2,−1,−2), 且 a ⃗ 与 b ⃗ 的夹角余弦为 √26,则λ等于( ) A .−√2B .√2C .−√2 或 √2D .26.(2分)如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E = 14A 1B 1,则 BE → 等于( )A .(0,14,−1)B .(−14,0,1)C .(0,−14,1)D .(14,0,−1)7.(2分)设 x,y ∈R ,向量 a ⃗ =(x,1,1) , b ⃗ =(1,y,1) , c ⃗ =(2,−2,2) ,且 a ⃗ ⊥c ⃗ , b ⃗ //c ⃗ ,则 |a+b⃗ |= ( ) A .2√2 B .3 C .√5 D .48.(2分)已知正四面体 D −ABC 的各棱长为1,点 E 是 AB 的中点,则 EC⇀⋅AD ⇀ 的值为( ) A .14B .−14C .√34D .−√34二、多选题(共4题;共12分)9.(3分)已知M(-1,1,3),N(-2,-1,4),若M ,N ,O 三点共线,则O 点坐标可能为( )A .(3,5,-2)B .(-4,-5,6)C .( −52, 12 , −2 )D .(0,3,2)10.(3分)空间直角坐标系中,下列说法正确的是( )A .点 P(1,2,3) 关于坐标平面 xOy 的对称点的坐标为 (−1,2,−3)B .点 Q(1,0,2) 在平面 xOz 面上C .z =1 表示一个与坐标平面 xOy 平行的平面D .2x +3y =6 表示一条直线11.(3分)在长方体 ABCD −A 1B 1C 1D 1 中, AB =AD =2 , AA 1=3 ,以D 为原点, DA ⃗⃗⃗⃗⃗⃗ , DC ⃗⃗⃗⃗⃗⃗ , DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则下列说法正确的是( )A .B 1 的坐标为(2,2,3)B .BC 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,0,3)C .平面 A 1BC 1 的一个法向量为(-3,3,-2)D .二面角 B −A 1C 1−B 1 的余弦值为 √221112.(3分)设动点 P 在正方体 ABCD −A 1B 1C 1D 1 的对角线 BD 1 上,记 D 1P ⃗⃗⃗⃗⃗⃗⃗⃗ =λD 1B ⃗⃗⃗⃗⃗⃗⃗⃗ 当 ∠APC 为钝角时,则实数可能的取值是( ) A .12B .23C .13D .1三、填空题(共4题;共4分)13.(1分)如图所示,在正方体 ABCD −A 1B 1C 1D 1 中,点 E 为线段 AB 的中点,点 F 在线段 AD 上移动,异面直线 B 1C 与 EF 所成角最小时,其余弦值为 .14.(1分)如图,在三棱柱ABC−A1B1C1中,所有棱长均为1,且AA1⊥底面ABC,则点B1到平面ABC1的距离为.15.(1分)如图,二面角α−l−β为135°,A∈α,B∈β,过A,B分别作l的垂线,垂足分别为C,D,若AC=1,BD=√2,CD=2,则AB的长度为.16.(1分)四棱锥P−ABCD中,PD⊥底面ABCD,底面ABCD是正方形,且PD=1,AB=3,G是△ABC的重心,则PG与面P AB所成角θ的正弦值为.四、解答题(共6题;共65分)17.(10分)如图,在以A,B,C,D,E,F为顶点的多面体中,四边形ABCD是矩形,AB=2,AD=√6,EA⊥平面ABCD,FD//EA,EA=12FD=√2.(1)(5分)求证:BE//平面CDF;(2)(5分)求二面角C−EF−D的余弦值. 18.(10分)如图,在空间直角坐标系中有直三棱柱ABC−A1B1C1,底面是等腰直角三角形,AB=2,∠ACB=90°,侧棱BB1=2,D,E分别是CC1,A1B的中点.(1)(5分)求平面AED与平面AEC1的夹角的余弦.(2)(5分)求AC1与平面ADE所成角的余弦值.19.(10分)如图,在直三棱柱ABC−A1B1C1中,∠BAC=90°,AB=AC=AA1,E,F分别是AC和AB上动点,且AE=BF.(1)(5分)求证:B1E⊥C1F;(2)(5分)若AE=2EC,求二面角A1−EF−A的平面角的余弦值.20.(10分)如图,在四棱锥S−ABCD中,底面ABCD为矩形,SA⊥平面ABCD,AB=1,AD=AS=2,P是棱SD上一点,且SP=12PD.(1)(5分)求直线AB与CP所成角的余弦值;(2)(5分)求二面角A−PC−D的余弦值.21.(10分)如图,在直四棱柱ABCD−A1B1C1D1中,四边形ABCD为平行四边形,BC=BD=1,AB=√2,直线CC1与平面A1BD所成角的正弦值为√33.(1)(5分)求点C1到平面A1BD的距离;(2)(5分)求平面A1BD与平面C1BD的夹角的余弦值.22.(15分)如图,在四棱锥P−ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AB=AP,E 为棱PB的中点. (1)(5分)求直线PD与CE所成角的余弦值;(2)(5分)求直线CD与平面ACE所成角的正弦值;(3)(5分)求二面角E−AC−P的余弦值.答案解析部分1.【答案】B【解析】【解答】解:因为点 A(−3,1,−4) , B(3,−5,10) ,线段 AB 的中点 M 的坐标为 (0,−2,3) , 故选B.【分析】利用中点坐标公式求解即可.2.【答案】B【解析】【解答】由于向量 a ⃗ =(2,−1,3) , b ⃗ =(−1,4,2) , c ⃗ =(1,−1,m) 共面, 设 c ⃗ =xa ⃗ +yb ⃗ ,可得 {2x −y =1−x +4y =−13x +2y =m,解得 { x =37y =−17m =1. 故答案为:B.【分析】由向量的共线定理代入数值计算出结果即可。
人教A版高中数学选修1章末检测1第一章空间向量与立体几何

第一章章末检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在空间直角坐标系中,点P (-2,1,4)关于x 轴的对称点的坐标是( ) A .(-2,-1,-4) B .(-2,1,-4) C .(2,-1,4) D .(2,1,-4)【答案】A【解析】关于x 轴对称的点横坐标相等,纵坐标和竖坐标相反.故选A . 2.已知a =(1,2,-y ),b =(x ,1,2),且(a +2b )∥(2a -b ),则( ) A .x =13,y =1B .x =12,y =-4C .x =2,y =-14D .x =1,y =-1 【答案】B【解析】由题意可得,a +2b =(1+2x ,4,4-y ),2a -b =(2-x ,3,-2y -2).∵(a +2b )∥(2a -b ),∴∃λ∈R ,使a +2b =λ(2a -b ),得⎩⎪⎨⎪⎧1+2x =λ(2-x ),4=3λ,4-y =λ(-2y -2),解得⎩⎪⎨⎪⎧λ=43,x =12,y =-4.故选B . 3.已知空间三点O (0,0,0),A (-1,1,0),B (0,1,1),在直线OA 上有一点H 满足BH ⊥OA ,则点H 的坐标为( )A .(-2,2,0)B .(2,-2,0)C .⎝ ⎛⎭⎪⎫-12,12,0 D .⎝ ⎛⎭⎪⎫12,-12,0【答案】C【解析】由OA →=(-1,1,0),且点H 在直线OA 上,可设H (-λ,λ,0),则BH →=(-λ,λ-1,-1).又因为BH ⊥OA ,所以BH →·OA →=0,即(-λ,λ-1,-1)·(-1,1,0)=0,即λ+λ-1=0,解得λ=12,所以H ⎝ ⎛⎭⎪⎫-12,12,0. 4.在平行六面体ABCD -A 1B 1C 1D 1中,向量AB 1→,AD 1→,BD →是( )A .有相同起点的向量B .等长的向量C .不共面向量D .共面向量【答案】D【解析】因为AD 1→-AB 1→=B 1D 1→=BD →,所以AB 1→,AD 1→,BD →共面.5.已知E ,F 分别是棱长为1的正方体ABCD -A 1B 1C 1D 1的棱BC ,CC 1的中点,则截面AEFD 1与底面ABCD 所成二面角的正弦值是( )A .23B .23C .53D .233【答案】C【解析】以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则A (1,0,0),E ⎝ ⎛⎭⎪⎫12,1,0,F ⎝ ⎛⎭⎪⎫0,1,12,D 1(0,0,1),所以AD 1→=(-1,0,1),AE →=⎝ ⎛⎭⎪⎫-12,1,0.设平面AEFD 1的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AD 1→=0,n ·AE →=0,即⎩⎪⎨⎪⎧-x +z =0,-x 2+y =0,所以x =2y =z .取y =1,则n =(2,1,2).而平面ABCD 的一个法向量u =(0,0,1),因为cos 〈n ,u 〉=23,所以sin 〈n ,u 〉=53.6.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点E ,F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.若EF →=xAB →+yAD →+zAA 1→,则x +y +z =( )A .-1B .0C .13D .1【答案】C【解析】因为EF →=AF →-AE →=AD →+DF →-(AB →+BE →)=AD →+23DD 1→-AB →-13BB 1→=-AB →+AD →+13AA 1→,所以x =-1,y =1,z =13,所以x +y +z =13.7.在以下命题中,不正确的个数为( ) ①|a|-|b|=|a +b|是a ,b 共线的充要条件; ②若a ∥b ,则存在唯一的实数λ,使a =λb ;③对空间任意一点O 和不共线的三点A ,B ,C ,若OP →=2OA →-2OB →-OC →,则P ,A ,B ,C 四点共面;④若{a ,b ,c }为空间的一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底; ⑤|(a ·b )·c|=|a|·|b|·|c|. A .5 B .4 C .3 D .2【答案】B【解析】①|a |-|b |=|a +b |⇒a 与b 的夹角为π,故是充分不必要条件,故不正确;②b 需为非零向量,故不正确;③因为2-2-1≠1,由共面向量定理知,不正确;④由基底的定义知,正确;⑤由向量的数量积的性质知,不正确.8.如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为( )A .15B .25C .55D .255【答案】C【解析】如图,建立空间直角坐标系,则A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫12,0,0,E ⎝ ⎛⎭⎪⎫12,12,0,F ⎝ ⎛⎭⎪⎫0,12,1,所以PA →=(0,0,-2),DE →=⎝ ⎛⎭⎪⎫0,12,0,DF→=⎝ ⎛⎭⎪⎫-12,12,1.设n =(x ,y ,z )是平面DEF 的法向量,由⎩⎪⎨⎪⎧n ·DE →=0,n ·DF →=0,得⎩⎪⎨⎪⎧12y =0,-12x +12y +8=0,取x =2,则z =1,y =0,所以n =(2,0,1)是平面DEF 的一个法向量.设直线PA 与平面DEF 所成的角为θ,所以sin θ=|cos 〈PA →,n 〉|=22×5=55.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列各选项中,不正确的是( )A .若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0B .对于非零向量a ,b ,〈a ,b 〉与〈a ,-b 〉相等C .若AB →,CD →共线,则AB ∥CDD .对空间任意一点O 与不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(其中x ,y ,z ∈R ),则P ,A ,B ,C 四点共面【答案】BCD【解析】显然A 正确;若a ,b 为非零向量,则〈a ,b 〉与〈a ,-b 〉互补,故B 错误;若AB →,CD →共线,则直线AB ,CD 可能重合,故C 错误;只有当x +y +z =1时,P ,A ,B ,C 四点才共面,故D 错误.10.若A ,B ,C ,D 为空间不同的四点,则下列各式的结果为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC → C .AB →+CA →+BD → D .AB →-CB →+CD →-AD →【答案】BD【解析】A 中,原式=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →,不符合题意;B 中,原式=2(AB →+BC →+CD →+DA →)+(AC →+CD →+DA →)=0;C 中,原式=CD →,不符合题意;D 中,原式=(AB →-AD →)+(CD →-CB →)=0.11.已知正方体ABCD -A ′B ′C ′D ′的中心为O ,则在下列各结论中正确的有( )A .OA →+OD →与OB ′→+OC ′→是一对相反向量 B .OB →-OC →与OA ′→-OD ′→是一对相反向量C .OA →+OB →+OC →+OD →与OA ′→+OB ′→+OC ′→+OD ′→是一对相反向量 D .OA ′→-OA →与OC →-OC ′→是一对相反向量 【答案】ACD【解析】如图,A 中,OA →=-OC ′→,OD →=-OB ′→,所以OA →+OD →=-(OB ′→+OC ′→),是一对相反向量;B 中,OB →-OC →=CB →,OA ′→-OD ′→=D ′A ′→,而CB →=D ′A ′→,故不是相反向量;C 中,同A 也是正确的;D 中,OA ′→-OA →=AA ′→,OC →-OC ′→=C ′C →=-AA ′→,是一对相反向量.12.如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26的正三角形,底面ABCD 为矩形,CD =23,点Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 所成角的余弦值为223C .三棱锥B -ACQ 的体积为6 2D .四棱锥Q -ABCD 外接球的内接正四面体的表面积为24 3 【答案】BD【解析】取AD 的中点O ,BC 的中点E ,连接OE ,OP ,因为三角形PAD 为等边三角形,所以OP ⊥AD .因为平面PAD ⊥平面ABCD ,所以OP ⊥平面ABCD .因为AD ⊥OE ,所以OD ,OE ,OP 两两垂直,如图,以O 为坐标原点,OD ,OE ,OP 所在的直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则O (0,0,0),D (6,0,0),A (-6,0,0),P (0,0,32),C (6,23,0),B (-6,23,0).因为点Q 是PD 的中点,所以Q ⎝⎛⎭⎪⎫62,0,322,平面PAD 的一个法向量m =(0,1,0),QC →=⎝ ⎛⎭⎪⎫62,23,-322,显然m 与QC →不共线,所以CQ 与平面PAD 不垂直,所以A 不正确;PC →=(6,23,-32),AQ →=⎝ ⎛⎭⎪⎫362,0,322,AC →=(26,23,0),设平面AQC 的法向量n=(x ,y ,z ),则⎩⎨⎧n ·AQ →=362x +322z =0,n ·AC →=26x +23y =0,令x =1,则y =-2,z =-3,所以n =(1,-2,-3),设PC 与平面AQC 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪n ·PC→|n ||PC →|=2666=13,所以cos θ=223,所以B 正确;三棱锥B -ACQ 的体积为V B -ACQ =V Q -ABC =13S △ABC ·12OP =13×12×23×26×12×32=6,所以C 不正确;设四棱锥Q -ABCD 外接球的球心为M (0,3,a ),则MQ=MD ,故⎝ ⎛⎭⎪⎫622+(3)2+⎝ ⎛⎭⎪⎫a -3222=()62+()32+a 2,解得a =0,即M (0,3,0)为矩形ABCD 对角线的交点,所以四棱锥Q -ABCD 外接球的半径为3,设四棱锥Q -ABCD 外接球的内接正四面体的棱长为x ,将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为22x ,所以3⎝ ⎛⎭⎪⎫22x 2=62,得x 2=24,所以正四面体的表面积为4×34x 2=243,所以D 正确. 三、填空题:本题共4小题,每小题5分,共20分.13.(2021年潮州模拟)由空间向量a =(1,2,3),b =(1,-1,1)构成向量集合A ={x |x =a +k b ,k ∈Z },则向量x 的模|x |的最小值为________.【答案】13【解析】因为a =(1,2,3),b =(1,-1,1),所以x =a +k b =(1+k ,2-k ,3+k ), 所以|x |=(1+k )2+(2-k )2+(3+k )2=14+4k +3k 2=3⎝ ⎛⎭⎪⎫k +232+383.因为k ∈Z ,所以k =-1时,|x |的值最小,最小值为13.14.下列命题:①已知λ∈R ,则|λa |=λ|a |;②在正方体ABCD -A 1B 1C 1D 1中,BC →=B 1C 1→;③若两个平面的法向量不垂直,则这两个平面一定不垂直. 其中正确的命题的序号是________. 【答案】②③【解析】①|λa |=|λ||a |,故①错误;②正确;③若两个平面垂直,则它们的法向量一定垂直,若两个平面的法向量不垂直,则这两个平面一定不垂直,故③正确.15.如图,设O 为▱ABCD 所在平面外任意一点,E 为OC 的中点,若AE →=12OD →+xOB →+yOA →,则x +y =________.【答案】-1【解析】AE →=OE →-OA →=12OC →-OA →=12(OB →+BC →)-OA →=12(OB →+AD →)-OA →=12(OB →+OD →-OA →)-OA→=-32OA →+12OB →+12OD →,所以x =12,y =-32.所以x +y =-1.16.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上移动,则直线D 1E 与A 1D 所成角的大小是________;若D 1E ⊥EC ,则AE =________.【答案】90° 1【解析】在长方体ABCD -A 1B 1C 1D 1中,如图,以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴建立空间直角坐标系,又因为AD =AA 1=1,AB =2,则D (0,0,0),D 1(0,0,1), A (1,0,0),A 1(1,0,1),C (0,2,0),设E (1,m ,0),0≤m ≤2,则D 1E →=(1,m ,-1),A 1D →=(-1,0,-1),所以D 1E →·A 1D →=-1+0+1=0,所以直线D 1E 与A 1D 所成角的大小是90°.因为D 1E →=(1,m ,-1),EC →=(-1,2-m ,0),D 1E ⊥EC, 所以D 1E →·EC→=-1+m (2-m )+0=0,解得m =1,所以AE =1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).(1)求|2a +b|;(2)在直线AB 上是否存在一点E ,使得OE →⊥b (O 为原点)? 解:(1)因为a =(1,-3,2),b =(-2,1,1), 所以2a +b =(0,-5,5).所以|2a +b |=02+(-5)2+52=52. (2)假设存在点E ,其坐标为E (x ,y ,z ),则AE →=λAB →,即(x +3,y +1,z -4)=λ(1,-1,-2),所以⎩⎪⎨⎪⎧x =λ-3,y =-λ-1,z =-2λ+4,所以E (λ-3,-λ-1,-2λ+4),所以OE →=(λ-3,-λ-1,-2λ+4). 又因为b =(-2,1,1),OE →⊥b ,所以OE →·b =-2(λ-3)+(-λ-1)+(-2λ+4)=-5λ+9=0, 所以λ=95,所以E ⎝ ⎛⎭⎪⎫-65,-145,25.所以在直线AB 上存在点E ⎝ ⎛⎭⎪⎫-65,-145,25,使OE →⊥b .18.(12分)已知空间三点A (1,2,3),B (2,-1,5),C (3,2,-5),试求: (1)△ABC 的面积; (2)△ABC 的AB 边上的高.解:(1)AB →=(2,-1,5)-(1,2,3)=(1,-3,2), AC →=(3,2,-5)-(1,2,3)=(2,0,-8), AB →·AC →=1×2+(-3)×0+2×(-8)=-14,|AB →|=14,|AC →|=217,cos 〈AB →,AC →〉=-1414×217=-734,sin 〈AB →,AC →〉=2734, S △ABC =12|AB →|·|AC →|sin 〈AB →,AC →〉=1214×217×2734=321. (2)|AB →|=14,设AB 边上的高为h , 则12|AB |·h =S △ABC =321,所以h =36. 19.(12分)如图,在三棱锥S -ABC 中,侧面SAC 与底面ABC 垂直,E ,O 分别是SC ,AC 的中点,且SA =SC =2,BC =12AC ,∠ASC =∠ACB =90°.(1)求证:OE ∥平面SAB ;(2)若点F 在线段BC 上,问:无论点F 在BC 的何处,是否都有OE ⊥SF ?请证明你的结论.(1)证明:因为E ,O 分别是SC ,AC 的中点,所以OE ∥SA . 又因为OE ⊄平面SAB ,SA ⊂平面SAB , 所以OE ∥平面SAB .(2)解:方法一,在△SAC 中,因为OE ∥AS ,∠ASC =90°,所以OE ⊥SC . 又因为平面SAC ⊥平面ABC ,∠BCA =90°,BC ⊂平面SAC ,所以BC ⊥平面SAC . 又因为OE ⊂平面SAC ,所以BC ⊥OE . 因为SC ∩BC =C ,所以OE ⊥平面BSC . 又因为SF ⊂平面BSC ,所以OE ⊥SF . 所以无论点F 在BC 的何处,都有OE ⊥SF . 方法二,连接SO .因为O 是AC 的中点,SA =SC , 所以SO ⊥AC .又因为平面SAC ⊥平面ABC , 所以SO ⊥平面ABC .同理可得BC ⊥平面SAC .如图,在平面ABC 内,过点O 作OM ⊥AC ,以O 为原点,OM ,OC ,OS 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则点O (0,0,0),A (0,-1,0),B (1,1,0),C (0,1,0),S (0,0,1),E ⎝⎛⎭⎪⎫0,12,12,OE →=⎝ ⎛⎭⎪⎫0,12,12.由于点F ∈BC ,故可设点F (x ,1,0), 则SF →=(x ,1,-1),SF →·OE →=0恒成立, 所以无论点F 在BC 的何处,都有OE ⊥SF .20.(12分)在直角梯形ABCD 中,AD ∥BC ,BC =2AD =2AB =22,∠ABC =90°,如图1把△ABD 沿BD 翻折,使得平面ABD ⊥平面BCD (如图2).(1)求证:CD ⊥AB .(2)若点M 为线段BC 的中点,求点M 到平面ACD 的距离.(3)在线段BC 上是否存在点N ,使得AN 与平面ACD 所成角为60°?若存在,求出BN BC的值;若不存在,说明理由.(1)证明:由已知条件可得BD =2,CD =2,CD ⊥BD .因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,所以CD ⊥平面ABD . 又因为AB ⊂平面ABD ,所以CD ⊥AB .(2)解:如图,以点D 为原点,DB 所在的直线为x 轴,DC 所在的直线为y 轴,建立空间直角坐标系,由已知可得A (1,0,1),B (2,0,0),C (0,2,0),D (0,0,0),M (1,1,0),所以CD →=(0,-2,0),AD →=(-1,0,-1),MC →=(-1,1,0).设平面ACD 的法向量n =(x ,y ,z ),则CD →⊥n ,AD →⊥n ,所以⎩⎪⎨⎪⎧-2y =0,-x -z =0,令x =1,得平面ACD 的一个法向量n =(1,0,-1), 所以点M 到平面ACD 的距离d =|n ·MC →||n |=22.(3)解:假设在线段BC 上存在点N ,使得AN 与平面ACD 所成角为60°,设BN →=λBC →,0≤λ≤1,则N (2-2λ,2λ,0),所以AN →=(1-2λ,2λ,-1).又因为平面ACD 的一个法向量n =(1,0,-1),且直线AN 与平面ACD 所成角为60°,所以sin60°=|AN →·n ||AN →||n |=32, 可得8λ2+2λ-1=0,所以λ=14或λ=-12(舍去). 综上,在线段BC 上存在点N ,使AN 与平面ACD 所成角为60°,此时BN BC =14. 21.(12分)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =2.(1)求线段BC 1的长度;(2)求异面直线BC 1与DC 所成角的余弦值.解:(1)以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (2,0,0),B (2,4,0),C (0,2,0),C 1(0,2,2),所以DC →=(0,2,0),BC 1→=(-2,-2,2),|DC →|=2,|BC 1→|=4+4+4=23.(2)由(1)可知,DC →=(0,2,0),BC 1→=(-2,-2,2),所以cos 〈DC →,BC 1→〉=DC →·BC 1→|DC →||BC 1→|=-42×23=-13=-33. 所以异面直线BC 1与DC 所成的角的余弦值为33.22.(12分)如图,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,C 是AB ︵的中点,D为AC 的中点.(1)求证:平面POD ⊥平面PAC ;(2)求二面角B -PA -C 的余弦值.解:如图,以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则O (0,0,0),A (-1,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫-12,12,0. (1)证明:设n 1=(x 1,y 1,z 1)是平面POD 的一个法向量,则由n 1·OD →=0,n 1·OP →=0,得⎩⎪⎨⎪⎧-12x 1+12y 1=0,2z 1=0.所以z 1=0,x 1=y 1,取y 1=1,得n 1=(1,1,0).设n 2=(x 2,y 2,z 2)是平面PAC 的一个法向量,则由n 2·PA →=0,n 2·PC →=0,得⎩⎨⎧-x 2-2z 2=0,y 2-2z 2=0.所以x 2=-2z 2,y 2=2z 2,取z 2=1,得n 2=(-2,2,1).因为n 1·n 2=(1,1,0)·(-2,2,1)=0,所以n 1⊥n 2,从而平面POD ⊥平面PAC .(2)因为y 轴⊥平面PAB ,所以平面PAB 的一个法向量n 3=(0,1,0).由(1)知,平面PAC 的一个法向量n 2=(-2,2,1).设向量n 2和n 3的夹角为θ,则cos θ=n 2·n 3|n 2||n 3|=25=105. 由图可知,二面角B -PA -C 的平面角为锐角,所以二面角B -PA -C 的余弦值为105.。
2019-2020年高中数学必修二第一章《空间几何体》整章测试卷及答案解析

第 1 页 共 10 页 2019-2020年高中数学必修二
第一章《空间几何体》整章测试卷
第Ⅰ卷(选择题,共60分)
一、选择题(本大题共12小题,每题5分,共60分)
1.下列说法不正确的是( )
A .圆柱的侧面展开图是一个矩形
B .圆锥的过轴的截面是一个等腰三角形
C .直角三角形绕它的一条边旋转一周形成的曲面围成的几何体是圆锥
D .圆台平行于底面的截面是圆面
答案 C
2.如图所示的直观图的原平面图形是(
)
A .任意三角形
B .直角梯形
C .任意四边形
D .平行四边形
答案 B
3.三视图如图所示的几何体是(
)
A .三棱锥
B .四棱锥
C .四棱台
D .三棱台
答案 B
4.下图中的图形经过折叠不能围成棱柱的是(
)
答案 D。
人教A版 新教材高中数学必修第一册 第一章 章末检测试卷(一)

二、多项选择题(本大题共 4 小题,每小题 5 分,共 20 分.全部选对的得 5 分,部分选对的
得 3 分,有选错的得 0 分)
9.已知 U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则( )
A.M∩N={4,6}
B.M∪N=U
C.(∁UN)∪M=M 答案 BCD
(2)∵B={x|x<1},∴∁RB={x|x≥1}. ∴A∩(∁RB)={x|1≤x≤2}. 15.已知集合 A={x|-1<x<2},B={x|-1<x<m+1},若 x∈A 是 x∈B 成立的一个充分不必
要条件,则实数 m 的取值范围是________.
答案 {m|m>1}
解析 由 x∈A 是 x∈B 成立的一个充分不必要条件,
解 (1)由 x-1>0 得 x>1,即 B={x|x>1}. 所以 A∩B={x|1<x<2},A∪B={x|x>-1}. (2)集合 A-B 如图中的阴影部分所示.
由于 A-B={x|x∈A,且 x∉B}, 又 A={x|-1<x<2},B={x|x>1}, 所以 A-B={x|-1<x≤1}. 21.(12 分)已知非空集合 P={x|a+1≤x≤2a+1},Q={x|-2≤x≤5}. (1)若 a=3,求(∁RP)∩Q; (2)若“x∈P”是“x∈Q”的充分不必要条件,求实数 a 的取值范围. 解 因为 P 是非空集合,所以 2a+1≥a+1,即 a≥0. (1)当 a=3 时,P={x|4≤x≤7},∁RP={x|x<4 或 x>7}, Q={x|-2≤x≤5}, 所以(∁RP)∩Q={x|-2≤x<4}. (2)若“x∈P”是“x∈Q”的充分不必要条件,即 PQ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高中数学第一章空间几何体章末检测新人教A 版
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列说法中正确的是( )
A .棱柱的侧面可以是三角形
B .正方体和长方体都是特殊的四棱柱
C .所有的几何体的表面都能展成平面图形
D .棱柱的各条棱都相等
2.正方体的表面积与其外接球的表面积的比为( )
A .3∶π
B .2∶π
C .1∶2π
D .1∶3π
3.过球的一条半径的中点作垂直于该半径的平面,则所得截面圆的面积与球的表面积的比值为( )
A.316 B .916 C.38 D .932
4.如图,在长方体ABCD A 1B 1C 1D 1中,棱锥A 1ABCD 的体积与长方体AC 1的体积的比值为( )
A.12 B .16 C.13 D .15
5.如图是一个空间几何体的正视图、侧视图、俯视图,如果直角三角形的直角边长均为1,那么这个几何体的体积为( )
A .1
B .12 C.13 D .16
6.某几何体的三视图如图所示,则它的体积是( )
A .8-2π3
B .8-π3
C .8-2π
D .2π3
7.某几何体的三视图如图所示,则该几何体的表面积为( )
A .2π+12
B .π+12
C .2π+24
D .π+24
8.如图甲所示,一只装了水的密封瓶子,其内部可以看成是由底面半径为1 cm 和半径为3 cm 的两个圆柱组成的简单几何体.当这个几何体如图乙水平放置时,液面高度为20 cm ,当这个几何体如图丙水平放置时,液面高度为28 cm ,则这个简单几何体的总高度为( )
A .29 cm
B .30 cm
C .32 cm
D .48 cm
9.已知四棱锥S ABCD 的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥体积取得最大值时,其表面积等于4+43,则球O 的体积等于( ) A.
423π B .823π C.1623π D .3223
π 10.已知正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表
面积为( )
A.81π4
B .16π
C .9π
D .27π4
11.(2016·成都质检)已知某几何体的三视图如图所示,该几何体的体积为92,则a =( )
A.52 B .3 C.72
D .4 12.一个圆锥形容器和一个圆柱形容器的轴截面如图所示,两容器内所盛液体的体积正好相等,且液面高度h 也相等,则h a
等于( )
A.12 B .22 C.32
D .2 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)
13.若一个三棱柱的底面是正三角形,其正视图如图所示,则它的体积为________.
14.如图,球O 的半径为5,一个内接圆台的两底面半径分别为3和4(球心O 在圆台的两底面之间),则圆台的体积为________.
15.某简单组合体的三视图如图所示,其中正视图与侧视图相同(尺寸如图,单位:cm),则
该组合体的体积是________cm3(结果保留π).
16.已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为________.
解析:
三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)
17.(本小题满分10分)如图所示,设计一个四棱锥形冷水塔塔顶(无底),四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2 m,高为7 m,制造这个塔顶需要多少铁板?
18.(本小题满分12分)某工厂为了制造一个实心工件,先画出了这个工件的三视图(如图),其中正视图与侧视图为两个全等的等腰三角形,俯视图为一个圆(含圆心),三视图尺寸如图所示(单位:cm).
(1)求出这个工件的体积;
(2)工件做好后,要给表面喷漆,已知喷漆费用是每平方厘米1元,现要制作10个这样的工件,请计算喷漆总费用(精确到整数部分).
19.(本小题满分12分) 如图,直三棱柱ABCA1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,求侧面ABB1A1的面积.
20.(本小题满分12分)在棱长为1的正方体内,有两球相外切,并且又分别与正方体内切.
(1)求两球的半径之和;
(2)球的半径是多少时,两球的体积之和最小.
21.(本小题满分12分)如图所示,在△ABC中,∠ACB=90°,∠B=30°,AC=2,M是AB 的中点,将△ACM沿CM折起,使A,B间的距离为22,求三棱锥ABCM的体积.
22. (本小题满分12分)如图,已知圆锥SO中,底面半径r=1,母线l=4,M为母线SA上的一个点,且SM=x,从点M拉一根绳子,围绕圆锥的侧面转到A点.求
(1)绳子的最短长度的平方f(x);
(2)绳子最短时,顶点到绳子的最短距离.。