全国高考数学二轮复习专题六函数与导数第3讲导数及其应用学案理

合集下载

导数专题书目录

导数专题书目录

导数专题书目录第一篇独孤九剑——导数基础专题1总诀式——导数的前世今生第一讲导数基本定义第二讲导数运算法则第三讲复合函数求导第四讲同构函数求导专题2破剑式——数形结合遇导数第一讲导数的几何意义第二讲在点的切线方程第三讲过点的切线方程专题3破刀式——基本性质与应用第一讲单调性问题第二讲极值与最值第三讲恒能分问题专题4破枪式——抽象函数的构造第一讲求导法则与抽象构造第二讲幂函数及其抽象构造第三讲指数函数与抽象构造第四讲对数函数与抽象构造第五讲三角函数与抽象构造第六讲平移与奇偶抽象构造专题5破鞭式——分类讨论的策略第一讲不含参的四类问题第二讲含参数的五类问题专题6破索式——三次函数的探究第一讲基本性质第二讲切线问题第三讲四段论界定第四讲三倍角界定专题7破掌式——指对的破解逻辑第一讲指数模型第二讲对数模型专题8破箭式——六大同构函数论第一讲六大同构函数第二讲外部函数同构第三讲极值底层逻辑专题9破气式——零点与交点问题第一讲零点相关定理第二讲曲线交点问题第三讲零点个数问题第二篇如来神掌——导数选填的奇思妙解专题1心中有佛——秒解抽象函数构造第一讲抽象函数的积分构造第二讲“网红解法”的利弊专题2佛光初现——妙解参数取值范围第一讲零点比大小问题妙解双参比值问题第二讲零点比大小妙解指对单参数的问题第三讲恰到好处的取点妙解双参系列问题专题3金顶佛灯——数轴破整数个数解第一讲对数的取点技巧第二讲指数的取点技巧专题4佛动山河——平口单峰函数探秘第一讲平口二次函数问题第二讲平口对勾函数问题第三讲平口三次函数问题第四讲平口函数万能招数第五讲构造平口单峰函数第六讲必要探路最值界定第七讲倍角定理最值界定专题5佛问伽蓝——拉格朗日插值妙用第一讲三大微分中值定理简述第二讲拉格朗日中值定理应用专题6迎佛西天——构造函数速比大小第一讲构造基本初等函数第二讲构造母函数比大小第三讲构造混阶型比大小专题7天佛降世——琴生不等式破选填第一讲函数的凹凸性第二讲凹凸性的应用专题8佛法无边——极限思想巧妙应用第一讲前世今生论第二讲洛必达法则专题9万佛朝宗——选填压轴同构压制第一讲母函数原理概述第二讲同等双参需同构第三讲同构引出的秒解第三篇无涯剑道——导数三板斧升级篇专题1问剑求生——同类同构第一讲双元同构篇第二讲指对同构篇第三讲朗博同构篇第四讲零点同构篇第五讲同构保值篇第六讲同构导中切专题2持剑逆道——分类同构第一讲分而治之型第二讲端点效应型第三讲志同道合型第四讲分道扬镳型第五讲柳暗花明型专题3迎剑归宗——切点同构第一讲切线问题的进阶处理第二讲公切线问题几何探秘第三讲基本函数的切线找点第四讲跨阶函数的切线找点第五讲双变量乘积处理策略第四篇逍遥功——泰勒与放缩专题1逍遥剑法——泰勒展开第一讲泰勒基本展开式第二讲泰勒与切线找点第三讲泰勒与极值界定第四讲无穷阶极值界定第五讲泰勒与切线界定专题2逍遥刀法——京沪专线第一讲指数型“0”线第二讲对数型“0”线第三讲三角型“0”线专题3逍遥拳法——京九专线第一讲指数型“1”线第二讲对数型“1”线第三讲“e”线放缩论“n”线放缩论第四讲指对混阶放缩论第五讲指对三角放缩论第六讲高阶借位放缩论第七讲充分必要放缩论第八讲数列放缩系统论第五篇武当神功——点睛之笔专题1梯云纵——极点极值第一讲极值点本质第二讲唯一极值点第三讲存在极值点第四讲莫有极值点专题2太和功——隐点代换第一讲直接应用第二讲整体代换第三讲反代消参第四讲降次留参第五讲矛盾区间专题3峰回掌——跨阶找点第一讲找点初步认识第二讲找点策略阐述第三讲高次函数找点第四讲指对函数找点第五讲三角函数找点专题4太极剑——跳阶找点第一讲指对混阶找点第二讲指数三角找点第三讲对数三角找点第四讲终结混阶找点专题5八卦阵——必要探路第一讲端点效应第二讲极点效应第三讲显点效应第四讲隐点效应第五讲内点效应第六讲外点效应第七讲拐点效应第八讲弧点效应第六篇六脉神剑——明元之家专题1少商剑——三三来迟第一讲飘带函数减元第二讲点差法第三讲韦达定理的应用专题2商阳剑——四曾相识第一讲极值点偏移第二讲构造法第三讲拐点偏移第四讲泰勒公式专题3中冲剑——不讲五德第一讲换元构造第二讲对数平均不等式第三讲指数平均不等式第四讲广义对均第五讲深度剖析专题4関冲剑——七晴六遇第一讲零点差模型第二讲极值模型第三讲混合模型专题5少泽剑——第一讲复数三角形式第二讲棣莫弗定理第三讲复数的应用专题6少冲剑——第一讲斜率成等差等比问题第一讲数据逻辑及相关定理第二讲破解逻辑及突破压轴。

(全国通用版)2019高考数学二轮复习 专题六 函数与导数 第3讲 导数及其应用学案 理

(全国通用版)2019高考数学二轮复习 专题六 函数与导数 第3讲 导数及其应用学案 理

第3讲导数及其应用[考情考向分析] 1.导数的意义和运算是导数应用的基础,是高考的一个热点.2.利用导数解决函数的单调性与极值(最值)问题是高考的常见题型.3.导数与函数零点、不等式的结合常作为高考压轴题出现.热点一导数的几何意义1.函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P 处的切线的斜率k=f′(x0),相应的切线方程为y-f(x0)=f′(x0)(x-x0).2.求曲线的切线要注意“过点P的切线”与“在点P处的切线”的不同.例1 (1)(2018·全国Ⅰ)设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( )A.y=-2x B.y=-xC.y=2x D.y=x答案 D解析方法一∵f(x)=x3+(a-1)x2+ax,∴f′(x)=3x2+2(a-1)x+a.又f(x)为奇函数,∴f(-x)=-f(x)恒成立,即-x3+(a-1)x2-ax=-x3-(a-1)x2-ax恒成立,∴a=1,∴f′(x)=3x2+1,∴f′(0)=1,∴曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.方法二∵f(x)=x3+(a-1)x2+ax为奇函数,∴f′(x)=3x2+2(a-1)x+a为偶函数,∴a=1,即f′(x)=3x2+1,∴f′(0)=1,∴曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.(2)若直线y=kx+b是曲线y=ln x+1的切线,也是曲线y=ln(x+2)的切线,则实数b=________.答案ln 2解析设直线y=kx+b与曲线y=ln x+1和曲线y=ln(x+2)的切点分别为(x1,ln x1+1),(x 2,ln(x 2+2)).∵直线y =kx +b 是曲线y =ln x +1的切线,也是曲线y =ln(x +2)的切线, ∴1x 1=1x 2+2,即x 1-x 2=2. ∴切线方程为y -(ln x 1+1)=1x 1(x -x 1),即为y =x x 1+ln x 1或y -ln(x 2+2)=1x 2+2(x -x 2), 即为y =x x 1+2-x 1x 1+ln x 1,∴2-x 1x 1=0,则x 1=2,∴b =ln 2.思维升华 (1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.跟踪演练1 (1)(2018·全国Ⅱ)曲线y =2ln(x +1)在点(0,0)处的切线方程为________. 答案 2x -y =0解析 ∵y =2ln(x +1),∴y ′=2x +1.令x =0,得y ′=2,由切线的几何意义得切线斜率为2,又切线过点(0,0),∴切线方程为y =2x ,即2x -y =0.(2)若函数f (x )=ln x (x >0)与函数g (x )=x 2+2x +a (x <0)有公切线,则实数a 的取值范围是( ) A.⎝⎛⎭⎪⎫ln12e ,+∞ B .(-1,+∞) C .(1,+∞) D .(-ln 2,+∞)答案 A解析 设公切线与函数f (x )=ln x 切于点A (x 1,ln x 1)(x 1>0), 则切线方程为y -ln x 1=1x 1(x -x 1).设公切线与函数g (x )=x 2+2x +a 切于点B (x 2,x 22+2x 2+a )(x 2<0), 则切线方程为y -(x 22+2x 2+a )=2(x 2+1)(x -x 2),∴⎩⎪⎨⎪⎧1x 1=2(x 2+1),ln x 1-1=-x 22+a ,∵x 2<0<x 1,∴0<1x 1<2.又a =ln x 1+⎝⎛⎭⎪⎫12x 1-12-1=-ln 1x 1+14⎝ ⎛⎭⎪⎫1x 1-22-1,令t =1x 1,∴0<t <2,a =14t 2-t -ln t .设h (t )=14t 2-t -ln t (0<t <2),则h ′(t )=12t -1-1t =(t -1)2-32t <0,∴h (t )在(0,2)上为减函数, 则h (t )>h (2)=-ln 2-1=ln 12e ,∴a ∈⎝⎛⎭⎪⎫ln12e ,+∞. 热点二 利用导数研究函数的单调性1.f ′(x )>0是f (x )为增函数的充分不必要条件,如函数f (x )=x 3在(-∞,+∞)上单调递增,但f ′(x )≥0.2.f ′(x )≥0是f (x )为增函数的必要不充分条件,当函数在某个区间内恒有f ′(x )=0时,则f (x )为常函数,函数不具有单调性.例2 (2018·聊城模拟)已知函数f (x )=2e x-kx -2. (1)讨论函数f (x )在(0,+∞)内的单调性;(2)若存在正数m ,对于任意的x ∈(0,m ),不等式|f (x )|>2x 恒成立,求正实数k 的取值范围.解 (1)由题意得f ′(x )=2e x-k ,x ∈(0,+∞), 因为x >0,所以2e x>2.当k ≤2时,f ′(x )>0,此时f (x )在(0,+∞)内单调递增. 当k >2时,由f ′(x )>0得x >ln k2,此时f (x )单调递增;由f ′(x )<0得0<x <ln k2,此时f (x )单调递减.综上,当k ≤2时,f (x )在(0,+∞)内单调递增;当k >2时,f (x )在⎝⎛⎭⎪⎫0,ln k 2内单调递减,在⎝ ⎛⎭⎪⎫ln k2,+∞内单调递增.(2)①当0<k ≤2时,由(1)可得f (x )在(0,+∞)内单调递增,且f (0)=0, 所以对于任意的x ∈(0,m ),f (x )>0. 这时|f (x )|>2x 可化为f (x )>2x , 即2e x-(k +2)x -2>0. 设g (x )=2e x-(k +2)x -2, 则g ′(x )=2e x -(k +2), 令g ′(x )=0,得x =ln k +22>0,所以g (x )在⎝⎛⎭⎪⎫0,ln k +22内单调递减,且g (0)=0, 所以当x ∈⎝⎛⎭⎪⎫0,ln k +22时,g (x )<0,不符合题意. ②当k >2时,由(1)可得f (x )在⎝ ⎛⎭⎪⎫0,ln k 2内单调递减,且f (0)=0,所以存在x 0>0,使得对于任意的x ∈(0,x 0)都有f (x )<0. 这时|f (x )|>2x 可化为-f (x )>2x , 即-2e x+()k -2x +2>0.设h (x )=-2e x+()k -2x +2,则h ′(x )=-2e x+()k -2.(ⅰ)若2<k ≤4,则h ′(x )<0在(0,+∞)上恒成立, 这时h (x )在(0,+∞)内单调递减,且h (0)=0, 所以对于任意的x ∈(0,x 0)都有h (x )<0,不符合题意. (ⅱ)若k >4,令h ′(x )>0,得x <ln k -22,这时h (x )在⎝⎛⎭⎪⎫0,lnk -22内单调递增,且h (0)=0, 所以对于任意的x ∈⎝⎛⎭⎪⎫0,ln k -22,都有h (x )>0, 此时取m =min ⎩⎨⎧⎭⎬⎫x 0,lnk -22,则对于任意的x ∈(0,m ),不等式|f (x )|>2x 恒成立.综上可得k 的取值范围为()4,+∞.思维升华 利用导数研究函数单调性的一般步骤 (1)确定函数的定义域. (2)求导函数f ′(x ).(3)①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0即可;②若已知函数的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题来求解.跟踪演练2 (1)(2018·河南省中原名校质量考评)已知f (x )=()x 2+2ax ln x -12x 2-2ax 在(0,+∞)上是增函数,则实数a 的取值范围是( ) A .{1} B .{-1} C .(0,1] D .[-1,0) 答案 B解析 f (x )=()x 2+2ax ln x -12x 2-2ax ,f ′(x )=2(x +a )ln x ,∵f (x )在(0,+∞)上是增函数, ∴f ′(x )≥0在(0,+∞)上恒成立, 当x =1时,f ′(x )=0满足题意,当x >1时,ln x >0,要使f ′(x )≥0恒成立, 则x +a ≥0恒成立.∵x +a >1+a ,∴1+a ≥0,解得a ≥-1, 当0<x <1时,ln x <0,要使f ′(x )≥0恒成立, 则x +a ≤0恒成立,∵x +a <1+a ,∴1+a ≤0,解得a ≤-1. 综上所述,a =-1.(2)(2018·资阳三诊)已知定义在R 上的偶函数f (x )(函数f (x )的导函数为f ′(x ))满足f ⎝⎛⎭⎪⎫x -12+f (x +1)=0,e 3f (2 018)=1,若f (x )>f ′(-x ),则关于x 的不等式f (x +2)>1ex 的解集为( ) A .(-∞,3) B .(3,+∞) C .(-∞,0) D .(0,+∞)答案 B解析 ∵f (x )是偶函数,∴f (x )=f (-x ),f ′(x )=[]f (-x )′=-f ′(-x ),∴f ′(-x )=-f ′(x ),f (x )>f ′(-x )=-f ′(x ), 即f (x )+f ′(x )>0,设g (x )=e xf (x ), 则[]e xf (x )′=e x[]f (x )+f ′(x )>0,∴g (x )在(-∞,+∞)上单调递增,由f ⎝ ⎛⎭⎪⎫x -12+f (x +1)=0, 得f (x )+f ⎝ ⎛⎭⎪⎫x +32=0,f ⎝ ⎛⎭⎪⎫x +32+f ()x +3=0, 相减可得f (x )=f ()x +3,f (x )的周期为3,∴e 3f ()2 018=e 3f (2)=1,g (2)=e 2f (2)=1e ,f (x +2)>1ex ,结合f (x )的周期为3可化为ex -1f (x -1)>1e=e 2f (2),g (x -1)>g (2),x -1>2,x >3,∴不等式的解集为()3,+∞,故选B. 热点三 利用导数求函数的极值、最值1.若在x 0附近左侧f ′(x )>0,右侧f ′(x )<0,则f (x 0)为函数f (x )的极大值;若在x 0附近左侧f ′(x )<0,右侧f ′(x )>0,则f (x 0)为函数f (x )的极小值.2.设函数y =f (x )在[a ,b ]上连续,在(a ,b )内可导,则f (x )在[a ,b ]上必有最大值和最小值且在极值点或端点处取得.例3 (2018·北京)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x. (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. 解 (1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x, 所以f ′(x )=[ax 2-(2a +1)x +2]e x. 所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x=(ax -1)(x -2)e x.若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.思维升华 (1)求函数f (x )的极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号.(2)若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解. (3)求函数f (x )在闭区间[a ,b ]上的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.跟踪演练3 (2018·江西省八所重点中学联考)已知f (x )=⎝ ⎛⎭⎪⎫e +1e ln x +1x -x .(1)求函数f (x )的极值;(2)设g (x )=ln(x +1)-ax +e x,对于任意x 1∈[0,+∞),x 2∈[1,+∞),总有g (x 1)≥e 2f (x 2)成立,求实数a 的取值范围.解 (1)f ′(x )=e +1e x -1x 2-1=-()x -e ⎝ ⎛⎭⎪⎫x -1e x2, 令f ′(x )=0,可得x =1e或x =e.当x 变化时,f ′(x ),f (x )的变化情况如表所示:所以f (x )的极小值为f ⎝ ⎛⎭⎪⎫1e =-2e ,极大值为f (e)=2e.(2)由(1)可知,当x ∈[1,+∞)时, 函数f (x )的最大值为2e,对于任意x 1∈[0,+∞),x 2∈[1,+∞),总有g (x 1)≥e2f (x 2)成立,等价于对于任意x ∈[0,+∞),g (x )≥1恒成立,g ′(x )=e x +1x +1-a (x ≥0),①当a ≤2时,因为e x≥x +1, 所以g ′(x )=e x+1x +1-a ≥x +1+1x +1-a ≥2-a ≥0, 即g (x )在[0,+∞)上单调递增,g (x )≥g (0)=1恒成立,符合题意. ②当a >2时,设h (x )=e x+1x +1-a (x ≥0), h ′(x )=e x-1(x +1)2=(x +1)2e x-1(x +1)2≥0, 所以g ′(x )在[0,+∞)上单调递增, 且g ′(0)=2-a <0,则存在x 0∈(0,+∞), 使得g ′(x 0)=0,所以g (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 又g (x 0)<g (0)=1,所以g (x )≥1不恒成立,不符合题意.综合①②可知,实数a 的取值范围是(]-∞,2.真题体验1.(2017·浙江改编)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是________.(填序号)答案 ④解析 观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0,∴对应函数f (x )的增减性从左到右依次为减、增、减、增.观察图象可知,排除①③.如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2是极大值点,且x 2>0,故④正确.2.(2017·全国Ⅱ改编)若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为________. 答案 -1解析 函数f (x )=(x 2+ax -1)e x -1,则f ′(x )=(2x +a )e x -1+(x 2+ax -1)ex -1=ex -1[x 2+(a +2)x +a -1].由x =-2是函数f (x )的极值点,得f ′(-2)=e -3(4-2a -4+a -1)=(-a -1)e -3=0,所以a =-1,所以f (x )=(x 2-x -1)ex -1,f ′(x )=e x -1(x 2+x -2).由ex -1>0恒成立,得当x =-2或x =1时,f ′(x )=0,且x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0; 当x >1时,f ′(x )>0.所以x =1是函数f (x )的极小值点. 所以函数f (x )的极小值为f (1)=-1.3.(2017·山东改编)若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质,下列函数中具有M 性质的是______.(填序号) ①f (x )=2-x;②f (x )=x 2; ③f (x )=3-x;④f (x )=cos x .答案 ①解析 若f (x )具有性质M ,则[e x f (x )]′=e x[f (x )+f ′(x )]>0在f (x )的定义域上恒成立,即f (x )+f ′(x )>0在f (x )的定义域上恒成立.对于①式,f (x )+f ′(x )=2-x-2-xln 2=2-x(1-ln 2)>0,符合题意. 经验证,②③④均不符合题意.4.(2017·全国Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为________.答案 x -y +1=0解析 ∵y ′=2x -1x2,∴y ′|x =1=1,即曲线在点(1,2)处的切线的斜率k =1, ∴切线方程为y -2=x -1,即x -y +1=0. 押题预测1.设函数y =f (x )的导函数为f ′(x ),若y =f (x )的图象在点P (1,f (1))处的切线方程为x -y +2=0,则f (1)+f ′(1)等于( ) A .4 B .3 C .2 D .1押题依据 曲线的切线问题是导数几何意义的应用,是高考考查的热点,对于“在某一点处的切线”问题,也是易错易混点. 答案 A解析 依题意有f ′(1)=1,1-f (1)+2=0,即f (1)=3, 所以f (1)+f ′(1)=4.2.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则a b的值为( ) A .-23B .-2C .-2或-23D .2或-23押题依据 函数的极值是单调性与最值的“桥梁”,理解极值概念是学好导数的关键.极值点、极值的求法是高考的热点. 答案 A解析 由题意知f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧a =-2,b =1或⎩⎪⎨⎪⎧a =-6,b =9,经检验⎩⎪⎨⎪⎧a =-6,b =9满足题意,故a b =-23.3.已知函数f (x )=x 2-ax +3在(0,1)上为减函数,函数g (x )=x 2-a ln x 在(1,2)上为增函数,则a 的值等于________.押题依据 函数单调性问题是导数最重要的应用,体现了“以直代曲”思想,要在审题中搞清“在(0,1)上为减函数”与“函数的减区间为(0,1)”的区别. 答案 2解析 ∵函数f (x )=x 2-ax +3在(0,1)上为减函数,∴a2≥1,得a ≥2. 又∵g ′(x )=2x -a x,依题意g ′(x )≥0在(1,2)上恒成立,得2x 2≥a 在(1,2)上恒成立,∴a ≤2,∴a =2. 4.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若对任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________.押题依据 不等式恒成立或有解问题可以转化为函数的值域解决.考查了转化与化归思想,是高考的一个热点.答案 ⎣⎢⎡⎭⎪⎫94,+∞ 解析 由于f ′(x )=1+1(x +1)2>0, 因此函数f (x )在[0,1]上单调递增, 所以当x ∈[0,1]时,f (x )min =f (0)=-1. 根据题意可知存在x ∈[1,2], 使得g (x )=x 2-2ax +4≤-1,即x 2-2ax +5≤0,即a ≥x 2+52x 成立,令h (x )=x 2+52x,则要使a ≥h (x )在[1,2]上能成立, 只需使a ≥h (x )min ,又函数h (x )=x 2+52x在[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.A 组 专题通关1.(2018·株洲质检)设函数y =x sin x +cos x 的图象在点()t ,f (t )处切线的斜率为g (t ),则函数y =g (t )的图象一部分可以是( )答案 A解析 因为y ′=x cos x ,所以g (t )=t cos t , 由g (-t )=-t cos t =-g (t )知函数g (t )为奇函数, 所以排除B ,D 选项,当从y 轴右侧t →0时,cos t >0,t >0, 所以g (t )>0,故选A.2.(2018·昆明统考)已知函数f (x )=exx2+2k ln x -kx ,若x =2是函数f (x )的唯一极值点,则实数k 的取值范围是( ) A.⎝ ⎛⎦⎥⎤-∞,e 24 B.⎝⎛⎦⎥⎤-∞,e 2C .(0,2] D.[)2,+∞答案 A解析 由题意得f ′(x )=e x(x -2)x 3+2k x -k =(x -2)()e x-kx 2x3,f ′(2)=0,令g (x )=e x -kx 2,则g (x )在区间(0,+∞)内恒大于等于0或恒小于等于0,令g (x )=0,得k =exx2,令h (x )=ex x 2,则h ′(x )=e x (x -2)x 3,所以h (x )最小值为h (2)=e 24,无最大值,所以k ≤e24,故选A. 3.(2018·衡水金卷调研)已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (0)=12,则不等式f (x )-12e x <0的解集为( )A.⎝⎛⎭⎪⎫-∞,12B .(0,+∞) C.⎝ ⎛⎭⎪⎫12,+∞ D .(-∞,0)答案 B解析 构造函数g (x )=f (x )ex,则g ′(x )=f ′(x )-f (x )ex,因为f ′(x )<f (x ),所以g ′(x )<0, 故函数g (x )在R 上为减函数,又f (0)=12,所以g (0)=f (0)e 0=12,则不等式f (x )-12e x <0可化为f (x )e x <12,即g (x )<12=g (0),所以x >0,即所求不等式的解集为(0,+∞).4.设a ∈R ,若函数y =e ax+3x ,x ∈R 有大于零的极值点,则( ) A .a >-3 B .a <-3 C .a >-13D .a <-13答案 B解析 由题意得,y ′=a e ax +3=0在(0,+∞)上有解, 即a e ax=-3, ∵e ax >0,∴a <0.又当a <0时,0<e ax<1,要使a e ax=-3,则a <-3.5.(2018·西南名校联盟月考)设过曲线f (x )=e x+x +2a (e 为自然对数的底数)上任意一点处的切线为l 1,总存在过曲线g (x )=a2(1-2x )-2sin x 上一点处的切线l 2,使得l 1⊥l 2,则实数a 的取值范围为( ) A .[-1,1] B .[-2,2] C .[-1,2] D .[-2,1]答案 C解析 设y =f (x )的切点为(x 1,y 1),y =g (x )的切点为(x 2,y 2),f ′(x )=e x+1,g ′(x )=-a -2cos x ,由题意得,对任意x 1∈R 总存在x 2使得(1e x+1)(-a -2cos x 2)=-1, ∴2cos x 2=11e x +1-a 对任意x 1∈R 均有解x 2,故-2≤11e x +1-a ≤2对任意x 1∈R 恒成立,则a -2≤11e x +1≤a +2对任意x 1∈R 恒成立. 又11e x +1∈(0,1),∴a -2≤0且2+a ≥1,∴-1≤a ≤2.6.(2018·焦作模拟)已知f (x )=x ln x +f ′(1)x,则f ′(1)=________. 答案 12解析 因为f ′(x )=1+ln x -f ′(1)x 2,令x =1, 得f ′(1)=1-f ′(1),解得f ′(1)=12.7.(2018·全国Ⅲ)曲线y =(ax +1)e x在点(0,1)处的切线的斜率为-2,则a =________. 答案 -3解析 ∵y ′=(ax +a +1)e x,∴当x =0时,y ′=a +1, ∴a +1=-2,得a =-3.8.已知函数f (x )=2ln x 和直线l :2x -y +6=0,若点P 是函数f (x )图象上的一点,则点 P 到直线l 的距离的最小值为________. 答案855解析 设直线y =2x +m 与函数f (x )的图象相切于点P (x 0,y 0)(x 0>0).f ′(x )=2x,则f ′(x 0)=2x 0=2,解得x 0=1.∴P (1,0).则点P 到直线2x -y +6=0的距离d =|2×1-0+6|22+(-1)2=855,即为点P 到直线2x -y +6=0的距离的最小值.9.(2018·衡水金卷调研)已知函数f (x )=mx 2+2x -2ex,m ∈[]1,e ,x ∈[1,2],g (m )=f (x )max-f (x )min ,则关于m 的不等式g (m )≥4e2的解集为________.答案 ⎣⎢⎡⎦⎥⎤24-e ,e 解析 由f (x )=mx 2+2x -2ex,得f ′(x )=()2mx +2e x -()mx 2+2x -2e x()e x 2=2mx +2-mx 2-2x +2e x=-mx 2+()2-2m x -4ex=-()mx +2(x -2)ex,∵m ∈[]1,e ,x ∈[1,2],∴f ′(x )≥0,因此函数f (x )在区间[1,2]上单调递增, ∴f (x )max =f (2)=4m +2e 2,f (x )min =f (1)=me ,从而g (m )=f (x )max -f (x )min =4m +2e 2-m e =4m +2-m ee 2, 令4m +2-m e e 2≥4e 2,得m ≥24-e, 又m ∈[1,e],∴m ∈⎣⎢⎡⎦⎥⎤24-e ,e .故不等式g (m )≥4e 2的解集为⎣⎢⎡⎦⎥⎤24-e ,e .10.(2018·吕梁模拟)已知函数f (x )=exx-a ()x -ln x .(1)当a ≤0时,试求f (x )的单调区间;(2)若f (x )在(0,1)内有极值,试求a 的取值范围. 解 (1)函数f (x )的定义域为(0,+∞).f ′(x )=e x(x -1)x2-a ⎝ ⎛⎭⎪⎫1-1x =e x(x -1)-ax (x -1)x2, =()e x -ax (x -1)x 2.当a ≤0时,对于∀x ∈(0,+∞),e x-ax >0恒成立, 所以由f ′(x )>0,得x >1;由f ′(x )<0,得0<x <1. 所以f (x )的单调增区间为(1,+∞),单调减区间为(0,1). (2)若f (x )在(0,1)内有极值, 则f ′(x )=0在(0,1)内有解. 令f ′(x )=()e x -ax (x -1)x 2=0,即e x-ax =0,即a =e xx.设g (x )=exx,x ∈(0,1),所以 g ′(x )=e x(x -1)x2, 当x ∈(0,1)时,g ′(x )<0恒成立, 所以g (x )单调递减.又因为g (1)=e ,又当x →0时,g (x )→+∞, 即g (x )在(0,1)上的值域为(e ,+∞), 所以当a >e 时,f ′(x )=()e x -ax (x -1)x 2=0 有解.设H (x )=e x-ax ,则 H ′(x )=e x-a <0,x ∈(0,1), 所以H (x )在(0,1)上单调递减. 因为H (0)=1>0,H (1)=e -a <0,所以H (x )=e x-ax =0在(0,1)上有唯一解x 0.当x 变化时,H (x ),f ′(x ),f (x )变化情况如表所示:所以当a >e 时,f (x )在(0,1)内有极值且唯一.当a ≤e 时,当x ∈(0,1)时,f ′(x )≤0恒成立,f (x )单调递减,不成立. 综上,a 的取值范围为(e ,+∞).B 组 能力提高11.(2018·山东联盟考试)对于函数f (x )=e x-ln(x +2)-2,以下描述正确的是( ) A .∃x 0∈(-2,+∞),f (x 0)∈(-∞,-2) B .∀x ∈(-2,+∞),f (x )∈(-∞,-2) C .∀x ∈(-2,+∞),f (x )∈(-2,+∞) D .f (x )min ∈(-1,1) 答案 C解析 设函数g (x )=e x-x -1,g ′(x )=e x-1, 当x >0时,g ′(x )>0,当x <0时,g ′(x )<0, 所以g (x )min =g (0)=0,即e x≥x +1, 设函数h (x )=x +1-ln(x +2)(x >-2), h ′(x )=1-1x +2=x +1x +2,令h ′(x )>0,得x >-1,令h ′(x )<0,得-2<x <-1,所以h (x )min =h (-1)=0,即x +1≥ln(x +2), 又等号取不同x 值,所以e x>ln(x +2),e x-ln(x +2)>0,函数f (x )=e x-ln(x +2)-2的值域为(-2,+∞),故选C.12.(2018·齐鲁名校教科研协作体模拟)已知函数f (x )=sin x -x cos x ,现有下列结论: ①当x ∈[0,π]时,f (x )≥0;②当0<α<β<π时,α·sin β>β·sin α;③若n <sin x x <m 对∀x ∈⎝⎛⎭⎪⎫0,π2恒成立,则m -n 的最小值等于1-2π;④已知k ∈[]0,1,当x i ∈()0,2π时,满足|sin x i |x i=k 的x i 的个数记为n ,则n 的所有可能取值构成的集合为{0,1,2,3}. 其中正确的个数为( ) A .1 B .2 C .3 D .4 答案 C解析 当x ∈[0,π]时,f ′(x )=x sin x ≥0, 函数f (x )在[0,π]上为增函数, 所以f (x )≥f (0)=0,①正确; 令g (x )=sin x x,由①知,当x ∈(0,π)时,g ′(x )=x ·cos x -sin xx 2<0,所以g (x )在(0,π)上为减函数, 所以g ()α>g ()β,sin αα>sin ββ, 所以α·sin β<β·sin α,②错误; 由②可知g (x )=sin x x 在⎝ ⎛⎭⎪⎫0,π2上为减函数,所以g (x )=sin x x >g ⎝ ⎛⎭⎪⎫π2=2π,则n ≤2π,令φ(x )=sin x -x ,当x ∈⎝⎛⎭⎪⎫0,π2时,φ′(x )=cos x -1<0,所以φ(x )在⎝⎛⎭⎪⎫0,π2上为减函数,所以φ(x )=sin x -x <φ(0)=0,所以sin x x<1,所以m ≥1,则()m -n min =m min -n max =1-2π,③正确;令h (x )=|sin x |,k 表示点(x i ,h (x i ))与原点(0,0)连线的斜率,结合图象(图略)可知,当k ∈[]0,1,x ∈(0,2π)时,n 的所有可能取值有0,1,2,3,④正确.13.(2018·齐齐哈尔模拟)已知函数f (x )=k ln x -x -1x,且曲线y =f (x )在点(1,f (1))处的切线与y 轴垂直. (1)求函数f (x )的单调区间;(2)若对任意x ∈(0,1)∪(1,e)(其中e 为自然对数的底数),都有f (x )x -1+1x >1a(a >0)恒成立,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞), ∵f (x )=k ln x -x -1x,定义域为(0,+∞), ∴f ′(x )=k x -1x2=kx -1x2(x >0).由题意知f ′(1)=k -1=0,解得k =1, ∴f ′(x )=x -1x 2(x >0), 由f ′(x )>0,解得x >1;由f ′(x )<0,解得0<x <1, ∴f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞). (2)由(1)知f (x )=ln x -1+1x,∴f (x )x -1+1x =ln x x -1-1x -1+1x (x -1)+1x =ln xx -1. 方法一 设m (x )=ln x x -1,则m ′(x )=x -1-x ln xx (x -1)2,令n (x )=x -1-x ln x ,则n ′(x )=1-ln x -1=-ln x , ∴当x >1时,n ′(x )<0,n (x )在[1,+∞)上单调递减, ∴当x ∈(1,e)时,n (x )<n (1)=0,∴当x ∈(1,e)时,m ′(x )<0,m (x )单调递减, ∴当x ∈(1,e)时,m (x )>m (e)=1e -1,由题意知1a ≤1e -1,又a >0,∴a ≥e-1. 下面证明:当a ≥e-1,0<x <1时,ln x x -1>1a 成立,即证a ln x <x -1成立, 令φ(x )=a ln x -x +1, 则φ′(x )=a x -1=a -xx(0<x <1), 由a ≥e-1,0<x <1,得φ′(x )>0, 故φ(x )在(0,1)上是增函数, ∴x ∈(0,1)时,φ(x )<φ(1)=0, ∴a ln x <x -1成立,即ln x x -1>1a 成立,故正数a 的取值范围是[)e -1,+∞. 方法二 ①当x ∈(0,1)时,ln x x -1>1a(a >0)可化为a ln x -x +1<0(a >0), 令g (x )=a ln x -x +1(a >0),则问题转化为证明g (x )<0对任意x ∈(0,1)恒成立. 又g ′(x )=a x -1=a -xx(a >0), 令g ′(x )>0,得0<x <a ,令g ′(x )<0,得x >a ,∴函数g (x )在(0,a )上单调递增,在(a ,+∞)上单调递减. (ⅰ)当0<a <1时,下面验证g (a )=a ln a -a +1>0(a ∈(0,1)). 设T (x )=x ln x -x +1(0<x <1),则T ′(x )=ln x +1-1=ln x <0(0<x <1). 所以T (x )在(0,1)上单调递减,所以T (x )>T (1)=0.即g (a )>0(a ∈(0,1). 故此时不满足g (x )<0对任意x ∈(0,1)恒成立; (ⅱ)当a ≥1时,函数g (x )在(0,1)上单调递增. 故g (x )<g (1)=0对任意x ∈(0,1)恒成立, 故a ≥1符合题意. 综合(ⅰ)(ⅱ),得a ≥1.②当x ∈(1,e)时,ln x x -1>1a (a >0),令h (x )=a ln x -x +1(a >0),则问题转化为证明h (x )>0对任意x ∈(1,e)恒成立. 又h ′(x )=a x -1=a -xx(a >0), 令h ′(x )>0得 0<x <a ;令h ′(x )<0,得x >a ,∴函数h (x )在(0,a )上单调递增,在(a ,+∞)上单调递减. (ⅰ)当a ≥e 时,h (x )在(1,e)上是增函数, 所以h (x )>h (1)=0,(ⅱ)当1<a <e 时,h (x )在(1,a )上单调递增,在(a ,e)上单调递减, 所以只需h (e)≥0,即a ≥e-1,(ⅲ)当0<a ≤1时,h (x )在(1,e)上单调递减, 则h (x )<h (1)=0,不符合题意. 综合(ⅰ)(ⅱ)(ⅲ)可得a ≥e-1.由①②得正数a 的取值范围是[)e -1,+∞.。

高考数学二轮复习考点知识与题型专题讲解3---导数的几何意义及函数的单调性

高考数学二轮复习考点知识与题型专题讲解3---导数的几何意义及函数的单调性

高考数学二轮复习考点知识与题型专题讲解第3讲导数的几何意义及函数的单调性[考情分析] 1.导数的几何意义和计算是导数应用的基础,是高考的热点,多以选择题、填空题的形式考查,难度较小.2.应用导数研究函数的单调性,是导数应用的重点内容,也是高考的常见题型,以选择题、填空题的形式考查,或为导数解答题第一问,难度中等偏上,属综合性问题.考点一导数的几何意义与计算核心提炼1.导数的几何意义(1)函数在某点的导数即曲线在该点处的切线的斜率.(2)曲线在某点的切线与曲线过某点的切线不同.(3)切点既在切线上,又在曲线上.2.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y′x=y′u·u′x.例1(1)(2022·焦作模拟)函数f(x)=(2e x-x)·cos x的图象在x=0处的切线方程为()A.x-2y+1=0 B.x-y+2=0C.x+2=0 D.2x-y+1=0答案 B解析由题意,函数f(x)=(2e x-x)·cos x,可得f′(x)=(2e x-1)·cos x-(2e x-x)·sin x,所以f′(0)=(2e0-1)·cos 0-(2e0-0)·sin 0=1,f(0)=(2e0-0)·cos 0=2,所以f(x)在x=0处的切线方程为y-2=x-0,即x-y+2=0.(2)(2022·新高考全国Ⅰ)若曲线y =(x +a )e x 有两条过坐标原点的切线,则a 的取值范围是________. 答案 (-∞,-4)∪(0,+∞)解析 因为y =(x +a )e x ,所以y ′=(x +a +1)e x .设切点为A (x 0,(x 0+a )0e x),O 为坐标原点,依题意得,切线斜率k OA =0=|x x y'=(x 0+a +1)0e x =000e x x a x (+),化简,得x 20+ax 0-a =0.因为曲线y =(x +a )e x 有两条过坐标原点的切线,所以关于x 0的方程x 20+ax 0-a =0有两个不同的根,所以Δ=a 2+4a >0,解得a <-4或a >0,所以a 的取值范围是(-∞,-4)∪(0,+∞).易错提醒 求曲线的切线方程要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点. 跟踪演练1 (1)(2022·新高考全国Ⅱ)曲线y =ln|x |过坐标原点的两条切线的方程为__________,____________.答案 y =1e xy =-1ex 解析 先求当x >0时,曲线y =ln x 过原点的切线方程,设切点为(x 0,y 0),则由y ′=1x ,得切线斜率为1x 0, 又切线的斜率为y 0x 0,所以1x 0=y 0x 0, 解得y 0=1,代入y =ln x ,得x 0=e ,所以切线斜率为1e ,切线方程为y =1ex . 同理可求得当x <0时的切线方程为y =-1ex . 综上可知,两条切线方程为y =1e x ,y =-1ex . (2)(2022·保定联考)已知函数f (x )=a ln x ,g (x )=b e x ,若直线y =kx (k >0)与函数f (x ),g (x )的图象都相切,则a +1b的最小值为( ) A .2 B .2eC .e 2D. e答案 B解析 设直线y =kx 与函数f (x ),g (x )的图象相切的切点分别为A (m ,km ),B (n ,kn ).由f ′(x )=a x ,有⎩⎪⎨⎪⎧ km =a ln m ,a m =k ,解得m =e ,a =e k .又由g ′(x )=b e x ,有⎩⎪⎨⎪⎧kn =b e n ,b e n =k , 解得n =1,b =k e, 可得a +1b =e k +e k≥2e 2=2e , 当且仅当a =e ,b =1e时取“=”.考点二 利用导数研究函数的单调性 核心提炼利用导数研究函数单调性的步骤(1)求函数y =f (x )的定义域.(2)求f (x )的导数f ′(x ).(3)求出f ′(x )的零点,划分单调区间.(4)判断f ′(x )在各个单调区间内的符号.例2(2022·哈师大附中模拟)已知函数f (x )=ax e x -(x +1)2(a ∈R ,e 为自然对数的底数).(1)若f (x )在x =0处的切线与直线y =ax 垂直,求a 的值;(2)讨论函数f (x )的单调性.解 (1)f ′(x )=(x +1)(a e x -2),则f ′(0)=a -2,由已知得(a -2)a =-1,解得a =1.(2)f ′(x )=(x +1)(a e x -2),①当a ≤0时,a e x -2<0,所以f ′(x )>0⇒x <-1,f ′(x )<0⇒x >-1,则f (x )在(-∞,-1)上单调递增,在(-1,+∞)上单调递减;②当a >0时,令a e x -2=0,得x =ln 2a, (ⅰ)当0<a <2e 时,ln 2a>-1, 所以f ′(x )>0⇒x <-1或x >ln 2a, f ′(x )<0⇒-1<x <ln 2a, 则f (x )在(-∞,-1)上单调递增,在⎝⎛⎭⎫-1,ln 2a 上单调递减,在⎝⎛⎭⎫ln 2a ,+∞上单调递增; (ⅱ)当a =2e 时,f ′(x )=2(x +1)(e x +1-1)≥0, 则f (x )在(-∞,+∞)上单调递增;(ⅲ)当a >2e 时,ln 2a<-1, 所以f ′(x )>0⇒x <ln 2a或x >-1, f ′(x )<0⇒ln 2a<x <-1, 则f (x )在⎝⎛⎭⎫-∞,ln 2a 上单调递增,在⎝⎛⎭⎫ln 2a ,-1上单调递减,在(-1,+∞)上单调递增. 综上,当a ≤0时,f (x )在(-∞,-1)上单调递增,在(-1,+∞)上单调递减;当0<a <2e 时,f (x )在(-∞,-1)上单调递增,在⎝⎛⎭⎫-1,ln 2a 上单调递减,在⎝⎛⎭⎫ln 2a ,+∞上单调递增; 当a =2e 时,f (x )在(-∞,+∞)上单调递增;当a >2e 时,f (x )在⎝⎛⎭⎫-∞,ln 2a 上单调递增,在⎝⎛⎭⎫ln 2a ,-1上单调递减,在(-1,+∞)上单调递增. 规律方法 (1)讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制;(2)在能够通过因式分解求出不等式对应方程的根时,依据根的大小进行分类讨论;(3)在不能通过因式分解求出根的情况时,根据不等式对应方程的判别式进行分类讨论.跟踪演练2 (2022·北京模拟)已知函数f (x )=ln x -ln t x -t. (1)当t =2时,求f (x )在x =1处的切线方程;(2)求f (x )的单调区间.解 (1)∵t =2,∴f (x )=ln x -ln 2x -2, ∴f ′(x )=x -2x -ln x +ln 2(x -2)2, ∴f ′(1)=ln 2-1,又f (1)=ln 2,∴切线方程为y -ln 2=(ln 2-1)(x -1),即y =(ln 2-1)x +1.(2)f (x )=ln x -ln t x -t, ∴f (x )的定义域为(0,t )∪(t ,+∞),且t >0,f ′(x )=1-t x -ln x +ln t (x -t )2, 令φ(x )=1-t x-ln x +ln t ,x >0且x ≠t , φ′(x )=t x 2-1x =t -x x 2, ∴当x ∈(0,t )时,φ′(x )>0,当x ∈(t ,+∞)时,φ′(x )<0,∴φ(x )在(0,t )上单调递增,在(t ,+∞)上单调递减,∴φ(x )<φ(t )=0,∴f ′(x )<0,∴f (x )在(0,t ),(t ,+∞)上单调递减.即f (x )的单调递减区间为(0,t ),(t ,+∞),无单调递增区间.考点三 单调性的简单应用 核心提炼1.函数f (x )在区间D 上单调递增(或递减),可转化为f ′(x )≥0(或f ′(x )≤0)在x ∈D 上恒成立.2.函数f (x )在区间D 上存在单调递增(或递减)区间,可转化为f ′(x )>0(或f ′(x )<0)在x ∈D 上有解.例3 (1)若函数f (x )=e x (cos x -a )在区间⎝⎛⎭⎫-π2,π2上单调递减,则实数a 的取值范围是( ) A .(-2,+∞) B .(1,+∞)C .[1,+∞)D .[2,+∞)答案 D解析 f ′(x )=e x (cos x -a )+e x (-sin x )=e x (cos x -sin x -a ),∵f (x )在区间⎝⎛⎭⎫-π2,π2上单调递减,∴f ′(x )≤0在区间⎝⎛⎭⎫-π2,π2上恒成立,即cos x -sin x -a ≤0恒成立,即a ≥cos x -sin x =2cos ⎝⎛⎭⎫x +π4恒成立,∵-π2<x <π2,∴-π4<x +π4<3π4,∴-1<2cos ⎝⎛⎭⎫x +π4≤2,∴a ≥ 2.(2)(2022·新高考全国Ⅰ)设a =0.1e 0.1,b =19,c =-ln 0.9,则( )A .a <b <cB .c <b <aC .c <a <bD .a <c <b答案 C解析 设u (x )=x e x (0<x ≤0.1),v (x )=x 1-x(0<x ≤0.1), w (x )=-ln(1-x )(0<x ≤0.1).则当0<x ≤0.1时,u (x )>0,v (x )>0,w (x )>0.①设f (x )=ln[u (x )]-ln[v (x )]=ln x +x -[ln x -ln(1-x )]=x +ln(1-x )(0<x ≤0.1),则f ′(x )=1-11-x =x x -1<0在(0,0.1]上恒成立, 所以f (x )在(0,0.1]上单调递减,所以f (0.1)<f (0)=0+ln(1-0)=0,即ln[u (0.1)]-ln[v (0.1)]<0,所以ln[u (0.1)]<ln[v (0.1)].又函数y =ln x 在(0,+∞)上单调递增,所以u (0.1)<v (0.1),即0.1e 0.1<19,所以a <b . ②设g (x )=u (x )-w (x )=x e x +ln(1-x )(0<x ≤0.1),则g ′(x )=(x +1)e x -11-x=(1-x 2)e x -11-x(0<x ≤0.1). 设h (x )=(1-x 2)e x -1(0<x ≤0.1),则h ′(x )=(1-2x -x 2)e x >0在(0,0.1]上恒成立,所以h (x )在(0,0.1]上单调递增,所以h (x )>h (0)=(1-02)·e 0-1=0,即g ′(x )>0在(0,0.1]上恒成立,所以g (x )在(0,0.1]上单调递增,所以g (0.1)>g (0)=0·e 0+ln(1-0)=0,即g (0.1)=u (0.1)-w (0.1)>0,所以0.1e 0.1>-ln 0.9,即a >c .综上,c <a <b ,故选C.规律方法 利用导数比较大小或解不等式的策略利用导数比较大小或解不等式,常常要构造新函数,把比较大小或求解不等式的问题,转化为利用导数研究函数单调性问题,再由单调性比较大小或解不等式.跟踪演练3 (1)(2022·全国甲卷)已知9m =10,a =10m -11,b =8m -9,则( )A .a >0>bB .a >b >0C .b >a >0D .b >0>a答案 A解析 ∵9m =10,∴m ∈(1,2),令f (x )=x m -(x +1),x ∈(1,+∞),∴f ′(x )=mx m -1-1, ∵x >1且1<m <2,∴x m -1>1,∴f ′(x )>0, ∴f (x )在(1,+∞)上单调递增,又9m =10,∴9m -10=0,即f (9)=0,又a =f (10),b =f (8),∴f (8)<f (9)<f (10),即b <0<a .(2)已知变量x 1,x 2∈(0,m )(m >0),且x 1<x 2,若2112x x x x 恒成立,则m 的最大值为(e =2.718 28…为自然对数的底数)( )A .e B. e C.1eD .1 答案 A解析 ∵2112x x x x ⇒x 2ln x 1<x 1ln x 2,x 1,x 2∈(0,m ),m >0,∴ln x 1x 1<ln x 2x 2恒成立, 设函数f (x )=ln x x ,∵x 1<x 2,f (x 1)<f (x 2),∴f (x )在(0,m )上单调递增,又f ′(x )=1-ln xx 2,则f ′(x )>0⇒0<x <e ,即函数f (x )的单调递增区间是(0,e),则m 的最大值为e.专题强化练一、单项选择题1.(2022·张家口模拟)已知函数f (x )=1x -2x +ln x ,则函数f (x )在点(1,f (1))处的切线方程为() A .2x +y -2=0 B .2x -y -1=0C .2x +y -1=0D .2x -y +1=0答案 C解析 因为f ′(x )=-1x 2-2+1x ,所以f ′(1)=-2,又f (1)=-1,故函数f (x )在点(1,f (1))处的切线方程为y -(-1)=-2(x -1),化简得2x +y -1=0.2.已知函数f (x )=x 2+f (0)·x -f ′(0)·cos x +2,其导函数为f ′(x ),则f ′(0)等于( )A .-1B .0C .1D .2答案 C解析 因为f (x )=x 2+f (0)·x -f ′(0)·cos x +2,所以f (0)=2-f ′(0).因为f ′(x )=2x +f (0)+f ′(0)·sin x ,所以f ′(0)=f (0).故f ′(0)=f (0)=1.3.(2022·重庆检测)函数f (x )=e -x cos x (x ∈(0,π))的单调递增区间为( ) A.⎝⎛⎭⎫0,π2B.⎝⎛⎭⎫π2,π C.⎝⎛⎭⎫0,3π4 D.⎝⎛⎭⎫3π4,π 答案 D解析 f ′(x )=-e -x cos x -e -x sin x =-e -x (cos x +sin x )=-2e -x sin ⎝⎛⎭⎫x +π4, 当x ∈⎝⎛⎭⎫0,3π4时, e -x >0,sin ⎝⎛⎭⎫x +π4>0,则f ′(x )<0; 当x ∈⎝⎛⎭⎫3π4,π时,e -x >0,sin ⎝⎛⎭⎫x +π4<0,则f ′(x )>0. ∴f (x )在(0,π)上的单调递增区间为⎝⎛⎭⎫3π4,π.4.(2022·厦门模拟)已知函数f (x )=(x -1)e x -mx 在区间x ∈[1,2]上存在单调递增区间,则m 的取值范围为( )A .(0,e)B .(-∞,e)C .(0,2e 2)D .(-∞,2e 2)答案 D解析 ∵f (x )=(x -1)e x -mx ,∴f ′(x )=x e x -m ,∵f (x )在区间[1,2]上存在单调递增区间,∴存在x ∈[1,2],使得f ′(x )>0,即m <x e x ,令g (x )=x e x ,x ∈[1,2],则g ′(x )=(x +1)e x >0恒成立,∴g (x )=x e x 在[1,2]上单调递增,∴g (x )max =g (2)=2e 2,∴m <2e 2,故实数m 的取值范围为(-∞,2e 2).5.(2021·新高考全国Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( )A .e b <aB .e a <bC .0<a <e bD .0<b <e a答案 D解析 (用图估算法)过点(a ,b )可以作曲线y =e x 的两条切线,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方,得0<b <e a .6.已知a =e 0.3,b =ln 1.52+1,c = 1.5,则它们的大小关系正确的是( ) A .a >b >c B .a >c >bC .b >a >cD .c >b >a答案 B解析 由b =ln 1.52+1=ln 1.5+1,令f (x )=ln x +1-x ,则f ′(x )=1x -1,当x ∈(0,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0;所以f (x )=ln x +1-x 在(0,1)上单调递增,在(1,+∞)上单调递减,且f (1)=0,则f ( 1.5)<0,因此ln 1.5+1- 1.5<0,所以b <c ,又因为c = 1.5<1.3,所以ln 1.5+1< 1.5<1.3,得ln 1.5<0.3=ln e 0.3, 故 1.5<e 0.3,所以a >c .综上,a >c >b .二、多项选择题7.若曲线f (x )=ax 2-x +ln x 存在垂直于y 轴的切线,则a 的取值可以是() A .-12 B .0 C.18 D.14答案 ABC解析 依题意,f (x )存在垂直于y 轴的切线,即存在切线斜率k =0的切线,又k =f ′(x )=2ax +1x -1,x >0,∴2ax +1x -1=0有正根,即-2a =⎝⎛⎭⎫1x 2-1x 有正根,即函数y =-2a 与函数y =⎝⎛⎭⎫1x 2-1x ,x >0的图象有交点,令1x =t >0,则g (t )=t 2-t =⎝⎛⎭⎫t -122-14,∴g (t )≥g ⎝⎛⎭⎫12=-14,∴-2a ≥-14,即a ≤18.8.已知函数f (x )=ln x ,x 1>x 2>e ,则下列结论正确的是() A .(x 1-x 2)[f (x 1)-f (x 2)]<0B.12[f (x 1)+f (x 2)]<f ⎝⎛⎭⎫x 1+x22C .x 1f (x 2)-x 2f (x 1)>0D .e[f (x 1)-f (x 2)]<x 1-x 2答案 BCD解析 ∵f (x )=ln x 是增函数,∴(x 1-x 2)[f (x 1)-f (x 2)]>0,A 错误;12[f (x 1)+f (x 2)]=12(ln x 1+ln x 2)=12ln(x 1x 2)=ln x 1x 2,f ⎝⎛⎭⎫x 1+x 22=ln x 1+x 22,由x 1>x 2>e ,得x 1+x 22>x 1x 2,又f (x )=ln x 单调递增,∴12[f (x 1)+f (x 2)]<f ⎝⎛⎭⎫x1+x 22,B 正确;令h (x )=f (x )x ,则h ′(x )=1-ln x x 2, 当x >e 时,h ′(x )<0,h (x )单调递减,∴h (x 1)<h (x 2),即 f (x 1)x 1< f (x 2)x 2⇒x 1f (x 2)-x 2f (x 1)>0, C 正确;令g (x )=e f (x )-x ,则g ′(x )=e x-1, 当x >e 时,g ′(x )<0,g (x )单调递减,∴g (x 1)<g (x 2),即e f (x 1)-x 1<e f (x 2)-x 2⇒e[f (x 1)-f (x 2)]<x 1-x 2,D 正确.三、填空题9.(2022·保定模拟)若函数f (x )=ln x -2x+m 在(1,f (1))处的切线过点(0,2),则实数m =______. 答案 6解析 由题意,函数f (x )=ln x -2x +m , 可得f ′(x )=1x +321x , 可得f ′(1)=2,且f (1)=m -2,所以m -2-21-0=2,解得m =6. 10.已知函数f (x )=x 2-cos x ,则不等式f (2x -1)<f (x +1)的解集为________.答案 (0,2)解析 f (x )的定义域为R ,f (-x )=(-x )2-cos(-x )=x 2-cos x =f (x ),∴f (x )为偶函数.当x >0时,f ′(x )=2x +sin x ,令g (x )=2x +sin x ,则g ′(x )=2+cos x >0,∴f ′(x )在(0,+∞)上单调递增,∴f ′(x )>f ′(0)=0,∴f (x )在(0,+∞)上单调递增,又f (x )为偶函数,∴原不等式化为|2x -1|<|x +1|,解得0<x <2,∴原不等式的解集为(0,2).11.(2022·伊春模拟)过点P (1,2)作曲线C :y =4x的两条切线,切点分别为A ,B ,则直线AB 的方程为________.答案 2x +y -8=0解析 设A (x 1,y 1),B (x 2,y 2),y ′=-4x 2, 所以曲线C 在A 点处的切线方程为y -y 1=-4x 21(x -x 1), 将P (1,2)代入得2-y 1=-4x 21(1-x 1), 因为y 1=4x 1,化简得2x 1+y 1-8=0, 同理可得2x 2+y 2-8=0,所以直线AB 的方程为2x +y -8=0.12.已知函数f (x )=12x 2-ax +ln x ,对于任意不同的x 1,x 2∈(0,+∞),有f (x 1)-f (x 2)x 1-x 2>3,则实数a 的取值范围是________.答案a ≤-1解析 对于任意不同的x 1,x 2∈(0,+∞),有 f (x 1)-f (x 2)x 1-x 2>3. 不妨设x 1<x 2,则f (x 1)-f (x 2)<3(x 1-x 2),即f (x 1)-3x 1<f (x 2)-3x 2,设F (x )=f (x )-3x ,则F (x 1)<F (x 2),又x 1<x 2,所以F (x )单调递增,F ′(x )≥0恒成立.F (x )=f (x )-3x =12x 2-(a +3)x +ln x . 所以F ′(x )=x -(3+a )+1x =x 2-(3+a )x +1x, 令g (x )=x 2-(3+a )x +1,要使F ′(x )≥0在(0,+∞)上恒成立,只需g (x )=x 2-(3+a )x +1≥0恒成立,即3+a ≤x +1x 恒成立,x +1x ≥2x ·1x=2, 当且仅当x =1x,即x =1时等号成立, 所以3+a ≤2,即a ≤-1.四、解答题13.(2022·滁州模拟)已知函数f (x )=x 2-2x +a ln x (a ∈R ).(1)若函数在x =1处的切线与直线x -4y -2=0垂直,求实数a 的值;(2)当a >0时,讨论函数的单调性.解 函数定义域为(0,+∞),求导得f ′(x )=2x -2+a x. (1)由已知得f ′(1)=2×1-2+a =-4,得a =-4.(2)f ′(x )=2x -2+a x =2x 2-2x +a x(x >0), 对于方程2x 2-2x +a =0,记Δ=4-8a .①当Δ≤0,即a ≥12时,f ′(x )≥0,函数f (x )在(0,+∞)上单调递增; ②当Δ>0,即0<a <12时,令f ′(x )=0, 解得x 1=1-1-2a 2,x 2=1+1-2a 2. 又a >0,故x 2>x 1>0.当x ∈(0,x 1)∪(x 2,+∞)时,f ′(x )>0,函数f (x )单调递增,当x ∈(x 1,x 2)时,f ′(x )<0,函数f (x )单调递减.综上所述,当a ≥12时,函数f (x )在(0,+∞)上单调递增; 当0<a <12时,函数f (x )在⎝ ⎛⎭⎪⎫0,1-1-2a 2, ⎝ ⎛⎭⎪⎫1+1-2a 2,+∞上单调递增, 在⎝ ⎛⎭⎪⎫1-1-2a 2,1+1-2a 2上单调递减. 14.(2022·湖北八市联考)设函数f (x )=e x -(ax -1)ln(ax -1)+(a +1)x .(e =2.718 28…为自然对数的底数)(1)当a =1时,求F (x )=e x -f (x )的单调区间;(2)若f (x )在区间⎣⎡⎦⎤1e ,1上单调递增,求实数a 的取值范围.解 (1)当a =1时,F (x )=e x -f (x )=(x -1)ln(x -1)-2x ,定义域为(1,+∞),F ′(x )=ln(x -1)-1,令F ′(x )>0,解得x >e +1,令F ′(x )<0,解得1<x <e +1,故F (x )的单调递增区间为(e +1,+∞),单调递减区间为(1,e +1).(2)f (x )在区间⎣⎡⎦⎤1e ,1上有意义,故ax -1>0在⎣⎡⎦⎤1e ,1上恒成立,可得a >e ,依题意可得f ′(x )=e x -a ln(ax -1)+1≥0在⎣⎡⎦⎤1e ,1上恒成立,设g (x )=f ′(x )=e x -a ln(ax -1)+1,g ′(x )=e x-a 2ax -1, 易知g ′(x )在⎣⎡⎦⎤1e ,1上单调递增,故g ′(x )≤g ′(1)=e -a 2a -1<0, 故g (x )=f ′(x )=e x -a ln(ax -1)+1在⎣⎡⎦⎤1e ,1上单调递减,最小值为g (1),故只需g (1)=e -a ln(a -1)+1≥0,设h (a )=e -a ln(a -1)+1,其中a >e ,由h ′(a )=-ln(a -1)-a a -1<0可得, h (a )=e -a ln(a -1)+1在(e ,+∞)上单调递减,又h (e +1)=0,故a ≤e +1.综上所述,a 的取值范围为(e ,e +1].。

高考数学二轮复习 专题2 函数与导数 第3讲 导数的概念

高考数学二轮复习 专题2 函数与导数 第3讲 导数的概念

第3讲导数的概念及其简单应用导数的几何意义及导数的运算1.(2015洛阳统考)已知直线m:x+2y-3=0,函数y=3x+cos x的图象与直线l相切于Ρ点,若l ⊥m,则Ρ点的坐标可能是( B )(A)(-错误!未找到引用源。

,-错误!未找到引用源。

) (B)(错误!未找到引用源。

,错误!未找到引用源。

)(C)(错误!未找到引用源。

,错误!未找到引用源。

)(D)(-错误!未找到引用源。

,-错误!未找到引用源。

)解析:由l⊥m可得直线l的斜率为2,函数y=3x+cos x的图象与直线l相切于Ρ点,也就是函数在P点的导数值为2,而y ′=3-sin x=2,解得sin x=1,只有B,D符合要求,而D中的点不在函数图象上,因此选B.2.(2014广东卷)曲线y=e-5x+2在点(0,3)处的切线方程为.解析:由题意知点(0,3)是切点.y′=-5e-5x,令x=0,得所求切线斜率为-5.从而所求方程为5x+y-3=0.答案:5x+y-3=0利用导数研究函数的单调性3.(2015辽宁沈阳市质检)若定义在R上的函数f(x)满足f(x)+f′(x)>1,f(0)=4,则不等式f(x)>错误!未找到引用源。

+1(e为自然对数的底数)的解集为( A )(A)(0,+∞) (B)(-∞,0)∪(3,+∞)(C)(-∞,0)∪(0,+∞) (D)(3,+∞)解析:不等式f(x)>错误!未找到引用源。

+1可以转化为e x f(x)-e x-3>0令g(x)=e x f(x)-e x-3,所以g′(x)=e x(f(x)+f′(x))-e x=e x(f(x)+f′(x)-1)>0,所以g(x)在R上单调递增,又因为g(0)=f(0)-4=0,所以g(x)>0⇒x>0,即不等式的解集是(0,+∞).故选A.4.(2014辽宁卷)当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是( C )(A)[-5,-3] (B)[-6,-错误!未找到引用源。

高考数学二轮复习第2部分专题6函数、导数和不等式第2讲导数的简单应用教案理

高考数学二轮复习第2部分专题6函数、导数和不等式第2讲导数的简单应用教案理

高考数学二轮复习第2部分专题6函数、导数和不等式第2讲导数的简单应用教案理[做小题——激活思维]1.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________.y =3x [因为y ′=3(2x +1)e x +3(x 2+x )e x =3(x 2+3x +1)e x ,所以曲线在点(0,0)处的切线的斜率k =y ′|x =0=3,所以所求的切线方程为y =3x .]2.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如图所示,则y =f (x )的图象最有可能是以下选项中的( )C [由题图知,当x <0时,f ′(x )>0,所以y =f (x )在(-∞,0)上单调递增.因为当0<x <2时,f ′(x )<0,所以y =f (x )在(0,2)上单调递减.又当x >2时,f ′(x )>0,所以y =f (x )在(2,+∞)上单调递增.]3.函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)B [函数定义域为(0,+∞),由y ′=x -1x =x 2-1x≤0得,0<x ≤1,故选B.]4.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)D [f ′(x )=k -1x ,由题意知k -1x ≥0,即k ≥1x在(1,+∞)上恒成立,又当x ∈(1,+∞)时,0<1x<1,所以k ≥1,故选D.]5.函数f (x )=13x 3-4x +m 在[0,3]上的最大值为4,则m 的值为( )A .7 B.283C .3D .4D [f ′(x )=x 2-4,x ∈[0,3],f ′(x )=0时,x =2,f ′(x )<0时,0≤x <2,f ′(x )>0时,2<x ≤3.所以f (x )在[0,2)上是减函数, 在(2,3]上是增函数. 又f (0)=m ,f (3)=-3+m . 所以在[0,3]上,f (x )max =f (0)=4, 所以m =4,故选D.]6.已知f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则a +b 等于( ) A .0或-7 B .-7 C .0D .7B [因为f ′(x )=3x 2+2ax +b ,所以f ′(1)=3+2a +b =0,①f (1)=1+a +b +a 2=10,②由①②得⎩⎪⎨⎪⎧a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3,而要在x =1处取到极值,则Δ=4a 2-12b >0,故舍去⎩⎪⎨⎪⎧a =-3,b =3,所以只有⎩⎪⎨⎪⎧a =4,b =-11,所以a +b =-7,故选B.][扣要点——查缺补漏]1.导数的几何意义(1)f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,y 0)处切线的斜率.(2)函数y =f (x )在点x =x 0处的切线方程为y -f (x 0)=f ′(x 0)(x -x 0),如T 1. 2.导数与函数的单调性(1)函数单调性的判定方法:在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在此区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在此区间内单调递减.如T 2.(2)若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0.如T 3.(3)若已知函数的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题来求解.如T 4.3.导数与函数的极值、最值(1)可导函数极值点的导数为0,但导数为0的点不一定是极值点,如函数f (x )=x 3,f ′(0)=0,但x =0不是极值点.如T 5.(2)极值点不是一个点,而是一个数x 0,当x =x 0时,函数取得极值,在x 0处,f ′(x 0)=0是函数f (x )在x 0处取得极值的必要不充分条件.(3)一般地,在闭区间[a ,b ]上函数y =f (x )的图象是一条连续不断的曲线,那么函数y =f (x )在[a ,b ]上必有最大值与最小值,函数的最值必在极值点或区间的端点处取得.如T 6.导数的运算及其几何意义(5年11考)[高考解读] 以导数的几何意义为载体,考查曲线切线方程的求法,注意方程思想的应用及复合函数的求导问题.1.[一题多解](2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =xD [法一:(直接法)因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-x )=-f (x ), 所以(-x )3+(a -1)(-x )2+a (-x )=-[x 3+(a -1)x 2+ax ],所以2(a -1)x 2=0,因为x ∈R ,所以a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.法二:(特值法)因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-1)+f (1)=0,所以-1+a -1-a +(1+a -1+a )=0,解得a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.]2.(2011·大纲版高考)曲线y =e -2x+1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A .13B .12 C .23D .1A [由题意,得:y ′=(e-2x+1)′=e-2x(-2x )′=-2e-2x,则在点(0,2)处的切线斜率为k =-2e 0=-2, ∴切线方程为y =-2x +2.联立⎩⎪⎨⎪⎧y =-2x +2,y =x ,得C ⎝ ⎛⎭⎪⎫23,23.∴与y =0和y =x 围成三角形的面积为S △OBC =12OB ×23=12×1×23=13.]3.(2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.1-ln 2 [求得(ln x +2)′=1x ,[ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点为(x 1,y 1),曲线y =ln(x +1)上的切点为(x 2,y 2), 则k =1x 1=1x 2+1,所以x 2+1=x 1.又y 1=ln x 1+2,y 2=ln(x 2+1)=ln x 1, 所以k =y 1-y 2x 1-x 2=2, 所以x 1=1k =12,y 1=ln 12+2=2-ln 2,所以b =y 1-kx 1=2-ln 2-1=1-ln 2.]与切线有关问题的处理策略(1)已知切点A (x 0,y 0)求斜率k ,即求该点处的导数值,k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)求过某点M (x 1,y 1)的切线方程时,需设出切点A (x 0,f (x 0)),则切线方程为y -f (x 0)=f ′(x 0)(x -x 0),再把点M (x 1,y 1)代入切线方程,求x 0.1.(考查导数的运算)设函数f (x )=f ′⎝ ⎛⎭⎪⎫12x 2-2x +f (1)ln x ,曲线f (x )在(1,f (1))处的切线方程是( )A .5x -y -4=0B .3x -y -2=0C .x -y =0D .x =1A [∵f (x )=f ′⎝ ⎛⎭⎪⎫12x 2-2x +f (1)ln x ,∴f ′(x )=2f ′⎝ ⎛⎭⎪⎫12x -2+f 1x .令x =12得f ′⎝ ⎛⎭⎪⎫12=2f ′⎝ ⎛⎭⎪⎫12×12-2+2f (1),即f (1)=1.又f (1)=f ′⎝ ⎛⎭⎪⎫12-2,∴f ′⎝ ⎛⎭⎪⎫12=3,∴f ′(1)=2f ′⎝ ⎛⎭⎪⎫12-2+f (1)=6-2+1=5. ∴曲线在点(1,f (1))处的切线方程为y -1=5(x -1), 即5x -y -4=0,故选A.]2.(与不等式交汇)若曲线y =x 3-2x 2+2在点A 处的切线方程为y =4x -6,且点A 在直线mx +ny -1=0(其中m >0,n >0)上,则1m +2n的最小值为( )A .4 2B .3+2 2C .6+4 2D .8 2C [设A (s ,t ),y =x 3-2x 2+2的导数为y ′=3x 2-4x ,可得切线的斜率为3s 2-4s ,切线方程为y =4x -6,可得3s 2-4s =4,t =4s -6,解得s =2,t =2或s =-23,t =-263.由点A 在直线mx +ny -1=0(其中m >0,n >0),可得2m +2n =1⎝ ⎛⎭⎪⎫s =-23,t =-263,舍去,则1m +2n=(2m +2n )⎝ ⎛⎭⎪⎫1m +2n =2⎝⎛⎭⎪⎫3+n m+2m n ≥2⎝⎛⎭⎪⎫3+2n m ·2m n =6+42, 当且仅当n =2m 时,取得最小值6+42,故选C.]3.(求切点的坐标)设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则点P 的坐标为________.(1,1) [∵函数y =e x 的导函数为y ′=e x, ∴曲线y =e x在点(0,1)处的切线的斜率k 1=e 0=1. 设P (x 0,y 0)(x 0>0),∵函数y =1x 的导函数为y ′=-1x2,∴曲线y =1x(x >0)在点P 处的切线的斜率k 2=-1x 20,由题意知k 1k 2=-1,即1·⎝⎛⎭⎪⎫-1x20=-1, 解得x 20=1,又x 0>0,∴x 0=1.又∵点P 在曲线y =1x(x >0)上,∴y 0=1,故点P 的坐标为(1,1).]4.(与圆锥曲线交汇)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.-4 [由已知可设P (4,y 1),Q (-2,y 2), ∵点P ,Q 在抛物线x 2=2y 上,∴⎩⎪⎨⎪⎧42=2y 1,-22=2y 2.∴⎩⎪⎨⎪⎧y 1=8,y 2=2.∴P (4,8),Q (-2,2).又∵抛物线可化为y =12x 2,∴y ′=x .∴过点P 的切线斜率为y ′|x =4=4.∴过点P 的切线为y -8=4(x -4),即y =4x -8. 又∵过点Q 的切线斜率为y ′|x =-2=-2, ∴过点Q 的切线为y -2=-2(x +2), 即y =-2x -2. 联立⎩⎪⎨⎪⎧y =4x -8,y =-2x -2,得⎩⎪⎨⎪⎧x =1,y =-4.∴点A 的纵坐标为-4.]利用导数研究函数的单调性(5年4考)[高考解读] 以函数的单调性为载体,融一元二次不等式的解法、分类讨论思想、函数、方程、不等式的关系于一体,考查学生对知识的灵活应用能力,有一定的难度.(2018·全国卷Ⅰ节选)已知函数f (x )=1x-x +a ln x .讨论f (x )的单调性.[解] ∵f (x )的定义域为(0,+∞),且f ′(x )=-1x 2-1+a x =-x 2-ax +1x 2.(ⅰ)若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时f ′(x )=0,所以f (x )在(0,+∞)单调递减.(ⅱ)若a >2,令f ′(x )=0,得x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42单调递增.利用导数研究函数单调性的一般步骤(1)确定函数的定义域. (2)求导函数f ′(x ).(3)①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0即可;②若已知函数的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题来求解.(4)含参数讨论单调性常见的四个方面讨论.如f ′(x )=ax 2+2x +1-ax 2.①二次系数的讨论.②根的有关讨论,“Δ”讨论. ③根大小讨论.④根在不在定义域内讨论.1.(借助单调性比较大小)定义在R 上的函数f (x )满足f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( )A .e x 1f (x 2)>e x 2f (x 1)B .e x 1f (x 2)<e x 2f (x 1)C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定 A [设g (x )=f xex,则g ′(x )=f ′x e x -f x e x e2x=f ′x -f xex,由题意知g ′(x )>0,所以g (x )单调递增, 当x 1<x 2时,g (x 1)<g (x 2), 即f x 1e x 1<f x 2e x 2,所以e x 1f (x 2)>e x 2f (x 1).]2.(借助单调性解不等式)已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (1)=0.当x >0时,xf ′(x )<2f (x ),则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(0,1)D .(-1,0)∪(1,+∞)C [令g (x )=f xx 2, ∴g ′(x )=x 2f ′x -2xf x x 4=xf ′x -2f xx 3, 又g (1)=0,当x >0时,xf ′(x )<2f (x ),即g ′(x )<0, 因为f (x )为偶函数,所以当x <0时,g ′(x )>0,f (x )>0等价于g (x )>0,所以⎩⎪⎨⎪⎧x >0,g x >g 1或⎩⎪⎨⎪⎧x <0,gx >g -1,所以0<x<1或-1<x <0,选C.]3.(已知单调性求参数的范围)已知a ∈R ,函数f (x )=(-x 2+ax )e x(x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围. [解](1)当a =2时,f (x )=(-x 2+2x )·e x,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x. 令f ′(x )>0,即(-x 2+2)e x>0,因为e x >0,所以-x 2+2>0,解得-2<x < 2. 所以函数f (x )的单调递增区间是(-2,2). (2)因为函数f (x )在(-1,1)上单调递增, 所以f ′(x )≥0对x ∈(-1,1)都成立.因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x =[-x 2+(a -2)x +a ]e x, 所以[-x 2+(a -2)x +a ]e x≥0对x ∈(-1,1)都成立. 因为e x>0,所以-x 2+(a -2)x +a ≥0,则a ≥x 2+2x x +1=x +12-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立.令g (x )=(x +1)-1x +1,则g ′(x )=1+1x +12>0.所以g (x )=(x +1)-1x +1在(-1,1)上单调递增.所以g (x )<g (1)=(1+1)-11+1=32. 所以a 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞. 4.(含参数的复合函数的单调性)已知函数f (x )=a ln(x +1)-ax -x 2,讨论f (x )在定义域上的单调性.[解] f ′(x )=a x +1-a -2x =-2x ⎝ ⎛⎭⎪⎫x +2+a 2x +1,令f ′(x )=0,得x =0或x =-a +22,又f (x )的定义域为(-1,+∞), ①当-a +22≤-1,即当a ≥0时,若x ∈(-1,0),f ′(x )>0,则f (x )单调递增; 若x ∈(0,+∞),f ′(x )<0,则f (x )单调递减. ②当-1<-a +22<0,即-2<a <0时,若x ∈⎝⎛⎭⎪⎫-1,-a +22,f ′(x )<0, 则f (x )单调递减; 若x ∈⎝ ⎛⎭⎪⎫-a +22,0,f ′(x )>0, 则f (x )单调递增;若x ∈(0,+∞),f ′(x )<0, 则f (x )单调递减. ③当-a +22=0,即a =-2时,f ′(x )≤0,f (x )在(-1,+∞)上单调递减.④当-a +22>0,即a <-2时,若x ∈(-1,0),f ′(x )<0,则f (x )单调递减; 若x ∈⎝⎛⎭⎪⎫0,-a +22,f ′(x )>0,则f (x )单调递增; 若x ∈⎝ ⎛⎭⎪⎫-a +22,+∞,f ′(x )<0,则f (x )单调递减.综上,当a ≥0时,f (x )在(-1,0)上单调递增,在(0,+∞)上单调递减;当-2<a <0时,f (x )在⎝⎛⎭⎪⎫-1,-a +22上单调递减,在⎝ ⎛⎭⎪⎫-a +22,0上单调递增,在(0,+∞)上单调递减;当a =-2时,f (x )在(-1,+∞)上单调递减; 当a <-2时,f (x )在(-1,0)上单调递减,在⎝⎛⎭⎪⎫0,-a +22上单调递增,在⎝ ⎛⎭⎪⎫-a +22,+∞上单调递减.利用导数研究函数的极值(最值)问题(5年5考)[高考解读] 试题常以线性函数与指数函数或对数函数的组合形式出现,考查导数的运算法则、极最值的求法,考查分类讨论及数形结合思想,考查等价转化能力及逻辑推理能力,难度较大.1.(2017·全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为( )A .-1B .-2e -3C .5e -3D .1A [函数f (x )=(x 2+ax -1)e x -1,则f ′(x )=(2x +a )e x -1+(x 2+ax -1)·ex -1=ex -1·[x 2+(a +2)x +a -1].由x =-2是函数f (x )的极值点得f ′(-2)=e -3·(4-2a -4+a -1)=(-a -1)·e -3=0,所以a =-1.所以f (x )=(x 2-x -1)e x -1,f ′(x )=ex -1·(x 2+x -2).由ex -1>0恒成立,得x =-2或x =1时,f ′(x )=0,且x <-2时,f ′(x )>0;-2<x <1时,f ′(x )<0;x >1时,f ′(x )>0.所以x =1是函数f (x )的极小值点. 所以函数f (x )的极小值为f (1)=-1. 故选A.]2.(2019·全国卷Ⅲ)已知函数f (x )=2x 3-ax 2+b . (1)讨论f (x )的单调性;(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为-1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.切入点:(1)分a >0,a =0,a <0三类讨论f (x )的单调性;(2)分析f (x )在[0,1]上的单调性,分情况求a ,b 的值.[解](1)f ′(x )=6x 2-2ax =2x (3x -a ). 令f ′(x )=0,得x =0或x =a3.若a >0,则当x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫a 3,+∞时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫0,a3时,f ′(x )<0.故f (x )在(-∞,0),⎝ ⎛⎭⎪⎫a 3,+∞单调递增,在⎝ ⎛⎭⎪⎫0,a3单调递减;若a =0,f (x )在(-∞,+∞)单调递增;若a <0,则当x ∈⎝ ⎛⎭⎪⎫-∞,a 3∪(0,+∞)时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫a3,0时,f ′(x )<0.故f (x )在⎝ ⎛⎭⎪⎫-∞,a 3,(0,+∞)单调递增,在⎝ ⎛⎭⎪⎫a3,0单调递减.(2)满足题设条件的a ,b 存在.①当a ≤0时,由(1)知,f (x )在[0,1]单调递增,所以f (x )在区间[0,1]的最小值为f (0)=b ,最大值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当b =-1,2-a +b =1,即a =0,b =-1.②当a ≥3时,由(1)知,f (x )在[0,1]单调递减,所以f (x )在区间[0,1]的最大值为f (0)=b ,最小值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当2-a +b =-1,b =1,即a =4,b =1.③当0<a <3时,由(1)知,f (x )在[0,1]的最小值为f ⎝ ⎛⎭⎪⎫a 3=-a 327+b ,最大值为b 或2-a +b .若-a 327+b =-1,b =1,则a =332,与0<a <3矛盾.若-a 327+b =-1,2-a +b =1,则a =33或a =-33或a =0,与0<a <3矛盾.综上,当且仅当a =0,b =-1或a =4,b =1时,f (x )在[0,1]的最小值为-1,最大值为1.[教师备选题]1.(2016·全国卷Ⅱ)(1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x+x +2>0.(2)证明:当a ∈[0,1)时,函数g (x )=e x-ax -ax2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.[解](1)f (x )的定义域为(-∞,-2)∪(-2,+∞).f ′(x )=x -1x +2e x -x -2e x x +22=x 2e xx +22≥0,当且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)上单调递增. 因此当x ∈(0,+∞)时,f (x )>f (0)=-1. 所以(x -2)e x>-(x +2),即(x -2)e x+x +2>0.(2)g ′(x )=x -2e x +a x +2x 3=x +2x3(f (x )+a ). 由(1)知,f (x )+a 单调递增.对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈(0,2],使得f (x a )+a =0, 即g ′(x a )=0.当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为g (x a )=e x a -a x a +1x 2a=e x a +f x a x a +1x 2a=e x ax a +2. 于是h (a )=e x ax a +2. 由⎝ ⎛⎭⎪⎫e xx +2′=x +1e x x +22>0,得y =e xx +2单调递增, 所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e 24. 因为y =e xx +2单调递增,对任意λ∈⎝ ⎛⎦⎥⎤12,e 24,存在唯一的x a∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24. 2.(2018·全国卷Ⅲ节选)已知函数f (x )=(2+x +ax 2)ln(1+x )-2x . (1)若a =0,证明:当-1<x <0时,f (x )<0;当x >0时,f (x )>0; (2)若x =0是f (x )的极大值点,求a .[解](1)当a =0时,f (x )=(2+x )ln(1+x )-2x ,f ′(x )=ln(1+x )-x1+x.设函数g (x )=f ′(x )=ln(1+x )-x 1+x ,则g ′(x )=x1+x2.当-1<x <0时,g ′(x )<0;当x >0时,g ′(x )>0.故当x >-1时,g (x )≥g (0)=0, 且仅当x =0时,g (x )=0,从而f ′(x )≥0,且仅当x =0时,f ′(x )=0. 所以f (x )在(-1,+∞)单调递增.又f (0)=0,故当-1<x <0时,f (x )<0;当x >0时,f (x )>0.(2)①若a ≥0,由(1)知,当x >0时,f (x )≥(2+x )ln(1+x )-2x >0=f (0), 这与x =0是f (x )的极大值点矛盾.②若a <0,设函数h (x )=f x 2+x +ax 2=ln(1+x )-2x2+x +ax2.由于当|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,2+x +ax 2>0,故h (x )与f (x )符号相同. 又h (0)=f (0)=0,故x =0是f (x )的极大值点,当且仅当x =0是h (x )的极大值点. h ′(x )=11+x-22+x +ax 2-2x 1+2ax2+x +ax22=x 2a 2x 2+4ax +6a +1x +1ax 2+x +22.如果6a +1>0,则当0<x <-6a +14a ,且|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,h ′(x )>0,故x =0不是h (x )的极大值点.如果6a +1<0,则a 2x 2+4ax +6a +1=0存在根x 1<0,故当x ∈(x 1,0),且|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,h ′(x )<0,所以x =0不是h (x )的极大值点. 如果6a +1=0,则h ′(x )=x 3x -24x +1x 2-6x -122,则当x ∈(-1,0)时,h ′(x )>0;当x ∈(0,1)时,h ′(x )<0.所以x =0是h (x )的极大值点,从而x =0是f (x )的极大值点.综上,a =-16.函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f ′(x )→求方程f ′(x )=0的根→列表检验f ′(x )在f ′(x )=0的根的附近两侧的符号→下结论.(3)已知极值求参数.若函数f (x )在点(x 0,y 0)处取得极值,则f ′(x 0)=0,且在该点左、右两侧的导数值符号相反.1.(知图判断函数极值)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论一定成立的是( )A .x =1为f (x )的极大值点B .x =1为f (x )的极小值点C .x =-1为f (x )的极大值点D .x =-1为f (x )的极小值点 D [绘制表格考查函数的性质如下:区间 (-∞,-1)(-1,1) (1,+∞)1-x 符号+ + - y =(1-x )f ′(x )的符号- + - f ′(x )符号 - + + f (x )的单调性单调递减单调递增单调递增2.(已知最值求参数)已知函数f (x )=ln x -a x ,若函数f (x )在[1,e]上的最小值为32,则a 的值为( )A .- eB .-e 2C .-32D .e 12A [由题意,f ′(x )=1x +ax2,若a ≥0,则f ′(x )>0,函数单调递增,所以f (x )min =f (1)=-a =32,矛盾;若-e <a <-1,函数f (x )在[1,-a ]上递减,在[-a ,e]上递增,所以f (-a )=32,解得a =-e ;若-1≤a <0,函数f (x )是递增函数,所以f (1)=-a =32,矛盾;若a ≤-e ,函数f (x )单调递减,所以f (e)=32,解得a =-e2,矛盾.综上a =- e.故选A.]3.(已知极值点个数求参数范围)已知n >0,若函数f (x )=⎩⎪⎨⎪⎧x 2+nx ,x ≤0,mx 2-x ln x +x ,x >0恰有三个极值点,则实数m 的取值范围是________.⎝ ⎛⎭⎪⎫0,12e [由题意知f (x )的导函数f ′(x )=⎩⎪⎨⎪⎧2x +n ,x ≤0,2mx -ln x ,x >0在定义域上有三个零点,且在这三个零点附近的左、右两侧的函数值异号.当x ≤0时,令2x +n =0,得x =-n2,因为n >0,所以x =-n2是f ′(x )的一个零点,且f ′(x )在其附近的左、右两侧的函数值异号,故需f ′(x )=2mx -ln x 在(0,+∞)上有两个零点,且在这两个零点附近的左、右两侧的函数值均异号,即y =2mx 与y =ln x 的图象在(0,+∞)上有两个交点,故m 的取值范围是⎝ ⎛⎭⎪⎫0,12e .] 4.(极值点个数的判断)已知函数f (x )=ax -1-ln x (a ∈R ) . (1)讨论函数f (x )的定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的最大值.[解](1)f (x )的定义域为(0,+∞),f ′(x )=a -1x =ax -1x.①当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,所以函数f (x )在(0,+∞)上单调递减, ∴f (x )在(0,+∞)上没有极值点. ②当a >0时, 由f ′(x )>0得x >1a.∴f (x )在⎝ ⎛⎭⎪⎫0,1a 上递减,在⎝ ⎛⎭⎪⎫1a ,+∞上递增,即f (x )在x =1a处有极小值.综上,当a ≤0时,f (x )在(0,+∞)上没有极值点; 当a >0时,f (x )在(0,+∞)上有一个极值点. (2)∵函数f (x )在x =1处取得极值,∴f ′(1)=a -1=0,则a =1,从而f (x )=x -1-ln x . ∵x ∈(0,+∞),f (x )≥bx -2恒成立,∴x ∈(0,+∞),1+1x -ln xx≥b 恒成立.令g (x )=1+1x -ln x x ,则g ′(x )=ln x -2x2,由g ′(x )≥0得x ≥e 2,则g (x )在(0,e 2)上递减,在(e 2,+∞)上递增.∴g (x )min =g (e 2)=1-1e 2,故实数b 的最大值是1-1e 2.。

高考数学统考二轮复习 第二部分 专题6 函数与导数 第3讲 导数的简单应用(教师用书)教案 理

高考数学统考二轮复习 第二部分 专题6 函数与导数 第3讲 导数的简单应用(教师用书)教案 理

学习资料专题6第3讲 导数的简单应用导数的运算与导数的几何意义授课提示:对应学生用书第59页考情调研考向分析导数的概念和运算是高考的必考内容,一般渗透在导数的应用中考查;导数的几何意义常与解析几何中的直线交汇考查;题型为选择题或解答题的第(1)问,低档难度。

1.导数的基本运算.2。

求过某点的切线斜率(方程)等问题.3。

由曲线的切线方程求参数。

[题组练透]1.若直线y =kx -2与曲线y =1+3ln x 相切,则k =( ) A .3 B.错误! C .2D.错误!解析:设切点为(x 0,kx 0-2), ∵y ′=错误!,∴错误! 由①得kx 0=3,代入②得1+3ln x 0=1, 则x 0=1,k =3, 故选A. 答案:A2.直线y =e x +2b 是曲线y =ln x (x 〉0)的一条切线,则实数b =________。

解析:设切点为(x 0,y 0),由题意得y ′=错误!(x >0),所以y ′|x =x 0=错误!=e,所以x 0=错误!,所以y 0=ln x 0=ln 错误!=-1,又y 0=e x 0+2b ,所以b =-1.答案:-13.(2020·三明质检)曲线y =ln x -ax 在x =2处的切线与直线ax -y -1=0平行,则实数a =________。

解析:因为y =ln x -ax ,所以y ′=错误!-a ,因此其在x =2处的切线斜率为k =错误!-a ,又曲线y =ln x -ax 在x =2处的切线与直线ax -y -1=0平行,所以12-a =a ,因此a =错误!。

答案:14[题后悟通]1.求曲线y=f(x)的切线方程的3种类型及方法类型方法已知切点P(x0,y0),求切线方程求出切线的斜率f′(x0),由点斜式写出方程已知切线的斜率k,求切线方程设切点P(x0,y0),通过方程k=f′(x0)解得x0,再由点斜式写出方程已知切线上一点(非切点),求切线方程设切点P(x0,y0),利用导数求得切线斜率f′(x0),再由斜率公式求得切线斜率,列方程(组)解得x0,再由点斜式或两点式写出方程类型解题关键已知曲线在某点处的切线求参数关键是用“方程思想”来破解,先求出函数的导数,从而求出在某点处的导数值;再根据导数的几何意义与已知条件,建立关于参数的方程,通过解方程求出参数的值已知曲线的切线方程,求含有双参数的代数式的取值范围关键是过好“双关":一是转化关,即把所求的含双参数的代数式转化为含单参数的代数式,此时需利用已知切线方程,寻找双参数的关系式;二是求最值关,常利用函数的单调性、基本不等式等方法求最值,从而得所求代数式的取值范围导数与函数的单调性授课提示:对应学生用书第60页考情调研考向分析考查函数的单调性,利用函数的性质求参数范围;与方程、不等式等知识相结合命题,题型以解答题为主,一般难度较大.1.求函数的单调区间.2.原函数与导函数图象间的关系.3。

高中数学_导数及其应用教学设计学情分析教材分析课后反思

高中数学_导数及其应用教学设计学情分析教材分析课后反思

教学设计-------导数及其应用一.教学目标知识与技能:1.探索函数的单调性与导数的关系2.会利用导数判断函数的单调性并求最值极值过程与方法:1.通过本节的学习,掌握用导数研究单调性、最值的方法2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想、分类讨论思想。

情感态度与价值观:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。

二.教学重难点对于函数导数及其应用,学生的认知困难主要体现在:用准确的数学语言描述函数单调性与导数的关系,这种由数到形的翻译,从直观到抽象的转变,对学生是比较困难的。

根据以上的分析和新课程标准的要求,我确定了本节课的重点和难点。

教学重点:探索研究切线、单调区间、最值和极值。

教学难点:探索函数的单调性与导数的关系。

三.教法分析:1.教学方法的选择:为还课堂于学生,突出学生的主体地位,本节课拟运用“问题--- 解决”课堂教学模式,采用发现式、启发式、讲练结合的教学方法。

通过问题激发学生求知欲,使学生主动参与教学实践活动,在教师的指导下发现、分析和解决问题,总结规律,培养积极探索的科学精神。

2.教学手段的利用:本节课采用多媒体课件等辅助手段以加大课堂容量,通过数形结合,使抽象的知识直观化,形象化,以促进学生的理解。

3.教学课堂结构知识回顾—问题情境—新课探究—知识运用(例题精讲—变式训练—拓展延伸—能力提升)—课堂小结—作业布置四.学法分析:为使学生积极参与课堂学习,我主要指导了以下的学习方法:1.合作学习:引导学生分组讨论,合作交流,共同探讨问题;2.自主学习:引导学生通过亲身经历,动口、动脑、动手参与数学活动;3.探究学习:引导学生发挥主观能动性,主动探索新知。

五.教学过程:(一)知识回顾从已学过的知识(导数几何意义、求导公式、判断二次函数的单调性、极值)入手,提出新的问题(判断三次函数的单调性、求极值),引起认知冲突,激发学习的兴趣。

高考数学二轮复习专题六函数与导数第3讲导数的简单应用学案理新人教A版2

高考数学二轮复习专题六函数与导数第3讲导数的简单应用学案理新人教A版2

第3讲 导数的简单应用[做真题]题型一 导数的几何意义1.(2018·高考全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x解析:选D .法一:因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-x )=-f (x ), 所以(-x )3+(a -1)(-x )2+a (-x )=-[x 3+(a -1)x 2+ax ],所以2(a -1)x 2=0,因为x ∈R ,所以a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D .法二:因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-1)+f (1)=0,所以-1+a -1-a +(1+a -1+a )=0,解得a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D .2.(2019·高考全国卷Ⅲ)已知曲线y =a e x+x ln x 在点(1,a e)处的切线方程为y =2x +b ,则( )A .a =e ,b =-1B .a =e ,b =1C .a =e -1,b =1D .a =e -1,b =-1解析:选D .因为y ′=a e x+ln x +1,所以y ′|x =1=a e +1,所以曲线在点(1,a e)处的切线方程为y -a e =(a e +1)(x -1),即y =(a e +1)x -1,所以⎩⎪⎨⎪⎧a e +1=2,b =-1,解得⎩⎪⎨⎪⎧a =e -1,b =-1. 3.(2018·高考全国卷Ⅱ)曲线y =2ln(x +1)在点(0,0)处的切线方程为________. 解析:因为y =2ln(x +1),所以y ′=2x +1.当x =0时,y ′=2,所以曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x .答案:y =2x4.(2016·高考全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:设y =kx +b 与y =ln x +2和y =ln(x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln(x 2+1)).则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2),化简得y =1x 1x +ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1),依题意,⎩⎪⎨⎪⎧1x1=1x 2+1,ln x 1+1=-x2x 2+1+ln(x 2+1),解得x 1=12,从而b =ln x 1+1=1-ln 2. 答案:1-ln 2题型二 导数与函数的单调性、极值与最值1.(2017·高考全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为( )A .-1B .-2e -3C .5e -3D .1解析:选A .因为f (x )=(x 2+ax -1)e x -1,所以f ′(x )=(2x +a )ex -1+(x 2+ax -1)ex -1=[x 2+(a +2)x +a -1]ex -1.因为x =-2是函数f (x )=(x 2+ax -1)ex -1的极值点,所以-2是x 2+(a +2)x +a -1=0的根,所以a =-1,f ′(x )=(x 2+x -2)e x -1=(x +2)(x -1)e x -1.令f ′(x )>0,解得x <-2或x >1,令f ′(x )<0,解得-2<x <1,所以f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,所以当x =1时,f (x )取得极小值,且f (x )极小值=f (1)=-1,选择A .2.(一题多解)(2018·高考全国卷Ⅰ)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________.解析:法一:因为f (x )=2sin x +sin 2x ,所以f ′(x )=2cos x +2cos 2x =4cos 2x +2cos x -2=4⎝ ⎛⎭⎪⎫cos x -12(cos x +1),由f ′(x )≥0得12≤cos x ≤1,即2k π-π3≤x ≤2k π+π3,k ∈Z ,由f ′(x )≤0得-1≤cos x ≤12,即2k π+π≥x ≥2k π+π3或2k π-π≤x ≤2k π-π3,k ∈Z ,所以当x =2k π-π3(k ∈Z )时,f (x )取得最小值,且f (x )min =f ⎝ ⎛⎭⎪⎫2k π-π3=2sin ⎝ ⎛⎭⎪⎫2k π-π3+sin 2⎝ ⎛⎭⎪⎫2k π-π3=-332. 法二:因为f (x )=2sin x +sin 2x =2sin x (1+cos x )=4sin x 2cos x2·2cos 2x2=8sin x 2cos 3 x 2=833sin 2x2cos 6x2,所以[f (x )]2=643×3sin 2x 2cos 6 x 2≤643· ⎝ ⎛⎭⎪⎪⎫3sin 2x 2+cos 2x 2+cos 2x 2+cos 2x 244=274, 当且仅当3sin 2x 2=cos 2x 2,即sin 2x 2=14时取等号, 所以0≤[f (x )]2≤274,所以-332≤f (x )≤332,所以f (x )的最小值为-332.答案:-332[明考情]1.此部分内容是高考命题的热点内容,在选择题、填空题中多考查导数的几何意义,难度较小.2.应用导数研究函数的单调性、极值、最值,多在选择题、填空题最后几题的位置考查,难度中等偏上,属综合性问题.有时也常在解答题的第一问中考查,难度一般.导数的几何意义 [典型例题](1)(2019·高考全国卷Ⅱ)曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( ) A .x -y -π-1=0 B .2x -y -2π-1=0 C .2x +y -2π+1=0D .x +y -π+1=0(2)曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则点P 的坐标为________. (3)(2019·广州市调研测试)若过点A (a ,0)作曲线C :y =x e x的切线有且仅有两条,则实数a 的取值范围是________.【解析】 (1)依题意得y ′=2cos x -sin x ,y ′|x =π=(2cos x -sin x )|x =π=2cos π-sin π=-2,因此所求的切线方程为y +1=-2(x -π),即2x +y -2π+1=0,故选C .(2)f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,所以P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故点P 的坐标为(1,3)或(-1,3).(3)设切点坐标为(x 0,x 0e x 0),y ′=(x +1)e x,y ′|x =x 0=(x 0+1)e x 0,所以切线方程为y -x 0e x 0=(x 0+1)e x 0(x -x 0),将点A (a ,0)代入可得-x 0e x 0=(x 0+1)e x 0(a -x 0),化简,得x 20-ax 0-a =0,过点A (a ,0)作曲线C 的切线有且仅有两条,即方程x 20-ax 0-a =0有两个解,则有Δ=a 2+4a >0,解得a >0或a <-4,故实数a 的取值范围是(-∞,-4)∪(0,+∞).【答案】 (1)C (2)(1,3)或(-1,3) (3)(-∞,-4)∪(0,+∞)(1)求曲线y =f (x )的切线方程的3种类型及方法1.(2019·武汉调研)设曲线C :y =3x 4-2x 3-9x 2+4,在曲线C 上一点M (1,-4)处的切线记为l ,则切线l 与曲线C 的公共点个数为( )A .1B .2C .3D .4解析:选C .y ′=12x 3-6x 2-18x ,所以切线l 的斜率k =y ′|x =1=-12,所以切线l 的方程为12x +y -8=0.联立方程得⎩⎪⎨⎪⎧12x +y -8=0y =3x 4-2x 3-9x 2+4,消去y ,得3x 4-2x 3-9x 2+12x -4=0,所以(x +2)(3x -2)(x -1)2=0,所以x 1=-2,x 2=23,x 3=1,所以切线l 与曲线C 有3个公共点.故选C .2.(2019·成都第二次诊断性检测)已知直线l 既是曲线C 1:y =e x的切线,又是曲线C 2:y =14e 2x 2的切线,则直线l 在x 轴上的截距为( )A .2B .1C .e 2D .-e 2解析:选B .设直线l 与曲线C 1:y =e x的切点为A (x 1,e x 1),与曲线C 2:y =14e 2x 2的切点为B ⎝ ⎛⎭⎪⎫x 2,14e 2x 22.由y =e x ,得y ′=e x,所以曲线C 1在点A 处的切线方程为y -e x 1=e x 1(x -x 1),即y =e x 1x -e x 1(x 1-1) ①.由y =14e 2x 2,得y ′=12e 2x ,所以曲线C 2在点B 处的切线方程为y -14e 2x 22=12e 2x 2(x -x 2),即y =12e 2x 2x -14e 2x 22 ②.因为①②表示的切线为同一直线,所以⎩⎪⎨⎪⎧e x 1=12e 2x 2,e x 1(x 1-1)=14e 2x 22,解得⎩⎪⎨⎪⎧x 1=2,x 2=2,所以直线l 的方程为y =e 2x -e 2,令y =0,可得直线l 在x 上的截距为1,故选B .3.(2019·广州市综合检测(一))若函数f (x )=ax -3x的图象在点(1,f (1))处的切线过点(2,4),则a =________.解析:f ′(x )=a +3x2,f ′(1)=a +3,f (1)=a -3,故f (x )的图象在点(1,a -3)处的切线方程为y -(a -3)=(a +3)(x -1),又切线过点(2,4),所以4-(a -3)=a +3,解得a =2.答案:2利用导数研究函数的单调性[典型例题]命题角度一 求函数的单调区间或判断函数的单调性已知函数f (x )=ln(x +1)-ax 2+x(x +1)2,且1<a <2,试讨论函数f (x )的单调性.【解】 函数f (x )的定义域为(-1,+∞),f ′(x )=x (x -2a +3)(x +1)3,x >-1. ①当-1<2a -3<0,即1<a <32时,当-1<x <2a -3或x >0时,f ′(x )>0,f (x )单调递增, 当2a -3<x <0时,f ′(x )<0,f (x )单调递减.②当2a -3=0,即a =32时,f ′(x )≥0,则f (x )在(-1,+∞)上单调递增.③当2a -3>0,即32<a <2时,当-1<x <0或x >2a -3时,f ′(x )>0,则f (x )在(-1,0),(2a -3,+∞)上单调递增. 当0<x <2a -3时,f ′(x )<0,则f (x )在(0,2a -3)上单调递减.综上,当1<a <32时,f (x )在(-1,2a -3),(0,+∞)上单调递增,在(2a -3,0)上单调递减;当a =32时,f (x )在(-1,+∞)上单调递增;当32<a <2时,f (x )在(-1,0),(2a -3,+∞)上单调递增,在(0,2a -3)上单调递减.利用导数求函数的单调区间的三种方法(1)当不等式f ′(x )>0或f ′(x )<0可解时,确定函数的定义域,解不等式f ′(x )>0或f ′(x )<0求出单调区间.(2)当方程f ′(x )=0可解时,确定函数的定义域,解方程f ′(x )=0,求出实数根,把函数f (x )的间断点(即f (x )的无定义点)的横坐标和实根按从小到大的顺序排列起来,把定义域分成若干个小区间,确定f ′(x )在各个区间内的符号,从而确定单调区间.(3)不等式f ′(x )>0或f ′(x )<0及方程f ′(x )=0均不可解时求导数并化简,根据f ′(x )的结构特征,选择相应的基本初等函数,利用其图象与性质确定f ′(x )的符号,得单调区间.命题角度二 已知函数的单调性求参数 已知函数f (x )=ln x -a 2x 2+ax (a ∈R ). (1)当a =1时,求函数f (x )的单调区间;(2)若函数f (x )在区间(1,+∞)上是减函数,求实数a 的取值范围. 【解】 (1)当a =1时,f (x )=ln x -x 2+x ,其定义域为(0,+∞), 所以f ′(x )=1x -2x +1=-2x 2-x -1x,令f ′(x )=0,则x =1(负值舍去).当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.所以函数f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (2)法一:f ′(x )=1x -2a 2x +a =-(2ax +1)(ax -1)x.①当a =0时,f ′(x )=1x>0,所以f (x )在区间(0,+∞)上为增函数,不合题意;②当a >0时,由f ′(x )<0,得x >1a.所以f (x )的单调递减区间为⎝ ⎛⎭⎪⎫1a,+∞.依题意,得⎩⎪⎨⎪⎧1a ≤1,a >0,解得a ≥1;③当a <0时,由f ′(x )<0,得x >-12a.所以f (x )的单调递减区间为⎝ ⎛⎭⎪⎫-12a ,+∞. 依题意,得⎩⎪⎨⎪⎧-12a ≤1,a <0,解得a ≤-12.综上所述,实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,-12∪[1,+∞).法二:f ′(x )=1x -2a 2x +a =-2a 2x 2+ax +1x.由f (x )在区间(1,+∞)上是减函数,可得g (x )=-2a 2x 2+ax +1≤0在区间(1,+∞)上恒成立.①当a =0时,1≤0不合题意;②当a ≠0时,可得⎩⎪⎨⎪⎧14a <1,g (1)≤0,即⎩⎪⎨⎪⎧a >14或a <0,-2a 2+a +1≤0,所以⎩⎪⎨⎪⎧a >14或a <0,a ≥1或a ≤-12,所以a ≥1或a ≤-12.所以实数a 的取值范围是⎝⎛⎦⎥⎤-∞,-12∪[1,+∞).(1)已知函数的单调性,求参数的取值范围,应用条件f ′(x )≥0(或f ′(x )≤0),x ∈(a ,b )恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f ′(x )不恒等于0的参数的范围.(2)若函数y =f (x )在区间(a ,b )上不单调,则转化为f ′(x )=0在(a ,b )上有解.[对点训练]1.若函数f (x )=(x +a )e x在区间(0,+∞)上不单调,则实数a 的取值范围为________. 解析:f ′(x )=e x (x +a +1),由题意,知方程e x(x +a +1)=0在(0,+∞)上至少有一个实数根,即x =-a -1>0,解得a <-1.答案:(-∞,-1)2.已知函数f (x )=e x (e x -a )-a 2x ,讨论f (x )的单调性.解:函数f (x )的定义域为(-∞,+∞),f ′(x )=2e 2x-a e x -a 2=(2e x +a )(e x-a ). ①若a =0,则f (x )=e 2x在(-∞,+∞)上单调递增. ②若a >0,则由f ′(x )=0,得x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增. ③若a <0,则由f ′(x )=0, 得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0; 故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减, 在⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增.利用导数研究函数的极值(最值)问题[典型例题]命题角度一 求已知函数的极值(最值) 已知函数f (x )=ln x x-1.(1)求函数f (x )的单调区间;(2)设m >0,求函数f (x )在区间[m ,2m ]上的最大值.【解】 (1)因为函数f (x )的定义域为(0,+∞),且f ′(x )=1-ln x x2, 由⎩⎪⎨⎪⎧f ′(x )>0,x >0得0<x <e ; 由⎩⎪⎨⎪⎧f ′(x )<0,x >0,得x >e.所以函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).(2)①当⎩⎪⎨⎪⎧2m ≤e ,m >0,即0<m ≤e2时,(m ,2m )⊆(0,e),函数f (x )在区间[m ,2m ]上单调递增, 所以f (x )max =f (2m )=ln 2m2m-1;②当m <e<2m ,即e2<m <e 时,(m ,e)⊆(0,e),(e ,2m )⊆(e ,+∞),函数f (x )在区间(m ,e)上单调递增,在(e ,2m )上单调递减, 所以f (x )max =f (e)=ln e e -1=1e-1;③当m ≥e 时,(m ,2m )⊆(e ,+∞),函数f (x )在区间[m ,2m ]上单调递减,所以f (x )max=f (m )=ln mm-1.综上所述,当0<m ≤e 2时,f (x )max =ln 2m 2m -1;当e 2<m <e 时,f (x )max =1e-1;当m ≥e 时,f (x )max =ln mm-1.利用导数研究函数极值、最值的方法(1)若求极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号. (2)若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解.(3)求函数f (x )在闭区间[a ,b ]上的最值时,在求得极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.命题角度二 已知函数的极值或最值求参数 (2019·高考全国卷Ⅲ)已知函数f (x )=2x 3-ax 2+b . (1)讨论f (x )的单调性;(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为-1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.【解】 (1)f ′(x )=6x 2-2ax =2x (3x -a ). 令f ′(x )=0,得x =0或x =a3.若a >0,则当x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫a 3,+∞时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫0,a3时,f ′(x )<0.故f (x )在(-∞,0),⎝ ⎛⎭⎪⎫a 3,+∞单调递增,在⎝ ⎛⎭⎪⎫0,a3单调递减; 若a =0,f (x )在(-∞,+∞)单调递增;若a <0,则当x ∈⎝ ⎛⎭⎪⎫-∞,a 3∪(0,+∞)时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫a3,0时,f ′(x )<0.故f (x )在⎝ ⎛⎭⎪⎫-∞,a 3,(0,+∞)单调递增,在⎝ ⎛⎭⎪⎫a3,0单调递减.(2)满足题设条件的a ,b 存在.(i)当a ≤0时,由(1)知,f (x )在[0,1]单调递增,所以f (x )在区间[0,1]的最小值为f (0)=b ,最大值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当b =-1,2-a +b =1,即a =0,b =-1.(ii)当a ≥3时,由(1)知,f (x )在[0,1]单调递减,所以f (x )在区间[0,1]的最大值为f (0)=b ,最小值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当2-a +b =-1,b =1,即a =4,b =1.(iii)当0<a <3时,由(1)知,f (x )在[0,1]的最小值为f ⎝ ⎛⎭⎪⎫a 3=-a 327+b ,最大值为b 或2-a +b .若-a 327+b =-1,b =1,则a =332,与0<a <3矛盾.若-a 327+b =-1,2-a +b =1,则a =33或a =-33或a =0,与0<a <3矛盾.综上,当且仅当a =0,b =-1或a =4,b =1时,f (x )在[0,1]的最小值为-1,最大值为1.已知函数极值点或极值求参数的方法(2019·长春质量检测(一))已知函数f (x )=ln x +ax 2-(2a +1)x (其中常数a ≠0). (1)当a =1时,求f (x )的单调区间;(2)若f (x )在x =1处取得极值,且在(0,e]上的最大值为1,求实数a 的值. 解:(1)当a =1时,f (x )=ln x +x 2-3x ,x >0, f ′(x )=1x +2x -3=2x 2-3x +1x,令f ′(x )=0,解得x 1=12,x 2=1,当0<x <12时,f ′(x )>0,所以函数f (x )在⎝ ⎛⎭⎪⎫0,12上单调递增; 当12<x <1时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫12,1上单调递减; 当x >1时,f ′(x )>0,所以函数f (x )在(1,+∞)上单调递增.所以f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12,(1,+∞),单调递减区间为⎝ ⎛⎭⎪⎫12,1.(2)f ′(x )=2ax 2-(2a +1)x +1x =(2ax -1)(x -1)x,令f ′(x )=0,得x ′1=1,x ′2=12a,因为f (x )在x =1处取得极值,所以x ′2=12a ≠x ′1=1,当12a<0时,f (x )在(0,1)上单调递增,在(1,e]上单调递减, 所以f (x )在(0,e]上的最大值为f (1),令f (1)=1,解得a =-2.当0<12a <1时,f (x )在⎝ ⎛⎭⎪⎫0,12a 上单调递增,在⎝ ⎛⎭⎪⎫12a ,1上单调递减,在(1,e]上单调递增,所以最大值1可能在x =12a或x =e 处取得,而f ⎝ ⎛⎭⎪⎫12a =ln 12a +a ⎝ ⎛⎭⎪⎫12a 2-(2a +1)×12a =ln 12a -14a -1<0, 所以f (e)=ln e +a e 2-(2a +1)e =1,解得a =1e -2. 当1<12a <e 时,f (x )在(0,1)上单调递增,在⎝ ⎛⎭⎪⎫1,12a 上单调递减,在⎝ ⎛⎦⎥⎤12a ,e 上单调递增,所以最大值1可能在x =1或x =e 处取得, 而f (1)=ln 1+a -(2a +1)<0, 所以f (e)=ln e +a e 2-(2a +1)e =1, 解得a =1e -2,与1<12a <e 矛盾.当12a≥e 时,f (x )在(0,1)上单调递增,在(1,e]上单调递减, 所以最大值1在x =1处取得,而f (1)=ln 1+a -(2a +1)<0,不符合题意. 综上所述,a =1e -2或a =-2.一、选择题1.已知直线2x -y +1=0与曲线y =a e x+x 相切(其中e 为自然对数的底数),则实数a 的值是( )A .12 B .1 C .2D .e解析:选B .由题意知y ′=a e x+1=2,则a >0,x =-ln a ,代入曲线方程得y =1-ln a ,所以切线方程为y -(1-ln a )=2(x +ln a ),即y =2x +ln a +1=2x +1⇒a =1.2.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则数对(a ,b )为( ) A .(-3,3) B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11)解析:选C .f ′(x )=3x 2+2ax +b ,依题意可得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,消去b 可得a2-a -12=0,解得a =-3或a =4,故⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0,这时f (x )无极值,不合题意,舍去,故选C .3.(2019·南昌市第一次模拟测试)已知f (x )在R 上连续可导,f ′(x )为其导函数,且f (x )=e x +e -x -f ′(1)x ·(e x -e -x ),则f ′(2)+f ′(-2)-f ′(0)f ′(1)=( )A .4e 2+4e -2B .4e 2-4e -2C .0D .4e 2解析:选C .由题意,得f ′(x )=e x-e -x-f ′(1) [e x-e -x+x (e x +e -x)],所以f ′(0)=e 0-e 0-f ′(1)[e 0-e 0+0·(e 0+e 0)]=0,f ′(2)+f ′(-2)=0,所以f ′(2)+f ′(-2)-f ′(0)f ′(1)=0,故选C .4.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范围为( ) A .(-∞,-26] B .⎝ ⎛⎦⎥⎤-∞,62 C .[-26,+∞)D .[-5,+∞)解析:选C .由题意得f ′(x )=2x +a +3x =2x 2+ax +3x≥0在(1,+∞)上恒成立⇔g (x )=2x 2+ax +3≥0在(1,+∞)上恒成立⇔Δ=a 2-24≤0或⎩⎪⎨⎪⎧-a 4≤1,g (1)≥0⇔-26≤a ≤26或⎩⎪⎨⎪⎧a ≥-4,a ≥-5⇔a ≥-26,故选C . 5.函数f (x )(x >0)的导函数为f ′(x ),若xf ′(x )+f (x )=e x,且f (1)=e ,则( ) A .f (x )的最小值为e B .f (x )的最大值为e C .f (x )的最小值为1eD .f (x )的最大值为1e解析:选A .设g (x )=xf (x )-e x, 所以g ′(x )=f (x )+xf ′(x )-e x =0, 所以g (x )=xf (x )-e x为常数函数. 因为g (1)=1×f (1)-e =0, 所以g (x )=xf (x )-e x =g (1)=0, 所以f (x )=e xx ,f ′(x )=e x(x -1)x2, 当0<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, 所以f (x )≥f (1)=e.6.若函数f (x )=e x-(m +1)ln x +2(m +1)x -1恰有两个极值点,则实数m 的取值范围为( )A .(-e 2,-e) B .⎝ ⎛⎭⎪⎫-∞,-e 2C .⎝⎛⎭⎪⎫-∞,-12 D .(-∞,-e -1)解析:选D .由题意,函数的定义域为(0,+∞),f ′(x )=e x-(m +1)⎝⎛⎭⎪⎫1x-2=0在(0,+∞)上有两个不相等的实数根,所以m +1=x e x1-2x在(0,+∞)上有两个不相等的实数根,令g (x )=x e x1-2x ,则g ′(x )=-e x(x -1)(2x +1)(1-2x )2,所以函数g (x )在⎝ ⎛⎭⎪⎫0,12,⎝ ⎛⎭⎪⎫12,1上单调递增,在(1,+∞)上单调递减,其图象如图所示,要使m +1=x e x1-2x 在(0,+∞)上有两个不相等的实数根,则m +1<g (1),即m +1<-e ,m <-e -1,所以实数m 的取值范围是(-∞,-e -1).故选D .二、填空题7.(2019·高考全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:因为y ′=3(2x +1)e x+3(x 2+x )e x =3(x 2+3x +1)e x,所以曲线在点(0,0)处的切线的斜率k =y ′|x =0=3,所以所求的切线方程为y =3x .答案:y =3x8.函数f (x )=x 2-ln x 的最小值为________.解析:因为f (x )=x 2-ln x (x >0),所以f ′(x )=2x -1x ,令2x -1x =0得x =22,令f ′(x )>0,则x >22;令f ′(x )<0,则0<x <22.所以f (x )在⎝ ⎛⎭⎪⎫0,22上单调递减,在⎝ ⎛⎭⎪⎫22,+∞上单调递增,所以f (x )的极小值(也是最小值)为⎝ ⎛⎭⎪⎫222-ln 22=1+ln 22.答案:1+ ln 229.若函数f (x )=x 2-4e x-ax 在R 上存在单调递增区间,则实数a 的取值范围为________. 解析:因为f (x )=x 2-4e x -ax ,所以f ′(x )=2x -4e x -a .由题意,f ′(x )=2x -4e x-a >0,即a <2x -4e x 有解,即a <(2x -4e x )max 即可.令g (x )=2x -4e x ,则g ′(x )=2-4e x.令g ′(x )=0,解得x =-ln 2.当x ∈(-∞,-ln 2)时,函数g (x )=2x -4e x单调递增;当x ∈(-ln 2,+∞)时,函数g (x )=2x -4e x 单调递减.所以当x =-ln 2时,g (x )=2x -4e x取得最大值-2-2ln 2,所以a <-2-2ln 2.答案:(-∞,-2-2ln 2) 三、解答题10.已知函数f (x )=ln x -ax 2+x ,a ∈R .(1)当a =0时,求曲线y =f (x )在点(e ,f (e))处的切线方程; (2)讨论f (x )的单调性.解:(1)当a =0时,f (x )=ln x +x, f (e)=e +1,f ′(x )=1x +1,f ′(e)=1+1e,所以曲线y =f (x )在点(e ,f (e))处的切线方程为y -(e +1)=⎝ ⎛⎭⎪⎫1+1e (x -e),即y =⎝ ⎛⎭⎪⎫1e +1x .(2)f ′(x )=1x -2ax +1=-2ax 2+x +1x,x >0,①当a ≤0时,显然f ′(x )>0,所以f (x )在(0,+∞)上单调递增;②当a >0时,令f ′(x )=-2ax 2+x +1x=0,则-2ax 2+x +1=0,易知其判别式为正,设方程的两根分别为x 1,x 2(x 1<x 2), 则x 1x 2=-12a<0,所以x 1<0<x 2,所以f ′(x )=-2ax 2+x +1x =-2a (x -x 1)(x -x 2)x,x >0.令f ′(x )>0,得x ∈(0,x 2),令f ′(x )<0得x ∈(x 2,+∞),其中x 2=1+8a +14a.所以函数f (x )在⎝ ⎛⎭⎪⎫0,1+8a +14a 上单调递增,在⎝⎛⎭⎪⎫1+8a +14a ,+∞上单调递减. 11.已知常数a ≠0,f (x )=a ln x +2x . (1)当a =-4时,求f (x )的极值;(2)当f (x )的最小值不小于-a 时,求实数a 的取值范围. 解:(1)由已知得f (x )的定义域为(0,+∞),f ′(x )=a x +2=a +2xx.当a =-4时,f ′(x )=2x -4x.所以当0<x <2时,f ′(x )<0, 即f (x )单调递减;当x >2时,f ′(x )>0,即f (x )单调递增.所以f (x )只有极小值,且在x =2时,f (x )取得极小值f (2)=4-4ln 2. 所以当a =-4时,f (x )只有极小值4-4ln 2. (2)因为f ′(x )=a +2xx, 所以当a >0,x ∈(0,+∞)时,f ′(x )>0, 即f (x )在x ∈(0,+∞)上单调递增,没有最小值; 当a <0时,由f ′(x )>0得,x >-a2,所以f (x )在⎝ ⎛⎭⎪⎫-a2,+∞上单调递增;由f ′(x )<0得,x <-a2,所以f (x )在⎝⎛⎭⎪⎫0,-a 2上单调递减.所以当a <0时,f (x )的最小值为极小值,即f ⎝ ⎛⎭⎪⎫-a 2=a ln ⎝ ⎛⎭⎪⎫-a 2-a .根据题意得f ⎝ ⎛⎭⎪⎫-a 2=a ln ⎝ ⎛⎭⎪⎫-a 2-a ≥-a ,即a [ln(-a )-ln 2]≥0.因为a <0,所以ln(-a )-ln 2≤0,解得a ≥-2, 综上实数a 的取值范围是[-2,0).12.(2019·广州市调研测试)已知函数f (x )=x e x+a (ln x +x ).(1)若a =-e ,求f (x )的单调区间;(2)当a <0时,记f (x )的最小值为m ,求证:m ≤1.解:(1)当a =-e 时,f (x )=x e x-e(ln x +x ),f (x )的定义域是(0,+∞).f ′(x )=(x +1)e x -e ⎝ ⎛⎭⎪⎫1x +1=x +1x (x e x -e).当0<x <1时,f ′(x )<0;当x >1时.f ′(x )>0.所以函数f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞). (2)证明:f (x )的定义域是(0,+∞),f ′(x )=x +1x(x e x+a ), 令g (x )=x e x+a ,则g ′(x )=(x +1)e x>0,g (x )在(0,+∞)上单调递增. 因为a <0,所以g (0)=a <0,g (-a )=-a e -a+a >-a +a =0, 故存在x 0∈(0,-a ),使得g (x 0)=x 0e x 0+a =0. 当x ∈(0,x 0)时,g (x )<0,f ′(x )=x +1x(x e x+a )<0,f (x )单调递减; 当x ∈(x 0,+∞)时,g (x )>0,f ′(x )=x +1x(x e x+a )>0,f (x )单调递增. 故x =x 0时,f (x )取得最小值,即m =f (x 0)=x 0e x 0+a (ln x 0+x 0). 由x 0e x 0+a =0得m =x 0e x 0+a ln(x 0e x 0)=-a +a ln(-a ),令x =-a >0,h (x )=x -x ln x ,则h ′(x )=1-(1+ln x )=-ln x , 当x ∈(0,1)时,h ′(x )=-ln x >0,h (x )=x -x ln x 单调递增, 当x ∈(1,+∞)时,h ′(x )=-ln x <0,h (x )=x -x ln x 单调递减, 故x =1,即a =-1时,h (x )=x -x ln x 取得最大值1,故m ≤1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲导数及其应用[考情考向分析] 1.导数的意义和运算是导数应用的基础,是高考的一个热点.2.利用导数解决函数的单调性与极值(最值)问题是高考的常见题型.3.导数与函数零点、不等式的结合常作为高考压轴题出现.热点一导数的几何意义1.函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P 处的切线的斜率k=f′(x0),相应的切线方程为y-f(x0)=f′(x0)(x-x0).2.求曲线的切线要注意“过点P的切线”与“在点P处的切线”的不同.例1 (1)(2018·全国Ⅰ)设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( )A.y=-2x B.y=-xC.y=2x D.y=x答案 D解析方法一∵f(x)=x3+(a-1)x2+ax,∴f′(x)=3x2+2(a-1)x+a.又f(x)为奇函数,∴f(-x)=-f(x)恒成立,即-x3+(a-1)x2-ax=-x3-(a-1)x2-ax恒成立,∴a=1,∴f′(x)=3x2+1,∴f′(0)=1,∴曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.方法二∵f(x)=x3+(a-1)x2+ax为奇函数,∴f′(x)=3x2+2(a-1)x+a为偶函数,∴a=1,即f′(x)=3x2+1,∴f′(0)=1,∴曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.(2)若直线y=kx+b是曲线y=ln x+1的切线,也是曲线y=ln(x+2)的切线,则实数b=________.答案ln 2解析设直线y=kx+b与曲线y=ln x+1和曲线y=ln(x+2)的切点分别为(x1,ln x1+1),(x 2,ln(x 2+2)).∵直线y =kx +b 是曲线y =ln x +1的切线,也是曲线y =ln(x +2)的切线, ∴1x 1=1x 2+2,即x 1-x 2=2. ∴切线方程为y -(ln x 1+1)=1x 1(x -x 1),即为y =x x 1+ln x 1或y -ln(x 2+2)=1x 2+2(x -x 2), 即为y =x x 1+2-x 1x 1+ln x 1,∴2-x 1x 1=0,则x 1=2,∴b =ln 2.思维升华 (1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.跟踪演练1 (1)(2018·全国Ⅱ)曲线y =2ln(x +1)在点(0,0)处的切线方程为________. 答案 2x -y =0解析 ∵y =2ln(x +1),∴y ′=2x +1.令x =0,得y ′=2,由切线的几何意义得切线斜率为2,又切线过点(0,0),∴切线方程为y =2x ,即2x -y =0.(2)若函数f (x )=ln x (x >0)与函数g (x )=x 2+2x +a (x <0)有公切线,则实数a 的取值范围是( ) A.⎝⎛⎭⎪⎫ln12e ,+∞ B .(-1,+∞) C .(1,+∞) D .(-ln 2,+∞)答案 A解析 设公切线与函数f (x )=ln x 切于点A (x 1,ln x 1)(x 1>0), 则切线方程为y -ln x 1=1x 1(x -x 1).设公切线与函数g (x )=x 2+2x +a 切于点B (x 2,x 22+2x 2+a )(x 2<0), 则切线方程为y -(x 22+2x 2+a )=2(x 2+1)(x -x 2),∴⎩⎪⎨⎪⎧1x 1=2(x 2+1),ln x 1-1=-x 22+a ,∵x 2<0<x 1,∴0<1x 1<2.又a =ln x 1+⎝⎛⎭⎪⎫12x 1-12-1=-ln 1x 1+14⎝ ⎛⎭⎪⎫1x 1-22-1,令t =1x 1,∴0<t <2,a =14t 2-t -ln t .设h (t )=14t 2-t -ln t (0<t <2),则h ′(t )=12t -1-1t =(t -1)2-32t <0,∴h (t )在(0,2)上为减函数, 则h (t )>h (2)=-ln 2-1=ln 12e ,∴a ∈⎝⎛⎭⎪⎫ln12e ,+∞. 热点二 利用导数研究函数的单调性1.f ′(x )>0是f (x )为增函数的充分不必要条件,如函数f (x )=x 3在(-∞,+∞)上单调递增,但f ′(x )≥0.2.f ′(x )≥0是f (x )为增函数的必要不充分条件,当函数在某个区间内恒有f ′(x )=0时,则f (x )为常函数,函数不具有单调性.例2 (2018·聊城模拟)已知函数f (x )=2e x-kx -2. (1)讨论函数f (x )在(0,+∞)内的单调性;(2)若存在正数m ,对于任意的x ∈(0,m ),不等式|f (x )|>2x 恒成立,求正实数k 的取值范围.解 (1)由题意得f ′(x )=2e x-k ,x ∈(0,+∞), 因为x >0,所以2e x>2.当k ≤2时,f ′(x )>0,此时f (x )在(0,+∞)内单调递增. 当k >2时,由f ′(x )>0得x >ln k2,此时f (x )单调递增;由f ′(x )<0得0<x <ln k2,此时f (x )单调递减.综上,当k ≤2时,f (x )在(0,+∞)内单调递增;当k >2时,f (x )在⎝⎛⎭⎪⎫0,ln k 2内单调递减,在⎝ ⎛⎭⎪⎫ln k2,+∞内单调递增.(2)①当0<k ≤2时,由(1)可得f (x )在(0,+∞)内单调递增,且f (0)=0, 所以对于任意的x ∈(0,m ),f (x )>0. 这时|f (x )|>2x 可化为f (x )>2x , 即2e x-(k +2)x -2>0. 设g (x )=2e x-(k +2)x -2, 则g ′(x )=2e x -(k +2), 令g ′(x )=0,得x =ln k +22>0,所以g (x )在⎝⎛⎭⎪⎫0,ln k +22内单调递减,且g (0)=0, 所以当x ∈⎝⎛⎭⎪⎫0,ln k +22时,g (x )<0,不符合题意. ②当k >2时,由(1)可得f (x )在⎝ ⎛⎭⎪⎫0,ln k 2内单调递减,且f (0)=0,所以存在x 0>0,使得对于任意的x ∈(0,x 0)都有f (x )<0. 这时|f (x )|>2x 可化为-f (x )>2x , 即-2e x+()k -2x +2>0.设h (x )=-2e x+()k -2x +2,则h ′(x )=-2e x+()k -2.(ⅰ)若2<k ≤4,则h ′(x )<0在(0,+∞)上恒成立, 这时h (x )在(0,+∞)内单调递减,且h (0)=0, 所以对于任意的x ∈(0,x 0)都有h (x )<0,不符合题意. (ⅱ)若k >4,令h ′(x )>0,得x <ln k -22,这时h (x )在⎝⎛⎭⎪⎫0,lnk -22内单调递增,且h (0)=0, 所以对于任意的x ∈⎝⎛⎭⎪⎫0,ln k -22,都有h (x )>0, 此时取m =min ⎩⎨⎧⎭⎬⎫x 0,lnk -22,则对于任意的x ∈(0,m ),不等式|f (x )|>2x 恒成立.综上可得k 的取值范围为()4,+∞.思维升华 利用导数研究函数单调性的一般步骤 (1)确定函数的定义域. (2)求导函数f ′(x ).(3)①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0即可;②若已知函数的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题来求解.跟踪演练2 (1)(2018·河南省中原名校质量考评)已知f (x )=()x 2+2ax ln x -12x 2-2ax 在(0,+∞)上是增函数,则实数a 的取值范围是( ) A .{1} B .{-1} C .(0,1] D .[-1,0) 答案 B解析 f (x )=()x 2+2ax ln x -12x 2-2ax ,f ′(x )=2(x +a )ln x ,∵f (x )在(0,+∞)上是增函数, ∴f ′(x )≥0在(0,+∞)上恒成立, 当x =1时,f ′(x )=0满足题意,当x >1时,ln x >0,要使f ′(x )≥0恒成立, 则x +a ≥0恒成立.∵x +a >1+a ,∴1+a ≥0,解得a ≥-1, 当0<x <1时,ln x <0,要使f ′(x )≥0恒成立, 则x +a ≤0恒成立,∵x +a <1+a ,∴1+a ≤0,解得a ≤-1. 综上所述,a =-1.(2)(2018·资阳三诊)已知定义在R 上的偶函数f (x )(函数f (x )的导函数为f ′(x ))满足f ⎝⎛⎭⎪⎫x -12+f (x +1)=0,e 3f (2 018)=1,若f (x )>f ′(-x ),则关于x 的不等式f (x +2)>1ex 的解集为( ) A .(-∞,3) B .(3,+∞) C .(-∞,0) D .(0,+∞)答案 B解析 ∵f (x )是偶函数,∴f (x )=f (-x ),f ′(x )=[]f (-x )′=-f ′(-x ),∴f ′(-x )=-f ′(x ),f (x )>f ′(-x )=-f ′(x ), 即f (x )+f ′(x )>0,设g (x )=e xf (x ), 则[]e xf (x )′=e x[]f (x )+f ′(x )>0,∴g (x )在(-∞,+∞)上单调递增,由f ⎝ ⎛⎭⎪⎫x -12+f (x +1)=0, 得f (x )+f ⎝ ⎛⎭⎪⎫x +32=0,f ⎝ ⎛⎭⎪⎫x +32+f ()x +3=0, 相减可得f (x )=f ()x +3,f (x )的周期为3,∴e 3f ()2 018=e 3f (2)=1,g (2)=e 2f (2)=1e ,f (x +2)>1ex ,结合f (x )的周期为3可化为ex -1f (x -1)>1e=e 2f (2),g (x -1)>g (2),x -1>2,x >3,∴不等式的解集为()3,+∞,故选B. 热点三 利用导数求函数的极值、最值1.若在x 0附近左侧f ′(x )>0,右侧f ′(x )<0,则f (x 0)为函数f (x )的极大值;若在x 0附近左侧f ′(x )<0,右侧f ′(x )>0,则f (x 0)为函数f (x )的极小值.2.设函数y =f (x )在[a ,b ]上连续,在(a ,b )内可导,则f (x )在[a ,b ]上必有最大值和最小值且在极值点或端点处取得.例3 (2018·北京)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x. (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. 解 (1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x, 所以f ′(x )=[ax 2-(2a +1)x +2]e x. 所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x=(ax -1)(x -2)e x.若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.思维升华 (1)求函数f (x )的极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号.(2)若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解. (3)求函数f (x )在闭区间[a ,b ]上的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.跟踪演练3 (2018·江西省八所重点中学联考)已知f (x )=⎝ ⎛⎭⎪⎫e +1e ln x +1x -x .(1)求函数f (x )的极值;(2)设g (x )=ln(x +1)-ax +e x,对于任意x 1∈[0,+∞),x 2∈[1,+∞),总有g (x 1)≥e 2f (x 2)成立,求实数a 的取值范围.解 (1)f ′(x )=e +1e x -1x 2-1=-()x -e ⎝ ⎛⎭⎪⎫x -1e x2, 令f ′(x )=0,可得x =1e或x =e.当x 变化时,f ′(x ),f (x )的变化情况如表所示:所以f (x )的极小值为f ⎝ ⎛⎭⎪⎫1e =-2e ,极大值为f (e)=2e.(2)由(1)可知,当x ∈[1,+∞)时, 函数f (x )的最大值为2e,对于任意x 1∈[0,+∞),x 2∈[1,+∞),总有g (x 1)≥e2f (x 2)成立,等价于对于任意x ∈[0,+∞),g (x )≥1恒成立,g ′(x )=e x +1x +1-a (x ≥0),①当a ≤2时,因为e x≥x +1, 所以g ′(x )=e x+1x +1-a ≥x +1+1x +1-a ≥2-a ≥0, 即g (x )在[0,+∞)上单调递增,g (x )≥g (0)=1恒成立,符合题意. ②当a >2时,设h (x )=e x+1x +1-a (x ≥0), h ′(x )=e x-1(x +1)2=(x +1)2e x-1(x +1)2≥0, 所以g ′(x )在[0,+∞)上单调递增, 且g ′(0)=2-a <0,则存在x 0∈(0,+∞), 使得g ′(x 0)=0,所以g (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 又g (x 0)<g (0)=1,所以g (x )≥1不恒成立,不符合题意.综合①②可知,实数a 的取值范围是(]-∞,2.真题体验1.(2017·浙江改编)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是________.(填序号)答案 ④解析 观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0,∴对应函数f (x )的增减性从左到右依次为减、增、减、增.观察图象可知,排除①③.如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2是极大值点,且x 2>0,故④正确.2.(2017·全国Ⅱ改编)若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为________. 答案 -1解析 函数f (x )=(x 2+ax -1)e x -1,则f ′(x )=(2x +a )e x -1+(x 2+ax -1)ex -1=ex -1[x 2+(a +2)x +a -1].由x =-2是函数f (x )的极值点,得f ′(-2)=e -3(4-2a -4+a -1)=(-a -1)e -3=0,所以a =-1,所以f (x )=(x 2-x -1)ex -1,f ′(x )=e x -1(x 2+x -2).由ex -1>0恒成立,得当x =-2或x =1时,f ′(x )=0,且x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0; 当x >1时,f ′(x )>0.所以x =1是函数f (x )的极小值点. 所以函数f (x )的极小值为f (1)=-1.3.(2017·山东改编)若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质,下列函数中具有M 性质的是______.(填序号) ①f (x )=2-x;②f (x )=x 2; ③f (x )=3-x;④f (x )=cos x .答案 ①解析 若f (x )具有性质M ,则[e x f (x )]′=e x[f (x )+f ′(x )]>0在f (x )的定义域上恒成立,即f (x )+f ′(x )>0在f (x )的定义域上恒成立.对于①式,f (x )+f ′(x )=2-x-2-xln 2=2-x(1-ln 2)>0,符合题意. 经验证,②③④均不符合题意.4.(2017·全国Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为________.答案 x -y +1=0解析 ∵y ′=2x -1x2,∴y ′|x =1=1,即曲线在点(1,2)处的切线的斜率k =1, ∴切线方程为y -2=x -1,即x -y +1=0. 押题预测1.设函数y =f (x )的导函数为f ′(x ),若y =f (x )的图象在点P (1,f (1))处的切线方程为x -y +2=0,则f (1)+f ′(1)等于( ) A .4 B .3 C .2 D .1押题依据 曲线的切线问题是导数几何意义的应用,是高考考查的热点,对于“在某一点处的切线”问题,也是易错易混点. 答案 A解析 依题意有f ′(1)=1,1-f (1)+2=0,即f (1)=3, 所以f (1)+f ′(1)=4.2.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则a b的值为( ) A .-23B .-2C .-2或-23D .2或-23押题依据 函数的极值是单调性与最值的“桥梁”,理解极值概念是学好导数的关键.极值点、极值的求法是高考的热点. 答案 A解析 由题意知f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧a =-2,b =1或⎩⎪⎨⎪⎧a =-6,b =9,经检验⎩⎪⎨⎪⎧a =-6,b =9满足题意,故a b =-23.3.已知函数f (x )=x 2-ax +3在(0,1)上为减函数,函数g (x )=x 2-a ln x 在(1,2)上为增函数,则a 的值等于________.押题依据 函数单调性问题是导数最重要的应用,体现了“以直代曲”思想,要在审题中搞清“在(0,1)上为减函数”与“函数的减区间为(0,1)”的区别. 答案 2解析 ∵函数f (x )=x 2-ax +3在(0,1)上为减函数,∴a2≥1,得a ≥2. 又∵g ′(x )=2x -a x,依题意g ′(x )≥0在(1,2)上恒成立,得2x 2≥a 在(1,2)上恒成立,∴a ≤2,∴a =2. 4.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若对任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________.押题依据 不等式恒成立或有解问题可以转化为函数的值域解决.考查了转化与化归思想,是高考的一个热点.答案 ⎣⎢⎡⎭⎪⎫94,+∞ 解析 由于f ′(x )=1+1(x +1)2>0, 因此函数f (x )在[0,1]上单调递增, 所以当x ∈[0,1]时,f (x )min =f (0)=-1. 根据题意可知存在x ∈[1,2], 使得g (x )=x 2-2ax +4≤-1,即x 2-2ax +5≤0,即a ≥x 2+52x 成立,令h (x )=x 2+52x,则要使a ≥h (x )在[1,2]上能成立, 只需使a ≥h (x )min ,又函数h (x )=x 2+52x在[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.A 组 专题通关1.(2018·株洲质检)设函数y =x sin x +cos x 的图象在点()t ,f (t )处切线的斜率为g (t ),则函数y =g (t )的图象一部分可以是( )答案 A解析 因为y ′=x cos x ,所以g (t )=t cos t , 由g (-t )=-t cos t =-g (t )知函数g (t )为奇函数, 所以排除B ,D 选项,当从y 轴右侧t →0时,cos t >0,t >0, 所以g (t )>0,故选A.2.(2018·昆明统考)已知函数f (x )=exx2+2k ln x -kx ,若x =2是函数f (x )的唯一极值点,则实数k 的取值范围是( ) A.⎝ ⎛⎦⎥⎤-∞,e 24 B.⎝⎛⎦⎥⎤-∞,e 2C .(0,2] D.[)2,+∞答案 A解析 由题意得f ′(x )=e x(x -2)x 3+2k x -k =(x -2)()e x-kx 2x3,f ′(2)=0,令g (x )=e x -kx 2,则g (x )在区间(0,+∞)内恒大于等于0或恒小于等于0,令g (x )=0,得k =exx2,令h (x )=ex x 2,则h ′(x )=e x (x -2)x 3,所以h (x )最小值为h (2)=e 24,无最大值,所以k ≤e24,故选A. 3.(2018·衡水金卷调研)已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (0)=12,则不等式f (x )-12e x <0的解集为( )A.⎝⎛⎭⎪⎫-∞,12B .(0,+∞) C.⎝ ⎛⎭⎪⎫12,+∞ D .(-∞,0)答案 B解析 构造函数g (x )=f (x )ex,则g ′(x )=f ′(x )-f (x )ex,因为f ′(x )<f (x ),所以g ′(x )<0, 故函数g (x )在R 上为减函数,又f (0)=12,所以g (0)=f (0)e 0=12,则不等式f (x )-12e x <0可化为f (x )e x <12,即g (x )<12=g (0),所以x >0,即所求不等式的解集为(0,+∞).4.设a ∈R ,若函数y =e ax+3x ,x ∈R 有大于零的极值点,则( ) A .a >-3 B .a <-3 C .a >-13D .a <-13答案 B解析 由题意得,y ′=a e ax +3=0在(0,+∞)上有解, 即a e ax=-3, ∵e ax >0,∴a <0.又当a <0时,0<e ax<1,要使a e ax=-3,则a <-3.5.(2018·西南名校联盟月考)设过曲线f (x )=e x+x +2a (e 为自然对数的底数)上任意一点处的切线为l 1,总存在过曲线g (x )=a2(1-2x )-2sin x 上一点处的切线l 2,使得l 1⊥l 2,则实数a 的取值范围为( ) A .[-1,1] B .[-2,2] C .[-1,2] D .[-2,1]答案 C解析 设y =f (x )的切点为(x 1,y 1),y =g (x )的切点为(x 2,y 2),f ′(x )=e x+1,g ′(x )=-a -2cos x ,由题意得,对任意x 1∈R 总存在x 2使得(1e x+1)(-a -2cos x 2)=-1, ∴2cos x 2=11e x +1-a 对任意x 1∈R 均有解x 2,故-2≤11e x +1-a ≤2对任意x 1∈R 恒成立,则a -2≤11e x +1≤a +2对任意x 1∈R 恒成立. 又11e x +1∈(0,1),∴a -2≤0且2+a ≥1,∴-1≤a ≤2.6.(2018·焦作模拟)已知f (x )=x ln x +f ′(1)x,则f ′(1)=________. 答案 12解析 因为f ′(x )=1+ln x -f ′(1)x 2,令x =1, 得f ′(1)=1-f ′(1),解得f ′(1)=12.7.(2018·全国Ⅲ)曲线y =(ax +1)e x在点(0,1)处的切线的斜率为-2,则a =________. 答案 -3解析 ∵y ′=(ax +a +1)e x,∴当x =0时,y ′=a +1, ∴a +1=-2,得a =-3.8.已知函数f (x )=2ln x 和直线l :2x -y +6=0,若点P 是函数f (x )图象上的一点,则点 P 到直线l 的距离的最小值为________. 答案855解析 设直线y =2x +m 与函数f (x )的图象相切于点P (x 0,y 0)(x 0>0).f ′(x )=2x,则f ′(x 0)=2x 0=2,解得x 0=1.∴P (1,0).则点P 到直线2x -y +6=0的距离d =|2×1-0+6|22+(-1)2=855,即为点P 到直线2x -y +6=0的距离的最小值.9.(2018·衡水金卷调研)已知函数f (x )=mx 2+2x -2ex,m ∈[]1,e ,x ∈[1,2],g (m )=f (x )max-f (x )min ,则关于m 的不等式g (m )≥4e2的解集为________.答案 ⎣⎢⎡⎦⎥⎤24-e ,e 解析 由f (x )=mx 2+2x -2ex,得f ′(x )=()2mx +2e x -()mx 2+2x -2e x()e x 2=2mx +2-mx 2-2x +2e x=-mx 2+()2-2m x -4ex=-()mx +2(x -2)ex,∵m ∈[]1,e ,x ∈[1,2],∴f ′(x )≥0,因此函数f (x )在区间[1,2]上单调递增, ∴f (x )max =f (2)=4m +2e 2,f (x )min =f (1)=me ,从而g (m )=f (x )max -f (x )min =4m +2e 2-m e =4m +2-m ee 2, 令4m +2-m e e 2≥4e 2,得m ≥24-e, 又m ∈[1,e],∴m ∈⎣⎢⎡⎦⎥⎤24-e ,e .故不等式g (m )≥4e 2的解集为⎣⎢⎡⎦⎥⎤24-e ,e .10.(2018·吕梁模拟)已知函数f (x )=exx-a ()x -ln x .(1)当a ≤0时,试求f (x )的单调区间;(2)若f (x )在(0,1)内有极值,试求a 的取值范围. 解 (1)函数f (x )的定义域为(0,+∞).f ′(x )=e x(x -1)x2-a ⎝ ⎛⎭⎪⎫1-1x =e x(x -1)-ax (x -1)x2, =()e x -ax (x -1)x 2.当a ≤0时,对于∀x ∈(0,+∞),e x-ax >0恒成立, 所以由f ′(x )>0,得x >1;由f ′(x )<0,得0<x <1. 所以f (x )的单调增区间为(1,+∞),单调减区间为(0,1). (2)若f (x )在(0,1)内有极值, 则f ′(x )=0在(0,1)内有解. 令f ′(x )=()e x -ax (x -1)x 2=0,即e x-ax =0,即a =e xx.设g (x )=exx,x ∈(0,1),所以 g ′(x )=e x(x -1)x2, 当x ∈(0,1)时,g ′(x )<0恒成立, 所以g (x )单调递减.又因为g (1)=e ,又当x →0时,g (x )→+∞, 即g (x )在(0,1)上的值域为(e ,+∞), 所以当a >e 时,f ′(x )=()e x -ax (x -1)x 2=0 有解.设H (x )=e x-ax ,则 H ′(x )=e x-a <0,x ∈(0,1), 所以H (x )在(0,1)上单调递减. 因为H (0)=1>0,H (1)=e -a <0,所以H (x )=e x-ax =0在(0,1)上有唯一解x 0.当x 变化时,H (x ),f ′(x ),f (x )变化情况如表所示:所以当a >e 时,f (x )在(0,1)内有极值且唯一.当a ≤e 时,当x ∈(0,1)时,f ′(x )≤0恒成立,f (x )单调递减,不成立. 综上,a 的取值范围为(e ,+∞).B 组 能力提高11.(2018·山东联盟考试)对于函数f (x )=e x-ln(x +2)-2,以下描述正确的是( ) A .∃x 0∈(-2,+∞),f (x 0)∈(-∞,-2) B .∀x ∈(-2,+∞),f (x )∈(-∞,-2) C .∀x ∈(-2,+∞),f (x )∈(-2,+∞) D .f (x )min ∈(-1,1) 答案 C解析 设函数g (x )=e x-x -1,g ′(x )=e x-1, 当x >0时,g ′(x )>0,当x <0时,g ′(x )<0, 所以g (x )min =g (0)=0,即e x≥x +1, 设函数h (x )=x +1-ln(x +2)(x >-2), h ′(x )=1-1x +2=x +1x +2,令h ′(x )>0,得x >-1,令h ′(x )<0,得-2<x <-1,所以h (x )min =h (-1)=0,即x +1≥ln(x +2), 又等号取不同x 值,所以e x>ln(x +2),e x-ln(x +2)>0,函数f (x )=e x-ln(x +2)-2的值域为(-2,+∞),故选C.12.(2018·齐鲁名校教科研协作体模拟)已知函数f (x )=sin x -x cos x ,现有下列结论: ①当x ∈[0,π]时,f (x )≥0;②当0<α<β<π时,α·sin β>β·sin α;③若n <sin x x <m 对∀x ∈⎝⎛⎭⎪⎫0,π2恒成立,则m -n 的最小值等于1-2π;④已知k ∈[]0,1,当x i ∈()0,2π时,满足|sin x i |x i=k 的x i 的个数记为n ,则n 的所有可能取值构成的集合为{0,1,2,3}. 其中正确的个数为( ) A .1 B .2 C .3 D .4 答案 C解析 当x ∈[0,π]时,f ′(x )=x sin x ≥0, 函数f (x )在[0,π]上为增函数, 所以f (x )≥f (0)=0,①正确; 令g (x )=sin x x,由①知,当x ∈(0,π)时,g ′(x )=x ·cos x -sin xx 2<0,所以g (x )在(0,π)上为减函数, 所以g ()α>g ()β,sin αα>sin ββ, 所以α·sin β<β·sin α,②错误; 由②可知g (x )=sin x x 在⎝ ⎛⎭⎪⎫0,π2上为减函数,所以g (x )=sin x x >g ⎝ ⎛⎭⎪⎫π2=2π,则n ≤2π,令φ(x )=sin x -x ,当x ∈⎝⎛⎭⎪⎫0,π2时,φ′(x )=cos x -1<0,所以φ(x )在⎝⎛⎭⎪⎫0,π2上为减函数,所以φ(x )=sin x -x <φ(0)=0,所以sin x x<1,所以m ≥1,则()m -n min =m min -n max =1-2π,③正确;令h (x )=|sin x |,k 表示点(x i ,h (x i ))与原点(0,0)连线的斜率,结合图象(图略)可知,当k ∈[]0,1,x ∈(0,2π)时,n 的所有可能取值有0,1,2,3,④正确.13.(2018·齐齐哈尔模拟)已知函数f (x )=k ln x -x -1x,且曲线y =f (x )在点(1,f (1))处的切线与y 轴垂直. (1)求函数f (x )的单调区间;(2)若对任意x ∈(0,1)∪(1,e)(其中e 为自然对数的底数),都有f (x )x -1+1x >1a(a >0)恒成立,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞), ∵f (x )=k ln x -x -1x,定义域为(0,+∞), ∴f ′(x )=k x -1x2=kx -1x2(x >0).由题意知f ′(1)=k -1=0,解得k =1, ∴f ′(x )=x -1x 2(x >0), 由f ′(x )>0,解得x >1;由f ′(x )<0,解得0<x <1, ∴f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞). (2)由(1)知f (x )=ln x -1+1x,∴f (x )x -1+1x =ln x x -1-1x -1+1x (x -1)+1x =ln xx -1. 方法一 设m (x )=ln x x -1,则m ′(x )=x -1-x ln xx (x -1)2,令n (x )=x -1-x ln x ,则n ′(x )=1-ln x -1=-ln x , ∴当x >1时,n ′(x )<0,n (x )在[1,+∞)上单调递减, ∴当x ∈(1,e)时,n (x )<n (1)=0,∴当x ∈(1,e)时,m ′(x )<0,m (x )单调递减, ∴当x ∈(1,e)时,m (x )>m (e)=1e -1,由题意知1a ≤1e -1,又a >0,∴a ≥e-1. 下面证明:当a ≥e-1,0<x <1时,ln x x -1>1a 成立,即证a ln x <x -1成立, 令φ(x )=a ln x -x +1, 则φ′(x )=a x -1=a -xx(0<x <1), 由a ≥e-1,0<x <1,得φ′(x )>0, 故φ(x )在(0,1)上是增函数, ∴x ∈(0,1)时,φ(x )<φ(1)=0, ∴a ln x <x -1成立,即ln x x -1>1a 成立,故正数a 的取值范围是[)e -1,+∞. 方法二 ①当x ∈(0,1)时,ln x x -1>1a(a >0)可化为a ln x -x +1<0(a >0), 令g (x )=a ln x -x +1(a >0),则问题转化为证明g (x )<0对任意x ∈(0,1)恒成立. 又g ′(x )=a x -1=a -xx(a >0), 令g ′(x )>0,得0<x <a ,令g ′(x )<0,得x >a ,∴函数g (x )在(0,a )上单调递增,在(a ,+∞)上单调递减. (ⅰ)当0<a <1时,下面验证g (a )=a ln a -a +1>0(a ∈(0,1)). 设T (x )=x ln x -x +1(0<x <1),则T ′(x )=ln x +1-1=ln x <0(0<x <1). 所以T (x )在(0,1)上单调递减,所以T (x )>T (1)=0.即g (a )>0(a ∈(0,1). 故此时不满足g (x )<0对任意x ∈(0,1)恒成立; (ⅱ)当a ≥1时,函数g (x )在(0,1)上单调递增. 故g (x )<g (1)=0对任意x ∈(0,1)恒成立, 故a ≥1符合题意. 综合(ⅰ)(ⅱ),得a ≥1.②当x ∈(1,e)时,ln x x -1>1a (a >0),令h (x )=a ln x -x +1(a >0),则问题转化为证明h (x )>0对任意x ∈(1,e)恒成立. 又h ′(x )=a x -1=a -xx(a >0), 令h ′(x )>0得 0<x <a ;令h ′(x )<0,得x >a ,∴函数h (x )在(0,a )上单调递增,在(a ,+∞)上单调递减. (ⅰ)当a ≥e 时,h (x )在(1,e)上是增函数, 所以h (x )>h (1)=0,(ⅱ)当1<a <e 时,h (x )在(1,a )上单调递增,在(a ,e)上单调递减, 所以只需h (e)≥0,即a ≥e-1,(ⅲ)当0<a ≤1时,h (x )在(1,e)上单调递减, 则h (x )<h (1)=0,不符合题意. 综合(ⅰ)(ⅱ)(ⅲ)可得a ≥e-1.由①②得正数a 的取值范围是[)e -1,+∞.。

相关文档
最新文档