【配套K12】高三数学专题复习 专题五 解析几何真题体验 理
配套K12(广东专版)2019高考数学二轮复习 第二部分 专题五 解析几何满分示范课 理

专题五 解析几何满分示范课【典例】 (满分12分)(2017·全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →= 2 NM →.(1)求点P 的轨迹方程; (2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .[规范解答] (1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP →=(x -x 0,y ),NM →=(0,y 0),1分由NP →= 2 NM →得x 0=x ,y 0=22y ,3分 因为M (x 0,y 0)在C 上,所以x 22+y 22=1, 因此点P 的轨迹方程为x 2+y 2=2.5分(2)由题意知F (-1,0),设Q (-3,t ),P (m ,n ),则OQ →=(-3,t ),PF →=(-1-m ,-n ),OQ →·PF →=3+3m -tn ,7分 OP →=(m ,n ),PQ →=(-3-m ,t -n ),由OP →·PQ →=1,得-3m -m 2+tn -n 2=1,9分又由(1)知m 2+n 2=2,故3+3m -tn =0.所以OQ →·PF →=0,即OQ →⊥PF →,11分又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .12分高考状元满分心得1.写全得分步骤:对于解题过程中是得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定要写全,如第(1)问,设P (x ,y ),M (x 0,y 0),N (x 0,0),就得分,第(2)问中求出-3m -m 2+tn -n 2=1就得分.2.写明得分关键:对于解题过程中的关键点,有则给分,无则没分,所以在答题时一定要写清得分关键点,如第(1)问中一定要写出x 0=x ,y 0=22y ,没有则不得分;第(2)问一定要写出OQ →·PF →=0,即OQ →⊥PF →,否则不得分,因此步骤才是关键的,只有结果不得分.[解题程序] 第一步:设出点的坐标,表示向量NP →,NM →;第二步:由NP →= 2 NM →,确定点P ,N 坐标等量关系;第三步:求点P 的轨迹方程x 2+y 2=2;第四步:由条件确定点P ,Q 坐标间的关系;第五步:由OQ →·PF →=0,证明OQ ⊥PF ;第六步:利用过定点作垂线的唯一性得出结论. [跟踪训练](2018·江南名校联考)设椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为A (-1,0),B (1,0),C 为椭圆M 上的点,且∠ACB =π3,S △ABC =33. (1)求椭圆M 的标准方程;(2)设过椭圆M 右焦点且斜率为k 的动直线与椭圆M 相交于E ,F 两点,探究在x 轴上是否存在定点D ,使得DE →·DF →为定值?若存在,试求出定值和点D 的坐标;若不存在,请说明理由.解:(1)在△ABC 中,由余弦定理得AB 2=CA 2+CB 2-2CA ·CB ·cos ∠ACB =(CA +CB )2-3CA ·CB =4.又S △ABC =12CA ·CB ·sin C =34CA ·CB =33, 所以CA ·CB =43,代入上式得CA +CB =2 2. 所以椭圆长轴2a =22,焦距2c =AB =2.所以椭圆M 的标准方程为x 22+y 2=1. (2)设直线方程y =k (x -1),E (x 1,y 1),F (x 2,y 2), 联立⎩⎪⎨⎪⎧x 22+y 2=1,y =k (x -1),得(1+2k 2)x 2-4k 2x +2k 2-2=0,Δ=8k 2+8>0,所以x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2. 假设x 轴上存在定点D (x 0,0)使得DE →·DF →为定值.所以DE →·DF →=(x 1-x 0,y 1)·(x 2-x 0,y 2) =x 1x 2-x 0(x 1+x 2)+x 20+y 1y 2=x 1x 2-x 0(x 1+x 2)+x 20+k 2(x 1-1)(x 2-1) =(1+k 2)x 1x 2-(x 0+k 2)·(x 1+x 2)+x 20+k 2 =(2x 20-4x 0+1)k 2+(x 20-2)1+2k 2 要使DE →·DF →为定值,则DE →·DF →的值与k 无关,所以2x 20-4x 0+1=2(x 20-2),解得x 0=54, 此时DE →·DF →=-716为定值,定点为⎝ ⎛⎭⎪⎫54,0.。
2012高三数学(理)二轮复习试题:专题5解析几何专题检测(精)

专题检测(五)解析几何(本卷满分150分,考试用时120分钟)一、选择题(本大题共12小题,每小题5分,共计60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.过点(-2,0)且垂直于直线x-2y+3=0的直线方程为A.2x+y+4=0B.-2x+y-4=0C.x-2y+2=0 D.-x+2y-2=0解析易知所求直线的斜率为-2,所以方程为y-0=-2(x+2),即2x+y+4=0.答案 A2.(2011·中山模拟)若抛物线y2=2px的焦点与椭圆x26+y22=1的右焦点重合,则p的值为A.-2 B.2 C.-4 D.4解析据题意p2=2,∴p=4.答案 D3.下列曲线中离心率为62的是A.x24+y22=1 B.x24-y22=1C.x24+y210=1 D.x24-y210=1解析选项A、B、C、D中曲线的离心率分别是22、62、155、142.答案 B4.已知抛物线C:y2=x与直线l:y=kx+1,“k≠0”是“直线l与抛物线C有两个不同的交点”的A.充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件解析 由⎩⎨⎧y 2=xy =kx +1得ky 2-y +1=0, 当k ≠0时,Δ=1-4k >0,得k <14. 即若直线l 与抛物线C 有两个不同的交点, 则k <14且k ≠0,故选D. 答案 D5.已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为A .(x +1)2+(y -1)2=2B .(x -1)2+(y +1)2=2C .(x -1)2+(y -1)2=2D .(x +1)2+(y +1)2=2解析 设圆心坐标为(a ,-a ),∴r =|2a |2=|2a -4|2, 解得a =1,∴r =2,故所求的方程为(x -1)2+(y +1)2=2. 答案 B6.若曲线x 2+y 2+2x -6y +1=0上相异两点P 、Q 关于直线kx +2y -4=0对称,则k 的值为A .1B .-1 C.12D .2解析 曲线方程可化为(x +1)2+(y -3)2=9, 由题设知直线过圆心,即k ×(-1)+2×3-4=0,∴k =2.故选D. 答案 D7.已知椭圆x 24+y 23=1的两个焦点分别为F 1,F 2,P 为椭圆上一点,满足∠F 1PF 2=30°,则△F 1PF 2的面积为A .3(2+3)B .3(2-3)C .2+ 3D .2-3解析 由题意,得⎩⎨⎧|PF 1|+|PF 2|=2a =4,|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos 30° =|F 1F 2|2=4,所以|PF 1|·|PF 2|=12(2-3), 所以S △F 1PF 2=12|PF 1|·|PF 2|·sin 30°=3(2-3). 答案 B8.直线ax -y +2a =0(a ≥0)与圆x 2+y 2=9的位置关系是 A .相离 B .相交 C .相切D .不确定解析 圆x 2+y 2=9的圆心为(0,0),半径为3.由点到直线的距离公式d =|Ax 0+By 0+C |A 2+B 2得该圆圆心(0,0)到直线ax -y +2a =0的距离d =2a a 2+(-1)2=2aa 2+12,由基本不等式可以知道2a ≤a 2+12,从而d =2aa 2+12≤1<r =3,故直线ax -y +2a =0与圆x 2+y 2=9的位置关系是相交.答案 B9.(2011·大纲全国卷)已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =A.45B.35 C .-35D .-45解析 解法一 由⎩⎨⎧ y =2x -4,y 2=4x ,得⎩⎨⎧ x =1,y =-2或⎩⎨⎧x =4,y =4.令B (1,-2),A (4,4),又F (1,0),∴由两点间距离公式得|BF |=2,|AF |=5,|AB |=3 5.∴cos ∠AFB =|BF |2+|AF |2-|AB |22|BF |·|AF |=4+25-452×2×5 =-45.解法二 由解法一得A (4,4),B (1,-2),F (1,0), ∴FA →=(3,4),FB →=(0,-2), ∴|FA →|=32+42=5,|FB →|=2. ∴cos ∠AFB =F A →·FB →|F A →|·|FB →|=3×0+4×(-2)5×2=-45. 答案 D10.已知椭圆x 23m 2+y 25n 2=1和双曲线x 22m 2-y 23n 2=1有公共的焦点,那么双曲线的渐近线方程是A .x =±152y B .y =±152x C .x =±34yD .y =±34x解析 由双曲线方程判断出公共焦点在x 轴上, ∴椭圆的右焦点(3m 2-5n 2,0), 双曲线的右焦点(2m 2+3n 2,0), ∴3m 2-5n 2=2m 2+3n 2,∴m 2=8n 2, 即|m |=22|n |,∴双曲线的渐近线为y =±3·|n |2·|m |x =±34x , 即y =±34x . 答案 D11.(2010·课标全国卷)已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为A.x23-y26=1 B.x24-y25=1C.x26-y23=1 D.x25-y24=1解析∵k AB=0+153+12=1,∴直线AB的方程为y=x-3.由于双曲线的焦点为F(3,0),∴c=3,c2=9.设双曲线的标准方程为x2a2-y2b2=1(a>0,b>0),则x2a2-(x-3)2b2=1.整理,得(b2-a2)x2+6a2x-9a2-a2b2=0. 设A(x1,y1),B(x2,y2),则x1+x2=6a2a2-b2=2×(-12),∴a2=-4a2+4b2,∴5a2=4b2.又a2+b2=9,∴a2=4,b2=5.∴双曲线E的方程为x24-y25=1.答案 B12.如图所示,F1和F2分别是双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点,A和B是以O为圆心,以|OF1|为半径的圆与该双曲线左支的两个交点,且△F2AB 是等边三角形,则离心率为A.3+12 B.3-1C.3-12 D.3+1解析设F2(c,0),则圆O的方程是x2+y2=c2.与双曲线方程联立,消掉y得x2a2-c2-x2b2=1,解得x=-a b2+c2c(舍去正值).由于O是正三角形F2AB的外接圆的圆心,也是其重心,故F2到直线AB的距离等于32|OF2|=3c2,即c+a b2+c2c=3c2,即2a b2+c2=c2.将b2=c2-a2代入上式,并平方得4a2(2c2-a2)=c4,整理,得c4-8a2c2+4a4=0,两端同时除以a4,得e4-8e2+4=0.解方程得e2=4±23,由于e2>1,故e2=4+23,所以e=3+1.答案 D二、填空题(本大题共4小题,每小题4分,共计16分.把答案填在题中的横线上)13.在平面直角坐标系xOy中,抛物线y=2x2上一点M,点M的横坐标是2,则M到抛物线焦点的距离是________.解析因为点M的横坐标是2,故其纵坐标为8,又p2=18,所以M到抛物线焦点的距离为8+18=658.答案65 814.点P为双曲线x24-y2=1上一动点,O为坐标原点,M为线段OP中点,则点M的轨迹方程是________.解析设P(x0,y0),M(x,y),则x0=2x,y0=2y,代入双曲线方程得x2-4y2=1.答案 x 2-4y 2=115.已知椭圆的中心在原点,离心率e =32,且它的一个焦点与抛物线x 2=-43y 的焦点重合,则此椭圆的方程为________.解析 抛物线的焦点为(0,-3),椭圆的中心在原点, 则所求椭圆的一个焦点为(0,-3),半焦距c =3, 又离心率e =c a =32,所以a =2,b =1,故所求椭圆的方程为x 2+y 24=1. 答案 x 2+y 24=116.已知a =(6,2),b =⎝ ⎛⎭⎪⎫-4,12,直线l 过点A (3,-1),且与向量a +2b 垂直,则直线l 的一般方程是________.解析 ∵a +2b =(6,2)+2⎝ ⎛⎭⎪⎫-4,12=(-2,3), ∴与向量a +2b 平行的直线的斜率为-32, 又l 与向量a +2b 垂直,∴l 的斜率k =23. 又l 过点A (3,-1),∴直线l 的方程为y +1=23(x -3), 化成一般式为2x -3y -9=0. 答案 2x -3y -9=0三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(2011·福建)如图,直线l :y =x +b 与抛物线C :x 2=4y 相切于点A .(1)求实数b 的值;(2)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程. 解析 (1)由⎩⎨⎧y =x +b ,x 2=4y 得x 2-4x -4b =0.(*) 因为直线l 与抛物线C 相切,所以Δ=(-4)2-4×(-4b )=0,解得b =-1. (2)由(1)可知b =-1,故方程(*)即为x 2-4x +4=0, 解得x =2.将其代入x 2=4y ,得y =1. 故点A (2,1).因为圆A 与抛物线C 的准线相切,所以圆A 的半径r 等于圆心A 到抛物线的准线y =-1的距离,即r =|1-(-1)|=2,所以圆A 的方程为(x -2)2+(y -1)2=4.18.(12分)(2011·安徽)设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0.(1)证明:l 1与l 2相交;(2)证明:l 1与l 2的交点在椭圆2x 2+y 2=1上.证明 (1)假设l 1与l 2不相交,则l 1与l 2平行,有k 1=k 2,代入k 1k 2+2=0,得k 21+2=0,这与k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)解法一 由方程组⎩⎨⎧y =k 1x +1,y =k 2x -1解得交点P 的坐标为⎝ ⎛⎭⎪⎫2k 2-k 1,k 2+k 1k 2-k 1, 而2x 2+y 2=2⎝ ⎛⎭⎪⎫2k 2-k 12+⎝ ⎛⎭⎪⎫k 2+k 1k 2-k 12=8+k 22+k 21+2k 1k 2k 22+k 21-2k 1k 2=k 21+k 22+4k 21+k 22+4=1.此即表明交点P (x ,y )在椭圆2x 2+y 2=1上.解法二 交点P 的坐标(x ,y )满足⎩⎨⎧y -1=k 1x ,y +1=k 2x . 故知x ≠0. 从而⎩⎪⎨⎪⎧k 1=y -1x ,k 2=y +1x .代入k 1k 2+2=0,得y -1x ·y +1x +2=0. 整理后,得2x 2+y 2=1,所以交点P 在椭圆2x 2+y 2=1上.19.(12分)(2011·开封模拟)如图所示,已知圆O :x 2+y 2=4,直线m :kx -y +1=0.(1)求证:直线m 与圆O 有两个相异交点;(2)设直线m 与圆O 的两个交点为A 、B ,求△AOB 面积S 的最大值. 解析 (1)证明 直线m :kx -y +1=0可化为y -1=kx , 故该直线恒过点(0,1),而(0,1)在圆O :x 2+y 2=4内部, 所以直线m 与圆O 恒有两个不同交点. (2)圆心O 到直线m 的距离为 d =11+k 2,而圆O 的半径r =2, 故弦AB 的长为|AB |=2r 2-d 2=24-d 2, 故△AOB 面积S =12|AB |×d =12×24-d 2×d =4d 2-d 4=-(d 2-2)2+4.而d 2=11+k 2,因为1+k 2≥1,所以d 2=11+k 2∈(0,1],显然当d 2∈(0,1]时,S 单调递增,所以当d 2=1,即k =0时,S 取得最大值3, 此时直线m 的方程为y -1=0.20.(12分)已知圆C 的方程为x 2+y 2=4.(1)直线l 过点P (1,2),且与圆C 交于A 、B 两点,若|AB |=23,求直线l 的方程;(2)过圆C 上一动点M (不在x 轴上)作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ →=OM →+ON →,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.解析 (1)当直线l 垂直于x 轴时,直线方程为x =1,l 与圆的两个交点坐标为(1,3)和(1,-3),其距离为23,满足题意. 若直线l 不垂直于x 轴,设其方程为y -2=k (x -1), 即kx -y -k +2=0.设圆心到此直线的距离为d ,则23=24-d 2,得d =1. 所以|-k +2|k 2+1=1,解得k =34, 故所求直线方程为3x -4y +5=0.综上所述,所求直线方程为3x -4y +5=0或x =1. (2)设点M 的坐标为(x 0,y 0)(y 0≠0),Q 点坐标为(x ,y ), 则N 点坐标是(0,y 0). 因为OQ→=OM →+ON →, 所以(x ,y )=(x 0,2y 0),即x 0=x ,y 0=y2. 又因为M 是圆C 上一点,所以x 20+y 20=4,所以x 2+y 24=4(y ≠0), 所以Q 点的轨迹方程是x 24+y 216=1(y ≠0),这说明轨迹是中心在原点,焦点在y 轴,长轴为8、短轴为4的椭圆,除去短轴端点.21.(12分)(2011·上海)已知椭圆C:x2m2+y2=1(常数m>1),P是曲线C上的动点,M是曲线C的右顶点,定点A的坐标为(2,0).(1)若M与A重合,求曲线C的焦点坐标;(2)若m=3,求|P A|的最大值与最小值;(3)若|P A|的最小值为|MA|,求实数m的取值范围.解析(1)由题意知m=2,椭圆方程为x24+y2=1,c=4-1=3,∴左、右焦点坐标分别为(-3,0),(3,0).(2)m=3,椭圆方程为x29+y2=1,设P(x,y),则|P A|2=(x-2)2+y2=(x-2)2+1-x29=89⎝⎛⎭⎪⎫x-942+12(-3≤x≤3),∴当x=94时,|P A|min=22;当x=-3时,|P A|max=5.(3)设动点P(x,y),则|P A|2=(x-2)2+y2=(x-2)2+1-x2m2=m2-1m2⎝⎛⎭⎪⎫x-2m2m2-12-4m2m2-1+5(-m≤x≤m).∵当x=m时,|P A|取最小值,且m2-1m2>0,∴2m2m2-1≥m且m>1,解得1<m≤1+ 2.22.(14分)如图所示,曲线C1是以原点O为中心,F1,F2为焦点的椭圆的一部分,曲线C2是以O为顶点,F2为焦点的抛物线的一部分,A是曲线C1和C2的交点且∠AF2F1为钝角,若|AF1|=72,|AF2|=52,(1)求曲线C 1和C 2所在的椭圆和抛物线方程;(2)过F 2作一条与x 轴不垂直的直线,分别与曲线C 1、C 2依次交于B 、C 、D 、E 四点,若G 为CD 的中点,H 为BE 的中点,问|BE ||CD |·|GF 2||HF 2|是否为定值?若是,求出定值;若不是,请说明理由.解析 (1)解法一 设椭圆方程为 x 2a 2+y 2b 2=1(a >b >0),则2a =|AF 1|+|AF 2|=72+52=6, 得a =3.设A (x ,y ),F 1(-c,0),F 2(c,0), 则(x +c )2+y 2=⎝ ⎛⎭⎪⎫722,(x -c )2+y 2=⎝ ⎛⎭⎪⎫522,两式相减,得xc =32,由抛物线定义可知|AF 2|=x +c =52,则c =1,x =32或x =1,c =32(因∠AF 2F 1为钝角,故舍去). 所以椭圆方程为x 29+y 28=1,抛物线方程为y 2=4x .解法二 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),抛物线方程为y 2=2px . 如图所示,过F 1作垂直于x 轴的直线x =-c ,即抛物线的准线,过A 作AN 垂直于该准线于点N ,作AM ⊥x 轴于点M , 则由抛物线的定义,得|AF 2|=|AN |,所以|AM |=|AF 1|2-|F 1M |2=|AF 1|2-|AN |2=|AF 1|2-|AF 2|2 =⎝ ⎛⎭⎪⎫722-⎝ ⎛⎭⎪⎫522= 6. |F 2M |=⎝ ⎛⎭⎪⎫522-6=12,得|F 1F 2|=52-12=2, 所以c =1.由p2=c 得p =2. 由2a =|AF 1|+|AF 2|=6, 得a =3.b 2=a 2-c 2=8. 所以椭圆方程为x 29+y 28=1, 抛物线方程为y 2=4x .(2)设B (x 1,y 1),E (x 2,y 2),C (x 3,y 3),D (x 4,y 4),直线y =k (x -1), 由题意知k ≠0,代入x 29+y 28=1, 得8⎝ ⎛⎭⎪⎫y k +12+9y 2-72=0, 即(8+9k 2)y 2+16ky -64k 2=0, 则y 1+y 2=-16k 8+9k 2,y 1y 2=-64k 28+9k 2. 同理,将y =k (x -1)代入y 2=4x , 得ky 2-4y -4k =0, 则y 3+y 4=4k ,y 3y 4=-4.所以|BE|·|GF2||CD|·|HF2|=|y1-y2||y3-y4|·12|y3+y4|12|y1+y2|=(y1-y2)2(y1+y2)2·(y3+y4)2(y3-y4)2=(y1+y2)2-4y1y2(y1+y2)2·(y3+y4)2(y3+y4)2-4y3y4=(16k)2(8+9k2)2+4×64k28+9k2(16k)2(8+9k2)2·⎝⎛⎭⎪⎫4k2⎝⎛⎭⎪⎫4k2+16=3,为定值.。
高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析1.中心在原点,其中一个焦点为(-2,0),且过点(2,3),则该椭圆方程为;【答案】【解析】略2.(本题满分10分)选修4-4:坐标系与参数方程选讲在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为(1)求曲线的普通方程与曲线的直角坐标方程;(2)设点,曲线与曲线交于,求的值.【答案】(1);(2)。
【解析】(1)两式相加消去参数可得曲线的普通方程,由曲线的极坐标方程得,整理可得曲线的直角坐标方程。
(2)由(1)知曲线的方程为,且点在曲线上,所以把直线的参数方程与曲线的方程联立,利用韦达定理可得试题解析:(1)(2)将代人直角坐标方程得【考点】(1)极坐标方程、参数方程与直角坐标方程的互化;(2)直线参数方程中参数的几何意义。
3.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数.(1)将曲线的极坐标方程化为直角坐标方程;(2)若直线与曲线相交于、两点,且,求直线的倾斜角的值.【答案】(1)(2)或【解析】第一问注意极坐标和直角坐标的转换,第二问注意用好公式即可,注意直线的参数方程中参数的几何意义的应用.试题解析:(1)由得,于是有,化简可得(2)将代入圆的方程得,化简得.设、两点对应的参数分别为、,则,,,,或.【考点】极坐标方程与直角坐标方程的转换,直线被曲线截得的弦长问题,直线的参数方程中参数的几何意义的应用.4.已知抛物线y2 =8x的焦点为F,直线y=k(x+2)与抛物线交于A,B两点,则直线FA与直线FB的斜率之和为A.0B.2C.-4D.4【答案】A【解析】由题可知,如图,,设,联立,化为,由于,所以,因此,直线FA与直线FB的斜率之和为;【考点】抛物线的简单性质5.若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为_______.【答案】【解析】∵圆心与点(1,0)关于直线y=x对称,∴圆心为,又∵圆C的半径为1,∴圆C的标准方程为.【考点】圆的标准方程.6.已知是圆的切线,切点为,.是圆的直径,与圆交于点,,则圆的半径.【答案】【解析】在直角三角形中,由切割线定理可得,即,解得.【考点】1.勾股定理;2.切割线定理.7.如图,双曲线的中心在坐标原点,分别是双曲线虚轴的上、下顶点,是双曲线的左顶点,为双曲线的左焦点,直线与相交于点.若双曲线的离心率为2,则的余弦值是()A.B.C.D.【答案】【解析】可设双曲线方程为,即得,,,所以直线方程为,直线方程为,又把和的直线方程联立解得,又,所以,即所以有,,则,又故答案选【考点】双曲线的简单性质.8.已知抛物线,则A.它的焦点坐标为B.它的焦点坐标为C.它的准线方程是D.它的准线方程是【答案】C【解析】将抛物线化为标准方程得,所以其焦点坐标为,准线方程为.【考点】抛物线的标准方程及几何性质.9.已知双曲线的离心率为,则的值为A.B.3C.8D.【答案】B【解析】试题分析:由题意知,,所以,解之得,故应选.【考点】1、双曲线的概念;2、双曲线的简单几何性质;10.已知抛物线:的焦点为,抛物线上的点到焦点的距离为3,椭圆:的一个焦点与抛物线的焦点重合,且离心率为.(1)求抛物线和椭圆的方程;(2)已知直线:交椭圆于、两个不同的点,若原点在以线段为直径的圆的外部,求的取值范围.【答案】(1)抛物线的方程为:;椭圆的方程为;(2)或.【解析】(1)由抛物线的定义并结合已知条件可得,,进而得出抛物线的方程;再由椭圆的一个焦点与抛物线的焦点重合,可得椭圆半焦距,即,又由椭圆的离心率为,即可联立方程组解出,的值,进而得出椭圆的方程;(2)首先设出、,然后联立直线与椭圆的方程并整理得到一元二次方程,由韦达定理可得,,以及判别式得出参数的取值范围,最后由原点在以线段为直径的圆的外部即得到关于的不等式,进而求出的取值范围.试题解析:(1)由题意可知,解得,所以抛物线的方程为:.∴抛物线的焦点,∵椭圆的一个焦点与抛物线的焦点重合,∴椭圆半焦距,.∵椭圆的离心率为,∴,解得,,∴椭圆的方程为.(2)设、,由得,∴,,由,即,解得或.①∵原点在以线段为直径的圆的外部,则,∴,解得.②由①②解得实数的范围是或.【考点】1、抛物线;2、椭圆的标准方程;3、直线与椭圆相交的综合问题.11.如图,已知椭圆()经过点,离心率,直线的方程为.(1)求椭圆的标准方程;(2)是经过椭圆右焦点的任一弦(不经过点),设直线与相交于点,记,,的斜率分别为,,,问:是否存在常数,使得?若存在,求出的值;若不存在,说明理由.【答案】(1);(2)存在常数符合题意.【解析】(1)根据点在椭圆上,可将其代入椭圆方程,又且解方程组可得的值.(2)设直线的方程为,与椭圆方程联立消去可得关于的一元二次方程,从而可得两根之和,两根之积.根据斜率公式可用表示出.从而可得的值.试题解析:解:(Ⅰ)由点在椭圆上得,,①又,所以,②由①②得,故椭圆的方程为.(Ⅱ)假设存在常数,使得,由题意可设则直线的方程为,③代入椭圆方程,并整理得,设,则有,④在方程③中,令得,,从而.又因为共线,则有,即有,所以=,⑤将④代入⑤得,又,所以,故存在常数符合题意.【考点】1椭圆的简单几何性质;2直线与椭圆的位置关系问题.12.【选修4-2:极坐标与参数方程】已知直线n的极坐标是,圆A的参数方程是(θ是参数)(1)将直线n的极坐标方程化为普通方程;(2)求圆A上的点到直线n上点距离的最小值.【答案】(1);(2).【解析】(1)利用,即可将极坐标方程化为平面直角坐标系方程;消去参数即可将圆的参数方程化为普通方程;(2)运用普通方程,并利用圆心到直线的距离减去半径即得最小值.试题解析:(1)由,展开为,化为;(2)圆A的(θ是参数)化为普通方程为,圆心,半径.∴圆心到直线n的距离.∴圆A上的点到直线n上点距离的最小值为:.【考点】(1)极坐标、参数方程化普通方程;(2)圆上点到直线距离的最值问题.13.已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)把的参数方程化为极坐标方程;(2)求与交点的极坐标().【答案】(1);(2),.【解析】(1)先得到的普通方程,进而得到极坐标方程;(2)先联立求出交点坐标,进而求出极坐标.试题解析:(1)将消去参数,化为普通方程5,即.将代入得,所以的极坐标方程为.(2)的普通方程为.由,解得或,所以与交点的极坐标分别为,.【考点】1、参数方程与普通方程的互化;2、极坐标方程与直角坐标方程的互化.14.已知双曲线的一条渐近线过点(2,),则双曲线的离心率为()A.B.C.D.【答案】B【解析】因为双曲线的方程为所以双曲线一条渐近线方程经过点可得,,解得离心率,故选D.【考点】1、双曲线的渐近线;2、双曲线的离心率.15.已知直线l经过点,倾斜角,圆C的极坐标方程为.(1)写出圆C的直角坐标方程;(2)设l与圆C相交于两点A、B,求A、B两点间的距离.【答案】(1);(2).【解析】(1)首先根据两角差的余弦公式展开,然后两边同时乘以,根据,,化简,得到圆的直角坐标方程;(2)根据定点和倾斜角写出直线的参数方程,代入圆的方程得到关于的二次方程,根据韦达定理和的几何意义,,即可求出结果.试题解析:解:(1)由得,所以,即,故圆C的直角坐标方程为.(2)直线l的参数方程为,即(t为参数),把(t为参数)代入得,设方程的两根为,,则,.故.【考点】1.极坐标方程与直角坐标方程的互化;2.弦长公式.【易错点睛】极坐标与参数方程的问题,属于基础题型,对于形如(t为参数)的参数方程,应先化为直线参数方程的标准形式后才能利用的几何意义解题.在参数方程与普通方程的互化中,必须使的取值范围保持一致.16.选修4-4:坐标系与参数方程已知直线(为参数),曲线(为参数).(1)设与相交于,两点,求;(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.【答案】(1);(2)【解析】(1)由得普通方程为,的普通方程为.联立方程组,即可求出结果;(2)的参数方程为(为参数),故点的坐标是,从而点到直线的距离,根据三角函数的性质即可求出结果.试题解析:(1)的普通方程为,的普通方程为,联立方程组,解得交点坐标为,,所以;(2)曲线(为参数).设所求的点为,则到直线的距离当时,取得最小值.【考点】1.极坐标;2.参数方程.17.若直线和直线将圆分成长度相等的四段弧,则.【答案】18【解析】由题意得直线和直线截得圆的弦所对圆周角相等,皆为直角,因此圆心到两直线距离皆为,即【考点】直线与圆位置关系18.已知椭圆:的左右焦点分别为,,离心率为,直线:,为点关于直线对称的点,若为等腰三角形,则的值为.【答案】.【解析】分析题意可知为等腰三角形可得,即点到直线距离为,∴,故填:.【考点】双曲线的标准方程及其性质.19.已知椭圆过定点,以其四个顶点为顶点的四边形的面积等于以其两个短轴端点和两个焦点为顶点的四边形面积的倍.(Ⅰ)求此椭圆的方程;(Ⅱ)若直线与椭圆交于,两点,轴上一点,使得为锐角,求实数的取值范围.【答案】(Ⅰ)椭圆的方程为;(Ⅱ)的取值范围.【解析】(Ⅰ)以四个顶点为顶点的四边形和以其两个短轴端点和两个焦点为顶点的四边形均为菱形,易求它们的对角线长,根据其面积关系可得,又再把点代入椭圆方程,可得,从而求得其方程;(Ⅱ)由为锐角,得,根据向量数量积的坐标运算可得两点坐标之间的关系,整理方程组,根据韦达定理把两根之和和两根之积代入上面的关系式,可得关于的不等式,解不等式即可求得参数的取值范围.试题解析:(Ⅰ)以椭圆四个顶点为顶点的四边形的面积,以两个短轴端点和两个焦点为顶点的四边形面积.,即.可设椭圆方程为,代入点可得.所求椭圆方程为.(Ⅱ)由为锐角,得,设,,则,,,联立椭圆方程与直线方程消去并整理得.所以,,进而求得,所以,即,解之得的取值范围【考点】待定系数法求椭圆方程及直线与椭圆位置关系的应用.【方法点睛】本题第一问主要考查了待定系数求椭圆方程,发现两个四边形的形状快速求得其面积是解答本问的突破口;第二问中,对条件“为锐角”的转化是关键,在直线与圆锥曲线的位置关系问题中,夹角为“锐角”、“钝角”、 “直角”及“点在圆外、圆内、圆上”等实际上都可以转化为向量的数量积问题,通过向量数量积的坐标运算可得直线与圆锥曲线的交点坐标之间的关系,再结合方程组和韦达定理即可建立函数、方程或不等式,这里面会考查到学生转化的数学思想,数形结合的数学思想及函数与方程的思想等,这类问题综合性较强,属于中高档题目.20. (2015秋•锦州校级期中)已知△ABC ,点A (2,8)、B (﹣4,0)、C (4,﹣6),则∠ABC 的平分线所在直线方程为 . 【答案】x ﹣7y+4=0【解析】先求出三角形ABC 是等腰直角三角形,作出∠ABC 的角平分线BD ,求出D 点坐标,BD 的斜率,再用点斜式求得所在直线方程即可.解:如图示:,∵k AB =,k BC =﹣,∴AB ⊥BC ,∵|AB|==10,|BC|==10,∴|AB|=|BC|, ∴△ABC 是等腰直角三角形, 作出∠ABC 的角平分线BD ,∴直线BD 是线段AC 的垂直平分线,D 是AC 的中点, ∴D (3,1), 由k AC =﹣7得:k BD =,∴直线BD 的方程是:y=1=(x ﹣3), 整理得:x ﹣7y+4=0, 故答案为:x ﹣7y+4=0.【考点】待定系数法求直线方程.21. 如图,分别是双曲线的左、右焦点,过的直线与的左、右两支分别交于点.若为等边三角形,则双曲线的离心率为()A.4B.C.D.【答案】B【解析】由双曲线的定义,知,.又==.又为等边三角形,所以=,即=,所以,所以,所以.在中,由余弦定理,得-=,即,所以,所以,故选B.【考点】1、双曲线的定义及几何性质;2、余弦定理.【方法点睛】离心率的求解中可以不求出的具体值,而是得出与的关系,从而求得,一般步骤如下:①根据已知条件得到齐次方程;②化简得到关于的一元二次方程;③求解的值;④根据双曲线离心率的取值范围进行取舍.22.在以坐标原点为极点,轴的正半轴为极轴建立的极坐标系中,曲线的极坐标方程为,正三角形的顶点都在上,且依逆时针次序排列,点的坐标为.(I)求点的直角坐标;(II)设是圆上的任意一点,求的取值范围.【答案】(I),;(II) .【解析】(I)先将曲线的极坐标方程化为普通方程,进而化为参数方程,再确定所求点的坐标;(II)设出点的参数坐标,化简表达式,利用三角恒等变形进行求解.试题解析:(1)由题意,得曲线的普通方程为,其参数方程为为参数,又因为点的坐标为,所以点的坐标为,即;点的坐标为,即.(2)由圆的参数方程,可设点,于是,∴的范围是.【考点】1.曲线的极坐标、普通方程、参数方程的转化;2.三角恒等变换.23.已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).(1)将曲线的极坐标方程化为直角坐标方程;(2)若直线与曲线相交于、两点,且,求直线的倾斜角的值.【答案】(1);(2)或.【解析】(1)把转化为 ,再利用,,转化为直角坐标方程;(2)将代入圆的方程化简得,.,求得,所以或.试题解析:(1)由得.∵,,,∴曲线的直角坐标方程为,即;(2)将代入圆的方程得,化简得.设两点对应的参数分别为、,则∴.∴,,或.【考点】参数方程、极坐标方程、直角坐标方程的互化及应用24.设双曲线的左、右焦点分别为,,离心率为,过的直线与双曲线的右支交于,两点,若是以为直角顶点的等腰直角三角形,则()A.B.C.D.【答案】C【解析】设,则,,,∵,∴,∴,∵为直角三角形,∴,∴,∵,∴,∴,故选C.【考点】1、双曲线的定义;2、双曲线的简单几何性质.25.已知抛物线的焦点F与双曲线的右焦点重合,抛物线的准线与轴的交点为K,点A在抛物线上且,则A点的横坐标为()A.B.3C.D.4【答案】B【解析】因为抛物线的焦点F与双曲线的右焦点重合,所以抛物线的标准方程为,,设点,则由,得,即,即,解得,即A点的横坐标为3;故选B.【考点】1.抛物线的定义;2.双曲线的定义.【技巧点睛】本题考查抛物线、双曲线的定义的应用和两点间的距离公式,属于基础题;在处理与抛物线的焦点有关的问题时,要注意利用抛物线的定义使抛物线的点到焦点的距离和到准线的距离进行相互转化,但要注意抛物线的标准方程的形式,如抛物线上的点到焦点的距离为,抛物线上的点到焦点的距离为,抛物线上的点到焦点的距离为,物线上的点到焦点的距离为.26.在平面直角坐标系中,直线的参数方程为(为参数),在以直角坐标系的原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)求曲线的直角坐标方程和直线的普通方程;(2)若直线与曲线相交于两点,求的面积.【答案】(1),;(2).【解析】(1)利用极坐标与直角坐标的互化,可把极坐标方程化为普通方程;消去参数可得直线的直角坐标方程;(2)将直线的参数方程代入曲线的方程,得,由,即可求解的长度,再利用点到直线的距离公式求解的高,即可求解三角形的面积.试题解析:(1)由曲线的极坐标方程是:,得.∴由曲线的直角坐标方程是:.由直线的参数方程,得代入中消去得:,所以直线的普通方程为:(2)将直线的参数方程代入曲线的普通方程,得,设两点对应的参数分别为,所,因为原点到直线的距离,所以的面积是【考点】参数方程、极坐标方程与直角坐标方程的互化;直线参数的应用.27.如图,椭圆左、右焦点分别为,上顶点轴负半轴上有点,满足,且,若过三点的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)若为椭圆上的点,且直线垂直于轴,直线与轴交于点,直线与交于点,求的面积的最大值.【答案】(Ⅰ) (Ⅱ)【解析】(Ⅰ)由题得,即的外接圆圆心为,半径,则由过三点的圆与直线相切可求得,进而得到,则椭圆的方程可求;(Ⅱ)首先证明点恒在椭圆上通过设、直线,利用三角形面积公式化简可知,通过联立直线与椭圆方程后由韦达定理、换元化简可知,,令求出的最大值进而即得结论.试题解析:(Ⅰ)由题得,即,的外接圆圆心为,半径,∵过三点的圆与直线相切,∴,解得:,∴所求椭圆方程为:.(Ⅱ)设,则,∴,与的方程分别为:.则,∵,∴点恒在椭圆上.设直线,则,记,,,令,则,∵函数在为增函数,∴当即时,函数有最小值4,即时,,又∵.故【考点】【名师】本题考查了椭圆离心率,方程的求法,以及直线与椭圆位置关系,属中档题.解题时注意设而不求思想的应用.以及基本不等式的综合应用,难点在于证明点恒在椭圆上28.以双曲线的右焦点为圆心,为半径的圆恰好与双曲线的两条渐近线相切,则该双曲线的离心率为 .【答案】【解析】由题意得【考点】双曲线渐近线29.设分别为椭圆()与双曲线()的公共焦点,它们在第一象限内交于点,,若椭圆的离心率,则双曲线的离心率的取值范围为()A.B.C.D.【答案】B【解析】设,则,又,,所以,,则,由得,又,所以,即,所以.故选B.【考点】椭圆与双曲线的性质.【名师】本题是椭圆与双曲线的综合题,解题时要注意它们性质的共同点和不同点,如离心率是相同的,准线方程是,但椭圆中有,,双曲线中有,,这在解题时要特别注意不能混淆,否则易出错.30.在直角坐标系中,直线为过点,且倾斜角为的直线,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线(1)写出直线的参数方程和曲线的直角坐标方程;(2)若直线与曲线相交于两点,且,求的长【答案】(1)直线:(为参数,其中),;(2).【解析】(1)过点,倾斜角为的直线的参数方程为,由此可写出题中直线的参数方程,利用公式,可把极坐标方程化为直角坐标方程;(2)考虑到参数方程中参数的几何意义,由于在椭圆内部,对应的参数分别为,则,因此把直线参数方程代入椭圆的直角坐标方程,整理后可得,利用可求得,从而得,而,由此可得弦长.试题解析:(1)直线:(为参数,其中),(2)把:代入,整理得,由于点在椭圆内,则恒成立,由韦达定理由于,由的几何意义知,所以,又,则所以【考点】参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化.31.选修4—1:几何证明选讲如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(1)求证:PM2=PA·PC;(2)若⊙O的半径为,OA=OM,求:MN的长.【答案】(1)证明见解析;(2).【解析】(1)做出辅助线连接,根据切线得到直角,根据垂直得到直角,即且,根据同角的余角相等,得到角的相等关系,得到结论;(2)本题是一个求线段长度的问题,在解题时,应用相交弦定理,即,代入所给的条件,得到要求线段的长.试题解析:(1)连结,则,且为等腰三角形,则,,,.由条件,根据切割线定理,有,所以.(2),在中,.延长交⊙于点,连结.由条件易知∽,于是,即,得.所以.【考点】与圆有关的比例线段.32.、分别是椭圆:的左、右焦点,为坐标原点,是上任意一点,是线段的中点.已知的周长为,面积的最大值为.(Ⅰ)求的标准方程;(Ⅱ)过作直线交于两点,,以为邻边作平行四边形,求四边形面积的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)连接,由椭圆定义知,是线段的中点,是线段的中点,,周长为,可得,……①又面积,可得,……②,由即可求出椭圆方程;(Ⅱ)设,,显然直线的斜率不能为0,故设直线的方程为,代入椭圆方程,整理得,,,, 9分设,则,,然后再利用基本不等式即可求出结果.试题解析:解:(Ⅰ)连接,由椭圆定义知,是线段的中点,是线段的中点,,周长为,即,……① 2分又面积,所以当时,最大,所以,……② 4分由解得,所以的标准方程为.(Ⅱ)设,,显然直线的斜率不能为0,故设直线的方程为,代入椭圆方程,整理得,,,,设,则,,因为,所以,当且仅当时,等号成立,所以,,四边形面积的取值范围.【考点】1.椭圆方程;2.直线与椭圆的位置关系.33.设是坐标原点,椭圆的左右焦点分别为,且是椭圆上不同的两点。
配套K12高考数学导学练系列 立体几何教案 苏教版

立体几何初步1.理解平面的基本性质,会用斜二测画法画水平放置的平面图形的直观图、能够画出空间两条直线、直线和平面的各种位置关系的图形,能根据图形想象它们的位置关系.2.了解空间两条直线、直线和平面、两个平面的位置关系.3.掌握直线和平面平行的判定定理和性质定理;理解直线和平面垂直的概念;掌握直线和平面垂直的判定定理和性质定理;掌握三垂线定理及其逆定理.4.掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念;掌握两个平面平行、垂直的判定定理和性质定理.5.了解多面体、凸多面体、正多面体的概念.6.了解棱柱,棱锥的概念;了解棱柱,棱锥的性质;会画其直观图.7.了解球的概念;掌握球的性质;掌握球的表面积、体积公式.直线、平面、简单几何体三个公理、三个推论 平面平行直异面直相交直公理4及等角定理 异面直线所成的角 异面直线间的距离 直线在平面内 直线与平面平直线与平面相空间两条直概念、判定与性质 三垂线定理 垂斜直线与平面所成的角空间直线 与平面空间两个平面棱柱 棱锥 球两个平面平行两个平面相交 距离两个平面平行的判定与性质 两个平面垂直的判定与性质二面角定义及有关概念性质 综合应用多面体面积公式 体积公式 正多面体本章的定义、定理、性质多,为了易于掌握,可把主要知识系统化.首先,归纳总结,理线串点,可分为四块:A 、平面的三个基本性质,四种确定平面的条件;B 、两个特殊的位置关系,即线线,线面,面面的平行与垂直.C 、三个所成角;即线线、线面、面面所成角;D 、四个距离,即两点距、两线距、线面距、面面距.其次,平行和垂直是位置关系的核心,而线面垂直又是核心中的核心,线面角、二面角、距离等均与线面垂直密切相关,把握其中的线面垂直,也就找到了解题的钥匙.再次,要加强数学思想方法的学习,立体几何中蕴涵着丰富的思想方法,化空间图形为平面图形解决,化几何问题为坐标化解决,自觉地学习和运用数学思想方法去解题,常能收到事半功倍的效果.第1课时 平面的基本性质公理1 如果一条直线上的 在同一个平面内,那么这条直线上的 都在这个平面内 (证明直线在平面内的依据).公理2 如果两个平面有 个公共点,那么它们还有其他公共点,这些公共点的集合是 (证明多点共线的依据).公理3 经过不在 的三点,有且只有一个平面(确定平面的依据).推论1 经过一条直线和这条直线外的一点有且只有一个平面.推论2 经过两条 直线,有且只有一个平面.推论3 经过两条 直线,有且只有一个平面.例1.正方体ABCD-A 1B 1C 1D 1中,对角线A 1C 与平面BDC 1交于O ,AC 、BD 交于点M .求证:点C 1、O 、M 共线.证明:A 1A∥CC 1⇒确定平面A 1C A 1C ⊂面A 1C ⇒O∈面A 1C ⇒O∈A 1C面BC 1D∩直线A 1C =O ⇒O∈面BC 1D O 在面A 1C 与平面BC 1D 的交线C 1M 上∴C 1、O 、M 共线变式训练1:已知空间四点A 、B 、C 、D 不在同一平面内,求证:直线AB 和CD 既不相交也不平行.AR P Q αCBA提示:反证法.例2. 已知直线l 与三条平行线a 、b 、c 都相交.求证:l 与a 、b 、c 共面.证明:设a ∩l =A b ∩l =B c ∩l =C a ∥b ⇒ a 、b 确定平面α ⇒l ⊂β A∈a , B∈bb ∥c ⇒b 、c 确定平面β 同理可证l ⊂β所以α、β均过相交直线b 、l ⇒ α、β重合⇒ c ⊂α ⇒a 、b 、c 、l 共面变式训练2:如图,△ABC 在平面α外,它的三条边所在的直线AB 、BC 、CA 分别交平面α于P 、Q 、R 点.求证:P 、Q 、R 共线.证明:设平面ABC∩α=l ,由于P =AB∩α,即P =平面ABC∩α=l ,即点P 在直线l 上.同理可证点Q 、R 在直线l 上.∴P、Q 、R 共线,共线于直线l .例3. 若△ABC 所在的平面和△A 1B 1C 1所在平面相交,并且直线AA 1、BB 1、CC 1相交于一点O ,求证: (1) AB 和A 1B 1、BC 和B 1C 1分别在同一个平面内;(2) 如果AB 和A 1B 1,BC 和B 1C 1分别相交,那么交点在同一条直线上.证明:(1) ∵AA 1∩BB 1=0,∴AA 1与BB 1确定平面α,又∵A∈a ,B∈α,A 1∈α,B 1∈α,∴AB ⊂α,A 1B 1⊂α,∴AB、A 1B 1在同一个平面内同理BC 、B 1C 1、AC 、A 1C 1分别在同一个平面内(2) 设AB∩A 1B 1=X ,BC∩B 1C 1=Y ,AC∩A 1C 1=Z ,则只需证明X 、Y 、Z 三点都是平面A 1B 1C 1与ABC 的公共点即可.变式训练3:如图,在正方体ABCD -A 1B 1C 1D 1中,E 为AB 中点,F 为AA 1中点,求证:(1) E 、C .D 1、F 四点共面;(2) CE 、D 1F 、DA 三线共点.证明(1) 连结A 1B 则EF∥A 1B A 1B∥D 1C∴EF∥D 1C ∴E、F 、D 1、C 四点共面(2) 面D 1A∩面CA =DA ∴EF∥D 1C 且EF =21D 1C ∴D 1F 与CE 相交 又D 1F ⊂面D 1A ,CE ⊂面AC ∴D 1F 与CE 的交点必在DA 上O C 1B 1A 1ABCABECDFA 1B 1C 1D 1∴CE、D 1F 、DA 三线共点.例4.求证:两两相交且不通过同一点的四条直线必在同一平面内.证明:(1) 若a 、b 、c 三线共点P ,但点p ∉d ,由d 和其外一点可确定一个平面α又a∩d=A ∴点A∈α ∴直线a ⊂α同理可证:b 、c ⊂α ∴a 、b 、c 、d 共面(2)若a 、b 、c 、d 两两相交但不过同一点∵a ∩b =Q ∴a 与b 可确定一个平面β又c ∩b =E ∴E∈β同理c ∩a =F ∴F∈β∴直线c 上有两点E、F在β上 ∴c ⊂β同理可证:d ⊂β 故a 、b 、c 、d 共面由(1) (2)知:两两相交而不过同一点的四条直线必共面变式训练4:分别和两条异面直线AB 、CD 同时相交的两条直线AC 、BD 一定是异面直线,为什么?解:假设AC 、BD 不异面,则它们都在某个平面α内,则A 、B 、C 、D ∈α.由公理1知AC α⊂≠,BD α⊂≠.这与已知AB 与CD 异面矛盾,所以假设不成立,即AC 、BD 一定是异面直线。
高三数学专题复习 专题五 解析几何真题体验 理

教学资料范本高三数学专题复习专题五解析几何真题体验理编辑:__________________时间:__________________专题五解析几何真题体验·引领卷一、选择题1.(20xx·广东高考)平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( )A.2x -y +5=0或2x -y -5=0 B.2x +y +5=0或2x +y -5=0 C.2x -y +5=0或2x -y -5=0 D.2x +y +5=0或2x +y -5=02.(20xx·全国卷Ⅰ)已知M (x 0,y 0)是双曲线C :x22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( ) A.⎝ ⎛⎭⎪⎫-33,33 B.⎝ ⎛⎭⎪⎫-36,36 C.⎝ ⎛⎭⎪⎫-223,223 D.⎝⎛⎭⎪⎫-233,233 3.(20xx·全国卷Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则|MN |=( ) A.26 B.8 C.46D.104.(20xx·全国卷Ⅱ)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A.5 B.2 C.3D.25.(20xx·浙江高考)如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF|-1|AF|-1B.|BF|2-1|AF|2-1C.|BF|+1|AF|+1D.|BF|2+1|AF|2+16.(20xx·天津高考)已知双曲线x2a2-y2b2=1(a >0,b >0)的一条渐近线过点(2,3),且双曲线的一个焦点在抛物线y 2=47x 的准线上,则双曲线的方程为( ) A.x221-y228=1 B.x228-y221=1 C.x23-y24=1 D.x24-y23=1 二、填空题7.(20xx·全国卷Ⅰ)一个圆经过椭圆x216+y24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.8.(20xx·湖南高考)设F 是双曲线C :x2a2-y2b2=1的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为________.9.(20xx·江苏高考)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________. 三、解答题10.(20xx·全国卷Ⅱ)已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝ ⎛⎭⎪⎫m 3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.11.(20xx·浙江高考)已知椭圆x2 2+y2=1上两个不同的点A,B关于直线y=mx+12对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).12.(20xx·天津高考)已知椭圆x2a2+y2b2=1(a>b>0)的左焦点为F(-c,0),离心率为33,点M在椭圆上且位于第一象限,直线FM被圆x2+y2=b24截得的线段的长为c,|FM|=433.(1)求直线FM的斜率;(2)求椭圆的方程;(3)设动点P在椭圆上,若直线FP的斜率大于2,求直线OP(O为原点)的斜率的取值范围.专题五解析几何真题体验·引领卷1.D [设所求的切线方程为2x +y +c =0(c ≠1),依题意,得|0+0+c|22+12=5,则c =±5.∴所求切线的方程为2x +y +5=0或2x +y -5=0.] 2.A[由题设,a 2=2,b 2=1,则c 2=3,不妨设F 1(-3,0),F 2(3,0),则MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0),所以MF 1→·MF 2→=x 20-3+y 20=3y 20-1<0, 解之得-33<y 0<33.]3.C [易知AB →=(3,-1),BC →=(-3,-9). 则AB →·BC →=3×(-3)+(-1)×(-9)=0,所以AB →⊥BC →,故过三点A ,B ,C 的圆以AC 为直径,其方程为(x -1)2+(y +2)2=25. 令x =0,得(y +2)2=24,解之得y 1=-2-26,y 2=-2+26. 因此|MN |=|y 1-y 2|=46.]4.D [如图,设双曲线E 的方程为x2a2-y2b2=1(a >0,b >0),则|AB |=2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0).∵△ABM 为等腰三角形,且∠ABM =120°, ∴|BM |=|AB |=2a ,∠MBN =60°.在Rt△BMN 中,y 1=|MN |=2a sin 60°=3a ,x 1=|OB |+|BN |=a +2a cos 60°=2a .将点M (x 1,y 1)的坐标代入x2a2-y2b2=1,可得a 2=b 2, 所以双曲线E 的离心率e =c a=a2+b2a2=2.] 5.A [由几何图形知,S△BCF S△ACF =|BC||AC|=xBxA. 由抛物线定义,|BF |=x B +1,|AF |=x A +1, ∴x B =|BF |-1,x A =|AF |-1. 因此S△BCF S△ACF =|BF|-1|AF|-1.] 6.D [双曲线x2a2-y2b2=1的渐近线方程为y =±bax ,又渐近线过点(2,3), 所以2ba=3,即2b =3a ,①又抛物线y 2=47x 的准线方程为x =-7, 由已知,得-a2+b2=-7,即a 2+b 2=7,② 联立①②解得a 2=4,b 2=3,所求双曲线的方程为x24-y23=1.] 7.⎝ ⎛⎭⎪⎫x-322+y 2=254[由题意知,圆过椭圆的顶点(4,0),(0,2),(0,-2)三点.设圆心为(a ,0),其中a >0.由4-a =4+a2,解得a =32,则半径r =52.所以该圆的标准方程为⎝ ⎛⎭⎪⎫x-322+y 2=254.]8.5 [不妨设F (-c ,0),虚轴的一个端点为B (0,b ). 依题意,点B 恰为线段PF 的中点,则P (c ,2b ),将P (c ,2b )代入双曲线方程,得⎝ ⎛⎭⎪⎫c a 2=5,因此e =5.]9.22[双曲线x 2-y 2=1的渐近线为x ±y =0.又直线x -y +1=0与渐近线x -y =0平行,所以两平行线间的距离d =|1-0|12+(-1)2=22,由点P 到直线x -y +1=0的距离大于c 恒成立. 所以c ≤22,故c 的最大值为22.] 10.(1)证明设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx +b 2-m 2=0, 故x M =x1+x22=-kb k2+9,y M =kx M +b =9bk2+9. 于是直线OM 的斜率k OM =yM xM =-9k,即k OM ·k =-9. 所以直线OM 的斜率与l 的斜率的乘积为定值. (2)解 四边形OAPB 能为平行四边形.因为直线l 过点⎝ ⎛⎭⎪⎫m 3,m ,所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3.由(1)得OM 的方程为y =-9kx . 设点P 的横坐标为x P ,由⎩⎨⎧y=-9k x,9x2+y2=m2得x 2P =k2m29k2+81,即x P=±km 3k2+9.将点⎝ ⎛⎭⎪⎫m 3,m 的坐标代入l 的方程得b =m(3-k)3,因此x M =k(k-3)m3(k2+9). 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M . 于是±km 3k2+9=2×k(k-3)m3(k2+9),解得k 1=4-7,k 2=4+7.因为k i >0,k i ≠3,i =1,2,所以当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.11.解 (1)由题意知m ≠0,可设直线AB 的方程为y =-1m x +b .由⎩⎪⎨⎪⎧x22+y2=1,y=-1m x+b,消去y ,得⎝ ⎛⎭⎪⎫12+1m2x 2-2bmx +b 2-1=0. 因为直线y =-1mx +b 与椭圆x22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0,① 将AB 中点M ⎝⎛⎭⎪⎫2mb m2+2,m2b m2+2代入直线方程y =mx +12解得b =-m2+22m2②由①②得m <-63或m >63. (2)令t =1m ∈⎝⎛⎭⎪⎫-62,0∪⎝ ⎛⎭⎪⎫0,62,则 |AB |=t2+1·-2t4+2t2+32t2+12.且O 到直线AB 的距离为d =t2+12t2+1.设△AOB 的面积为S (t ),所以S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t2-122+2≤22.当且仅当t 2=12时,等号成立. 故△AOB 面积的最大值为22. 12.解 (1)由于椭圆的离心率e =33,且a 2=b 2+c 2,∴a 2=3c 2,且b 2=2c 2,设直线FM 的斜率为k (k >0),且焦点F (-c ,0).则直线FM 的方程为y =k (x +c ).由已知,有⎝⎛⎭⎪⎫|kc|k2+12+⎝ ⎛⎭⎪⎫c 22=⎝ ⎛⎭⎪⎫b 22,解得k =33. (2)由(1)得椭圆方程为x23c2+y22c2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0, 解之得x =-53c 或x =c .因为点M 在第一象限,则点M 的坐标为⎝ ⎛⎭⎪⎫c,23c 3. 由|FM |=(c+c)2+⎝ ⎛⎭⎪⎫233c-02=433. 解得c =1,所以椭圆的方程为x23+y22=1.(3)设点P 的坐标为(x ,y ),直线FP 的斜率为t , 得t =yx+1,即y =t (x +1)(x ≠-1),与椭圆方程联立. ⎩⎨⎧y=t(x+1),x23+y22=1,消去y ,整理得2x 2+3t 2(x +1)2=6, 又由已知,得t =6-2x23(x+1)2>2,解得-32<x <-1,或-1<x <0.设直线OP 的斜率为m ,得m =y x,即y =mx (x ≠0),与椭圆方程联立,整理得m 2=2x2-23. ①当x ∈⎝ ⎛⎭⎪⎫-32,-1时,有y =t (x +1)<0. 因此m >0,于是m =2x2-23,得m ∈⎝ ⎛⎭⎪⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0.因此m <0,于是m =-2x2-23,得m ∈⎝⎛⎭⎪⎫-∞,-233. 综上,直线OP 的斜率的取值范围是⎝ ⎛⎭⎪⎫-∞,-233∪⎝ ⎛⎭⎪⎫23,233.。
高三数学解析几何专题(含解析)

高三数学解析几何专题(含解析)1.【理科】已知动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,且∠APB=2θ,且d1d2cos2θ=1.Ⅰ)求动点P的轨迹C的方程;Ⅱ)过点B作直线l交轨迹C于M,N两点,交直线x=4于点E,求|EM||EN|的最小值。
2.已知椭圆C:(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的离心率为2,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=7/2,PF·PF3/12=4.其中O为坐标原点。
I)求椭圆C的方程;Ⅱ)如图,过点S(0,1/3),且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。
3.已知两定点F1(-2,0)、F2(2,0),满足条件PF2-PF1=2的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A、B两点。
Ⅰ)求k的取值范围;Ⅱ)如果AB=63,且曲线E上存在点C,使OA+OB=mOC,求m的值和△ABC的面积S。
4.已知抛物线W:y=ax^2经过点A(2,1),过A作倾斜角互补的两条不同的直线L1、L2.1)求抛物线W的方程及其准线方程;2)当直线L1与抛物线W相切时,求直线L2与抛物线W所围成封闭区域的面积;3)设直线L1、L2分别交抛物线W于B、C两点(均不与A重合),若以BC为直径的圆与抛物线的准线相切,求直线BC的方程。
5.动点M(x,y)到定点F(-1,0)的距离与到y轴的距离之差为1.I)求动点M的轨迹C的方程;II)过点Q(-3,0)的直线l与曲线C交于A、B两点,问直线x=3上是否存在点P,使得△PAB是等边三角形?若存在,求出所有的点P;若不存在,请说明理由。
6.椭圆M的中心在坐标原点D,左、右焦点F1、F2在x轴上,抛物线N的顶点也在原点D,焦点为F2,椭圆M与抛物线N的一个交点为A(3,26)。
【配套K12】高三数学(理)二轮专题复习文档:考前冲刺三第五类解析几何问题重在“设”——设点、设线

第五类 解析几何问题重在“设”——设点、设线解析几何试题知识点多、运算量大、能力要求高,综合性强,在高考试题中大都是以压轴题的面貌出现,是考生“未考先怕”的题型,不是怕解题无思路,而是怕解题过程中繁杂的运算.因此,在遵循“设——列——解”程序化解题的基础上,应突出解析几何“设”的重要性,以克服平时重思路方法、轻运算技巧的顽疾,突破如何避繁就简这一瓶颈.【例5】 (2017·全国Ⅰ卷)设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.解 (1)设A (x 1,y 1),B (x 2,y 2),则x 1≠x 2,y 1=x 214,y 2=x 224,x 1+x 2=4.(设点)于是直线AB 的斜率k =y 1-y 2x 1-x 2=x 1+x 24=1. (2)由y =x 24,得y ′=x 2.设M (x 3,y 3),由题设知x 32=1,解得x 3=2,于是M (2, 1).设直线AB 的方程为y =x +m ,(设线)故线段AB 的中点为N (2,2+m ),|MN |=|m +1|.将y =x +m 代入y =x 24得x 2-4x -4m =0.当Δ=16(m +1)>0,即m >-1时,x 1,2=2±2m +1.从而|AB |=2|x 1-x 2|=42(m +1).由题设知|AB |=2|MN |,即42(m +1)=2(m +1),解得m =7.所以直线AB 的方程为x -y +7=0.探究提高 1.(1)设点:设出A ,B 两点坐标,并得出x 1≠x 2,x 1+x 2=4.(2)设线:由(1)知直线斜率,再设直线方程为y =x +m ,利用条件可求出m 的值.2.破解策略:解析几何的试题常要根据题目特征,恰当地设点、设线,以简化运算.常见的设点方法有减元设点、参数设点、直接设点等,常见的设线方法有圆方程的标准式与一般式、直线方程有y =kx +b 、x =my +n 及两点式、点斜式等形式、还有曲线系方程、参数方程等.【训练5】 (2018·昆明教学质量检测)在直角坐标系xOy 中,已知定圆M :(x +1)2+y 2=36,动圆N 过点F (1,0)且与圆M 相切,记动圆圆心N 的轨迹为曲线C .(1)求曲线C 的方程;(2)设A ,P 是曲线C 上两点,点A 关于x 轴的对称点为B (异于点P ),若直线AP ,BP 分别交x 轴于点S ,T ,证明:|OS |·|OT |为定值.(1)解 因为点F (1,0)在圆M :(x +1)2+y 2=36内,所以圆N 内切于圆M ,则|NM |+|NF |=6>|FM |,由椭圆定义知,圆心N 的轨迹为椭圆,且2a =6,c =1,则a 2=9,b 2=8,所以动圆圆心N 的轨迹方程为x 29+y 28=1.(2)证明 设P (x 0,y 0),A (x 1,y 1),S (x S ,0),T (x T ,0),则B (x 1,-y 1),由题意知x 0≠±x 1,则k AP =y 1-y 0x 1-x 0,直线AP 的方程为y -y 1=k AP (x -x 1), 令y =0,得x S =x 0y 1-x 1y 0y 1-y 0,同理,x T =x 0(-y 1)-x 1y 0(-y 1)-y 0=x 0y 1+x 1y 0y 1+y 0, |OS |·|OT |=|x S x T |=⎪⎪⎪⎪⎪⎪x 0y 1-x 1y 0y 1-y 0·x 0y 1+x 1y 0y 1+y 0 =⎪⎪⎪⎪⎪⎪x 20y 21-x 21y 20y 21-y 20, 又P (x 0,y 0)和A (x 1,y 1)在椭圆x 29+y 28=1上,故y 20=8⎝ ⎛⎭⎪⎫1-x 209,y 21=8⎝ ⎛⎭⎪⎫1-x 219, 则y 21-y 20=89(x 20-x 21),x 20y 21-x 21y 20=8x 20⎝ ⎛⎭⎪⎫1-x 219-8x 21⎝ ⎛⎭⎪⎫1-x 209=8(x 20-x 21), 所以|OS |·|OT |=⎪⎪⎪⎪⎪⎪x 20y 21-x 21y 20y 21-y 20=⎪⎪⎪⎪⎪⎪⎪⎪8(x 20-x 21)89(x 20-x 21)=9(定值).。
【配套K12】[学习](全国通用版)2019高考数学二轮复习 专题五 解析几何 第3讲 圆锥曲线的综
2019高考数学二轮复习 专题五 解析几何 第3讲 圆锥曲线的综](https://img.taocdn.com/s3/m/e0eb98007375a417876f8f0f.png)
第3讲 圆锥曲线的综合问题[考情考向分析] 1.圆锥曲线的综合问题一般以直线和圆锥曲线的位置关系为载体,以参数处理为核心,考查范围、最值问题,定点、定值问题,探索性问题.2.试题解答往往要综合应用函数与方程、数形结合、分类讨论等多种思想方法,对计算能力也有较高要求,难度较大.热点一 范围、最值问题圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.例1 已知N 为圆C 1:(x +2)2+y 2=24上一动点,圆心C 1关于y 轴的对称点为C 2,点M ,P 分别是线段C 1N ,C 2N 上的点,且MP →·C 2N →=0,C 2N →=2C 2P →. (1)求点M 的轨迹方程;(2)直线l :y =kx +m 与点M 的轨迹Γ只有一个公共点P ,且点P 在第二象限,过坐标原点O 且与l 垂直的直线l ′与圆x 2+y 2=8相交于A ,B 两点,求△PAB 面积的取值范围. 解 (1)连接MC 2,因为C 2N →=2C 2P →, 所以P 为C 2N 的中点, 因为MP →·C 2N →=0, 所以MP →⊥C 2N →,所以点M 在C 2N 的垂直平分线上, 所以|MN |=|MC 2|,因为|MN |+|MC 1|=|MC 2|+|MC 1|=26>4, 所以点M 在以C 1,C 2为焦点的椭圆上, 因为a =6,c =2,所以b 2=2, 所以点M 的轨迹方程为x 26+y 22=1.(2)由⎩⎪⎨⎪⎧y =kx +m ,x 26+y22=1,得(3k 2+1)x 2+6kmx +3m 2-6=0,因为直线l :y =kx +m 与椭圆Γ相切于点P , 所以Δ=(6km )2-4(3k 2+1) (3m 2-6) =12(6k 2+2-m 2)=0,即m 2=6k 2+2, 解得x =-3km 3k +1,y =m3k +1,即点P 的坐标为⎝⎛⎭⎪⎫-3km 3k 2+1,m 3k 2+1,因为点P 在第二象限,所以k >0,m >0, 所以m =6k 2+2, 所以点P 的坐标为⎝⎛⎭⎪⎫-32k 3k 2+1,23k 2+1, 设直线l ′与l 垂直交于点Q ,则|PQ |是点P 到直线l ′的距离, 且直线l ′的方程为y =-1kx ,所以|PQ |=⎪⎪⎪⎪⎪⎪1k ×-32k3k 2+1+23k 2+11k 2+1=22k3k 4+4k 2+1=223k 2+1k2+4≤224+23=223+1=6-2,当且仅当3k 2=1k 2,即k 2=33时,|PQ |有最大值6-2,所以S △PAB =12×42×|PQ |≤43-4,即△PAB 面积的取值范围为(]0,43-4. 思维升华 解决范围问题的常用方法(1)数形结合法:利用待求量的几何意义,确定出极端位置后,利用数形结合法求解. (2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解. (3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.跟踪演练1 (2018·衡水金卷信息卷)已知椭圆C :y 2a 2+x 2b2=1(a >b >0)的一条切线方程为y =2x +22,且离心率为32. (1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 交于A ,B 两个不同的点,与y 轴交于点M ,且AM →=3MB →,求实数m 的取值范围. 解 (1)由题意知,离心率e =32=c a, ∴c =32a ,b =12a ,∴y 2a 2+4x2a2=1,将y =2x +22代入,得8x 2+82x +8-a 2=0, 由Δ=128-32(8-a 2)=0,得a 2=4, 故椭圆C 的标准方程为x 2+y 24=1.(2)根据已知,得M (0,m ), 设A (x 1,kx 1+m ),B (x 2,kx 2+m ), 由⎩⎪⎨⎪⎧y =kx +m ,4x 2+y 2=4,得(k 2+4)x 2+2mkx +m 2-4=0,且Δ=4m 2k 2-4(k 2+4)(m 2-4)>0, 即k 2-m 2+4>0,且x 1+x 2=-2km k 2+4,x 1x 2=m 2-4k 2+4,由AM →=3MB →,得-x 1=3x 2,即x 1=-3x 2, ∴3(x 1+x 2)2+4x 1x 2=0, ∴12k 2m 2(k 2+4)2+4(m 2-4)k 2+4=0, 即m 2k 2+m 2-k 2-4=0,当m 2=1时,m 2k 2+m 2-k 2-4=0不成立, ∴k 2=4-m 2m 2-1,∵k 2-m 2+4>0,∴4-m 2m 2-1-m 2+4>0,即()4-m 2m 2m 2-1>0, ∴1<m 2<4,解得-2<m <-1或1<m <2,综上所述,实数m 的取值范围为(-2,-1)∪(1,2). 热点二 定点、定值问题1.由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).2.解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等与题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.例2 (2018·北京)已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.(1)解 因为抛物线y 2=2px 过点(1,2),所以2p =4,即p =2. 故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0),由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1,得k 2x 2+(2k -4)x +1=0.依题意知Δ=(2k -4)2-4×k 2×1>0, 解得k <0或0<k <1.又PA ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 的斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)证明 设A (x 1,y 1),B (x 2,y 2), 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k2.直线PA 的方程为y -2=y 1-2x 1-1(x -1), 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2.由QM →=λQO →,QN →=μQO →,得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N=x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k 2=2. 所以1λ+1μ为定值.思维升华 (1)动直线过定点问题的两大类型及解法①动直线l 过定点问题,解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m,0).②动曲线C 过定点问题,解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点. (2)求解定值问题的两大途径①由特例得出一个值(此值一般就是定值)→证明定值:将问题转化为证明待证式与参数(某些变量)无关②先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值.跟踪演练2 (2018·荆州质检)已知倾斜角为π4的直线经过抛物线Γ:y 2=2px (p >0)的焦点F ,与抛物线Γ相交于A ,B 两点,且|AB |=8.(1)求抛物线Γ的方程;(2)过点P (12,8)的两条直线l 1,l 2分别交抛物线Γ于点C ,D 和E ,F ,线段CD 和EF 的中点分别为M ,N .如果直线l 1与l 2的倾斜角互余,求证:直线MN 经过一定点. (1)解 由题意可设直线AB 的方程为y =x -p2,由⎩⎪⎨⎪⎧y =x -p 2,y 2=2px ,消去y 整理得x 2-3px +p 24=0,Δ=9p 2-4×p 24=8p 2>0,令A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=3p ,由抛物线的定义得|AB |=x 1+x 2+p =4p =8, ∴p =2.∴抛物线的方程为y 2=4x .(2)证明 设直线l 1,l 2的倾斜角分别为α,β, 由题意知,α,β≠π2.直线l 1的斜率为k ,则k =tan α. ∵直线l 1与l 2的倾斜角互余,∴tan β=tan ⎝ ⎛⎭⎪⎫π2-α=sin ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2-α =cos αsin α=1sin αcos α=1tan α, ∴直线l 2的斜率为1k.∴直线CD 的方程为y -8=k (x -12), 即y =k (x -12)+8.由⎩⎪⎨⎪⎧y =k (x -12)+8,y 2=4x ,消去x 整理得ky 2-4y +32-48k =0, 设C (x C ,y C ),D (x D ,y D ), ∴y C +y D =4k,∴x C +x D =24+4k 2-16k,∴点M 的坐标为⎝⎛⎭⎪⎫12+2k2-8k ,2k .以1k代替点M 坐标中的k ,可得点N 的坐标为(12+2k 2-8k,2k ), ∴k MN =2⎝ ⎛⎭⎪⎫1k -k 2⎝ ⎛⎭⎪⎫1k 2-k 2-8⎝ ⎛⎭⎪⎫1k -k =11k +k -4.∴直线MN 的方程为y -2k =11k+k -4[x -(12+2k 2-8k )], 即⎝ ⎛⎭⎪⎫1k+k -4y =x -10, 显然当x =10时,y =0, 故直线MN 经过定点(10,0). 热点三 探索性问题1.解析几何中的探索性问题,从类型上看,主要是存在类型的相关题型,解决这类问题通常采用“肯定顺推法”,将不确定性问题明确化.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在. 2.反证法与验证法也是求解存在性问题常用的方法.例3 (2018·河南名校联考)已知椭圆C :y 2a 2+x 2b2=1(a >b >0)的上、下焦点分别为F 1,F 2,上焦点F 1到直线4x +3y +12=0的距离为3,椭圆C 的离心率e =12.(1)求椭圆C 的方程;(2)椭圆E :y 2a 2+3x 216b 2=1,设过点M (0,1),斜率存在且不为0的直线交椭圆E 于A ,B 两点,试问y 轴上是否存在点P ,使得PM →=λ⎝ ⎛⎭⎪⎪⎫PA →|PA →|+PB →|PB →|?若存在,求出点P 的坐标;若不存在,说明理由.解 (1)由已知椭圆C 的方程为y 2a 2+x 2b2=1(a >b >0),设椭圆的焦点F 1(0,c ),由F 1到直线4x +3y +12=0的距离为3, 得|3c +12|5=3, 又椭圆C 的离心率e =12,所以c a =12,又a 2=b 2+c 2,求得a 2=4,b 2=3. 椭圆C 的方程为y 24+x 23=1. (2)存在.理由如下:由(1)得椭圆E :x 216+y 24=1,设直线AB 的方程为y =kx +1(k ≠0),联立⎩⎪⎨⎪⎧y =kx +1,x 216+y24=1,消去y 并整理得(4k 2+1)x 2+8kx -12=0, Δ=(8k )2+4(4k 2+1)×12=256k 2+48>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k 4k 2+1,x 1x 2=-124k 2+1.假设存在点P (0,t )满足条件, 由于PM →=λ⎝ ⎛⎭⎪⎪⎫PA →|PA →|+PB →|PB →|, 所以PM 平分∠APB .所以直线PA 与直线PB 的倾斜角互补, 所以k PA +k PB =0. 即y 1-t x 1+y 2-tx 2=0, 即x 2(y 1-t )+x 1(y 2-t )=0.(*) 将y 1=kx 1+1,y 2=kx 2+1代入(*)式, 整理得2kx 1x 2+(1-t )(x 1+x 2)=0, 所以-2k ·124k 2+1+(1-t )×(-8k )4k 2+1=0, 整理得3k +k (1-t )=0,即k (4-t )=0, 因为k ≠0,所以t =4.所以存在点P (0,4),使得PM →=λ⎝ ⎛⎭⎪⎪⎫PA →|PA →|+PB →|PB →|.思维升华 解决探索性问题的注意事项存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.跟踪演练3 (2018·山东、湖北部分重点中学模拟)已知长轴长为4的椭圆x 2a 2+y 2b2=1(a >b >0)过点P ⎝ ⎛⎭⎪⎫1,32,点F 是椭圆的右焦点. (1)求椭圆方程;(2)在x 轴上是否存在定点D ,使得过D 的直线l 交椭圆于A ,B 两点.设点E 为点B 关于x 轴的对称点,且A ,F ,E 三点共线?若存在,求D 点坐标;若不存在,说明理由. 解 (1)∵ 2a =4,∴ a =2,将点P ⎝ ⎛⎭⎪⎫1,32代入x 2a 2+y 2b 2=1,得b 2=3.∴椭圆方程为x 24+y 23=1.(2)存在定点D 满足条件.设D (t,0),直线l 方程为x =my +t (m ≠0),联立⎩⎪⎨⎪⎧x =my +t ,x 24+y23=1,消去x ,得(3m 2+4)y 2+6mt ·y +3t 2-12=0, 设A (x 1,y 1),B (x 2,y 2),则E (x 2,-y 2), ⎩⎪⎨⎪⎧y 1+y 2=-6mt 3m 2+4,y 1y 2=3t 2-123m 2+4且Δ>0.由A ,F ,E 三点共线,可得(x 2-1)y 1+(x 1-1)y 2=0, 即2my 1y 2+(t -1)(y 1+y 2)=0, ∴ 2m ·3t 2-123m 2+4+(t -1)·-6mt 3m 2+4=0,解得t =4, 此时由Δ>0得m 2>4.∴存在定点D (4,0)满足条件,且m 满足m 2>4.真题体验1.(2017·全国Ⅰ改编)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为________.答案 16解析 因为F 为y 2=4x 的焦点,所以F (1,0).由题意知,直线l 1,l 2的斜率均存在且不为0,设l 1的斜率为k ,则l 2的斜率为-1k,故直线l 1,l 2的方程分别为y =k (x -1),y =-1k(x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0,Δ=16k 2+16>0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2k 2+4k2,x 1x 2=1,所以|AB |=1+k 2·|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫2k 2+4k 22-4=4(1+k 2)k 2. 同理可得|DE |=4(1+k 2).所以|AB |+|DE |=4(1+k 2)k2+4(1+k 2) =4⎝ ⎛⎭⎪⎫1k 2+1+1+k 2=8+4⎝⎛⎭⎪⎫k 2+1k 2≥8+4×2=16,当且仅当k 2=1k2,即k =±1时,取得等号.2.(2017·山东)在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,焦距为2.(1)求椭圆E 的方程; (2)如图,动直线l :y =k 1x -32交椭圆E 于A ,B 两点,C 是椭圆E 上一点,直线OC 的斜率为k 2,且k 1k 2=24.M 是线段OC 延长线上一点,且|MC |∶|AB |=2∶3,⊙M 的半径为|MC |,OS ,OT 是⊙M 的两条切线,切点分别为S ,T .求∠SOT 的最大值,并求取得最大值时直线l的斜率.解 (1)由题意知,e =c a =22,2c =2,所以c =1, 所以a =2,b =1,所以椭圆E 的方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧x 22+y 2=1,y =k 1x -32,消去y ,得(4k 21+2)x 2-43k 1x -1=0. 由题意知,Δ>0,且x 1+x 2=23k 12k 21+1,x 1x 2=-12(2k 21+1), 所以|AB |=1+k 21|x 1-x 2|=2·1+k 21·1+8k 211+2k 21. 由题意可知,圆M 的半径r 为 r =23|AB |=223·1+k 21 1+8k 212k 21+1. 由题设知k 1k 2=24,所以k 2=24k 1, 因此直线OC 的方程为y =24k 1x .联立方程⎩⎪⎨⎪⎧x 22+y 2=1,y =24k 1x ,得x 2=8k 211+4k 21,y 2=11+4k 21,因此|OC |=x 2+y 2=1+8k 211+4k 21. 由题意可知,sin ∠SOT 2=r r +|OC |=11+|OC |r.而|OC |r =1+8k 211+4k 21223·1+k 21 1+8k 211+2k 21=324·1+2k 211+4k 21 1+k 21, 令t =1+2k 21,则t >1,1t∈(0,1),因此|OC |r =32·t 2t 2+t -1=32·12+1t -1t 2=32·1-⎝ ⎛⎭⎪⎫1t -122+94≥1,当且仅当1t =12,即t =2时等号成立,此时k 1=±22,所以sin ∠SOT 2≤12,因此∠SOT 2≤π6,所以∠SOT 的最大值为π3.综上所述,∠SOT 的最大值为π3,取得最大值时直线l 的斜率为k 1=±22.押题预测已知椭圆C 1:x 2a 2+y 23=1(a >0)与抛物线C 2:y 2=2ax 相交于A ,B 两点,且两曲线的焦点F 重合.(1)求C 1,C 2的方程;(2)若过焦点F 的直线l 与椭圆分别交于M ,Q 两点,与抛物线分别交于P ,N 两点,是否存在斜率为k (k ≠0)的直线l ,使得|PN ||MQ |=2?若存在,求出k 的值;若不存在,请说明理由.押题依据 本题将椭圆和抛物线联合起来设置命题,体现了对直线和圆锥曲线位置关系的综合考查.关注知识交汇,突出综合应用是高考的特色. 解 (1)因为C 1,C 2的焦点重合, 所以a 2-3=a2,所以a 2=4. 又a >0,所以a =2.于是椭圆C 1的方程为x 24+y 23=1,抛物线C 2的方程为y 2=4x . (2)假设存在直线l 使得|PN ||MQ |=2,当l ⊥x 轴时,|MQ |=3,|PN |=4,不符合题意, ∴直线l 的斜率存在,∴可设直线l 的方程为y =k (x -1)(k ≠0),P (x 1,y 1),Q (x 2,y 2),M (x 3,y 3),N (x 4,y 4).由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),可得k 2x 2-(2k 2+4)x +k 2=0,则x 1+x 4=2k 2+4k2,x 1x 4=1,且Δ=16k 2+16>0,所以|PN |=1+k 2·(x 1+x 4)2-4x 1x 4 =4(1+k 2)k2. 由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1),可得(3+4k 2)x 2-8k 2x +4k 2-12=0,则x 2+x 3=8k 23+4k 2,x 2x 3=4k 2-123+4k 2,且Δ=144k 2+144>0,所以|MQ |=1+k 2·(x 2+x 3)2-4x 2x 3=12(1+k 2)3+4k2.若|PN ||MQ |=2, 则4(1+k 2)k 2=2×12(1+k 2)3+4k 2,解得k =±62. 故存在斜率为k =±62的直线l ,使得|PN ||MQ |=2.A 组 专题通关1.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =33,左、右焦点分别为F 1,F 2,且F 2与抛物线y2=4x 的焦点重合. (1)求椭圆的标准方程;(2)若过F 1的直线交椭圆于B ,D 两点,过F 2的直线交椭圆于A ,C 两点,且AC ⊥BD ,求|AC |+|BD |的最小值.解 (1)抛物线y 2=4x 的焦点坐标为(1,0),所以c =1,又因为e =c a =1a =33,所以a =3,所以b 2=2,所以椭圆的标准方程为x 23+y 22=1.(2)①当直线BD 的斜率k 存在且k ≠0时, 直线BD 的方程为y =k (x +1), 代入椭圆方程x 23+y 22=1,并化简得(3k 2+2)x 2+6k 2x +3k 2-6=0.Δ=36k 4-4(3k 2+2)(3k 2-6)=48(k 2+1)>0恒成立. 设B (x 1,y 1),D (x 2,y 2),则x 1+x 2=-6k 23k 2+2,x 1x 2=3k 2-63k 2+2,|BD |=1+k 2·|x 1-x 2| =()1+k 2·[](x 1+x 2)2-4x 1x 2=43()k 2+13k 2+2. 由题意知AC 的斜率为-1k,所以|AC |=43⎝ ⎛⎭⎪⎫1k 2+13×1k2+2=43()k 2+12k 2+3. |AC |+|BD |=43()k 2+1⎝⎛⎭⎪⎫13k 2+2+12k 2+3=203()k 2+12()3k 2+2()2k 2+3≥203()k 2+12⎣⎢⎡⎦⎥⎤()3k 2+2+()2k 2+322=203()k 2+1225(k 2+1)24=1635. 当且仅当3k 2+2=2k 2+3,即k =±1时,上式取等号, 故|AC |+|BD |的最小值为1635.②当直线BD 的斜率不存在或等于零时, 可得|AC |+|BD |=1033>1635.综上,|AC |+|BD |的最小值为1635.2.已知椭圆 C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,点P 在椭圆C 上,且△PF 1F 2的面积的最大值为2 2. (1)求椭圆C 的方程;(2)已知直线l :y =kx +2(k ≠0)与椭圆C 交于不同的两点M ,N ,若在x 轴上存在点G ,使得|GM |=|GN |,求点G 的横坐标的取值范围.解 (1)由已知得⎩⎪⎨⎪⎧c a =13,12×2c ×b =22,c 2=a 2-b 2,解得a 2=9,b 2=8,c 2=1,∴椭圆C 的方程为x 29+y 28=1.(2)设M (x 1,y 1),N (x 2,y 2),MN 的中点为E (x 0,y 0),点G (m ,0),使得|GM |=|GN |, 则GE ⊥MN .由⎩⎪⎨⎪⎧y =kx +2,x 29+y28=1,得()8+9k 2x 2+36kx -36=0,由Δ>0,得k ∈R 且k ≠0. ∴x 1+x 2=-36k9k 2+8,∴x 0=-18k 9k 2+8,y 0=kx 0+2=169k 2+8. ∵GE ⊥MN ,∴k GE =-1k,即169k 2+8-0-18k 9k 2+8-m =-1k, ∴m =-2k 9k 2+8=-29k +8k.当k >0时,9k +8k≥29×8=12 2⎝ ⎛⎭⎪⎫当且仅当9k =8k ,即k =223时,取等号,∴-212≤m <0; 当k <0时,9k +8k≤-12 2⎝ ⎛⎭⎪⎫当且仅当9k =8k ,即k =-223时,取等号,∴0<m ≤212, ∴点G 的横坐标的取值范围为⎣⎢⎡⎭⎪⎫-212,0∪⎝ ⎛⎦⎥⎤0,212. 3.(2018·全国Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.(1)证明 设A (x 1,y 1),B (x 2,y 2), 则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k , 得x 1+x 24+y 1+y 23·k =0.由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.①由题设得0<m <32,故k <-12.(2)解 由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P ⎝ ⎛⎭⎪⎫1,-32,|FP →|=32, 于是|FA →|=(x 1-1)2+y 21=(x 1-1)2+3⎝ ⎛⎭⎪⎫1-x 214=2-x 12. 同理|FB →|=2-x 22.所以|FA →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|FA →|+|FB →|,即|FA →|,|FP →|,|FB →|成等差数列. 设该数列的公差为d ,则2|d |=||FB →|-|FA →|| =12|x 1-x 2|=12(x 1+x 2)2-4x 1x 2.② 将m =34代入①得k =-1,所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.4.(2018·辽宁省部分重点中学协作体模拟)已知M ⎝ ⎛⎭⎪⎫3,12是椭圆C :x 2a 2+y 2b 2=1(a >b >0)上的一点,F 1,F 2是该椭圆的左、右焦点,且|F 1F 2|=2 3. (1)求椭圆C 的方程;(2)设点A ,B 是椭圆C 上与坐标原点O 不共线的两点,直线OA ,OB ,AB 的斜率分别为k 1,k 2,k ,且k 1k 2=k 2.试探究|OA |2+|OB |2是否为定值?若是,求出定值;若不是,说明理由.解 (1)由题意知,F 1(-3,0),F 2(3,0), 根据椭圆定义可知|MF 1|+|MF 2|=2a , 所以2a = (3+3)2+⎝ ⎛⎭⎪⎫12-02+(3-3)2+⎝ ⎛⎭⎪⎫12-02=4,所以a 2=4,b 2=a 2-c 2=1, 所以椭圆C :x 24+y 2=1.(2)设直线AB :y =kx +m (km ≠0),A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,得(1+4k 2)x 2+8kmx +4m 2-4=0, Δ=(8km )2-16(m 2-1)(4k 2+1)>0, x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k 2,因为k 1k 2=k 2,所以kx 1+m x 1·kx 2+m x 2=k 2, 即km (x 1+x 2)+m 2=0(m ≠0),解得k 2=14.|OA |2+|OB |2=x 21+x 22+y 21+y 22 =54[(x 1+x 2)2-2x 1x 2]=5, 所以|OA |2+|OB |2=5.B 组 能力提高5.(2018·衡水模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的上顶点为点D ,右焦点为F 2(1,0),延长DF 2交椭圆C 于点E ,且满足|DF 2|=3|F 2E |. (1)求椭圆C 的标准方程;(2)过点F 2作与x 轴不重合的直线l 和椭圆C 交于A ,B 两点,设椭圆C 的左顶点为点H ,且直线HA ,HB 分别与直线x =3交于M ,N 两点,记直线F 2M ,F 2N 的斜率分别为k 1,k 2,则k 1与k 2之积是否为定值?若是,求出该定值;若不是,请说明理由.解 (1)椭圆C 的上顶点为D (0,b ),右焦点F 2(1,0),点E 的坐标为(x ,y ). ∵|DF 2|=3|F 2E |,可得DF 2→=3F 2E →, 又DF 2→=(1,-b ),F 2E →=(x -1,y ), ∴⎩⎪⎨⎪⎧x =43,y =-b3,代入x 2a 2+y 2b2=1,可得⎝ ⎛⎭⎪⎫432a 2+⎝ ⎛⎭⎪⎫-b 32b 2=1,又a 2-b 2=1,解得a 2=2,b 2=1, 即椭圆C 的标准方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),H ()-2,0,M ()3,y M ,N ()3,y N .由题意可设直线AB 的方程为x =my +1,联立⎩⎪⎨⎪⎧x =my +1,x 22+y 2=1,消去x ,得(m 2+2)y 2+2my -1=0, Δ=4m 2+4(m 2+2)>0恒成立. ∴⎩⎪⎨⎪⎧y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2.根据H ,A ,M 三点共线,可得y M 3+2=y 1x 1+2, ∴y M =y 1()3+2x 1+2.同理可得y N =y 2()3+2x 2+2,∴M ,N 的坐标分别为⎝ ⎛⎭⎪⎫3,y 1()3+2x 1+2,⎝ ⎛⎭⎪⎫3,y 2()3+2x 2+2, ∴k 1k 2=y M -03-1·y N -03-1=14y M y N =14·y 1()3+2x 1+2·y 2()3+2x 2+2=y 1y 2(3+2)24()my 1+1+2()my 2+1+2 =y 1y 2(3+2)24[]m 2y 1y 2+()1+2m ()y 1+y 2+()1+22 =-11-62m 2+24⎣⎢⎡⎦⎥⎤-m 2m 2+2+-2()1+2m 2m 2+2+3+22=-11-62m 2+24×6+42m 2+2=42-98. ∴k 1与k 2之积为定值,且该定值是42-98. 6.(2018·潍坊模拟)已知平面上动点P 到点F ()3,0的距离与到直线x =433的距离之比为32,记动点P 的轨迹为曲线E . (1)求曲线E 的方程;(2)设M (m ,n )是曲线E 上的动点,直线l 的方程为mx +ny =1.①设直线l 与圆x 2+y 2=1交于不同两点C ,D ,求|CD |的取值范围;②求与动直线l 恒相切的定椭圆E ′的方程,并探究:若M (m ,n )是曲线Γ:Ax 2+By 2=1(A ·B ≠0)上的动点,是否存在与直线l :mx +ny =1恒相切的定曲线Γ′?若存在,直接写出曲线Γ′的方程;若不存在,说明理由.解 (1)设P (x ,y ),由题意,得()x -32+y 2⎪⎪⎪⎪⎪⎪x -433=32. 整理,得x 24+y 2=1, ∴曲线E 的方程为x 24+y 2=1. (2)①圆心到直线l 的距离d =1m 2+n 2, ∵直线与圆有两个不同交点C ,D , ∴|CD |2=4⎝ ⎛⎭⎪⎫1-1m 2+n 2. 又∵m 24+n 2=1(m ≠0), ∴|CD |2=4⎝ ⎛⎭⎪⎫1-43m 2+4. ∵|m |≤2,∴0<m 2≤4,∴0<1-43m 2+4≤34. ∴|CD |2∈(0,3],|CD |∈(]0,3, 即|CD |的取值范围为(]0,3.②当m =0,n =1时,直线l 的方程为y =1;当m =2,n =0时,直线l 的方程为x =12. 根据椭圆对称性,猜想E ′的方程为4x 2+y 2=1.下面证明:直线mx +ny =1(n ≠0)与4x 2+y 2=1相切,其中m 24+n 2=1,即m 2+4n 2=4. 由⎩⎪⎨⎪⎧4x 2+y 2=1,y =1-mx n ,消去y 得 (m 2+4n 2)x 2-2mx +1-n 2=0, 即4x 2-2mx +1-n 2=0, ∴Δ=4m 2-16()1-n 2=4()m 2+4n 2-4=0恒成立,从而直线mx +ny =1与椭圆E ′:4x 2+y 2=1恒相切.若点M ()m ,n 是曲线Γ:Ax 2+By 2=1()A ·B ≠0上的动点,则直线l :mx +ny =1与定曲线Γ′:x 2A +y 2B=1()A ·B ≠0恒相切.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题五 解析几何真题体验·引领卷一、选择题1.(2015·广东高考)平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A .2x -y +5=0或2x -y -5=0 B .2x +y +5=0或2x +y -5=0 C .2x -y +5=0或2x -y -5=0 D .2x +y +5=0或2x +y -5=02.(2015·全国卷Ⅰ)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( ) A.⎝ ⎛⎭⎪⎫-33,33 B.⎝ ⎛⎭⎪⎫-36,36 C.⎝ ⎛⎭⎪⎫-223,223D.⎝ ⎛⎭⎪⎫-233,2333.(2015·全国卷Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则|MN |=( ) A .2 6 B .8 C .4 6D .104.(2015·全国卷Ⅱ)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A. 5 B .2 C. 3D. 25.(2015·浙江高考)如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+16.(2015·天津高考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线过点(2,3),且双曲线的一个焦点在抛物线y 2=47x 的准线上,则双曲线的方程为( ) A.x 221-y 228=1 B.x 228-y 221=1 C.x 23-y 24=1 D.x 24-y 23=1 二、填空题7.(2015·全国卷Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.8.(2015·湖南高考)设F 是双曲线C :x 2a 2-y 2b2=1的一个焦点,若C 上存在点P ,使线段PF的中点恰为其虚轴的一个端点,则C 的离心率为________.9.(2015·江苏高考)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________. 三、解答题10.(2015·全国卷Ⅱ)已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝ ⎛⎭⎪⎫m3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.11.(2015·浙江高考)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).12.(2015·天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c ,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433. (1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.专题五 解析几何 真题体验·引领卷1.D [设所求的切线方程为2x +y +c =0(c ≠1),依题意,得|0+0+c |22+12=5,则c =±5.∴所求切线的方程为2x +y +5=0或2x +y -5=0.]2.A [由题设,a 2=2,b 2=1,则c 2=3,不妨设F 1(-3,0),F 2(3,0),则MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0), 所以MF 1→·MF 2→=x 20-3+y 20=3y 20-1<0, 解之得-33<y 0<33.] 3.C [易知AB →=(3,-1),BC →=(-3,-9).则AB →·BC →=3×(-3)+(-1)×(-9)=0,所以AB →⊥BC →,故过三点A ,B ,C 的圆以AC 为直径,其方程为(x -1)2+(y +2)2=25.令x =0,得(y +2)2=24,解之得y 1=-2-26,y 2=-2+2 6. 因此|MN |=|y 1-y 2|=4 6.]4.D [如图,设双曲线E 的方程为x 2a 2-y 2b2=1(a >0,b >0),则|AB |=2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0).∵△ABM 为等腰三角形,且∠ABM =120°, ∴|BM |=|AB |=2a ,∠MBN =60°.在Rt △BMN 中,y 1=|MN |=2a sin 60°=3a ,x 1=|OB |+|BN |=a +2a cos 60°=2a .将点M (x 1,y 1)的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,所以双曲线E 的离心率e =c a =a 2+b 2a 2= 2.]5.A [由几何图形知,S △BCF S △ACF =|BC ||AC |=x Bx A.由抛物线定义,|BF |=x B +1,|AF |=x A +1, ∴x B =|BF |-1,x A =|AF |-1. 因此S △BCF S △ACF =|BF |-1|AF |-1.] 6.D [双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±bax ,又渐近线过点(2,3),所以2ba=3,即2b =3a ,①又抛物线y 2=47x 的准线方程为x =-7, 由已知,得-a 2+b 2=-7,即a 2+b 2=7,②联立①②解得a 2=4,b 2=3,所求双曲线的方程为x 24-y 23=1.]7.⎝ ⎛⎭⎪⎫x -322+y 2=254 [由题意知,圆过椭圆的顶点(4,0),(0,2),(0,-2)三点.设圆心为(a ,0),其中a >0.由4-a =4+a 2,解得a =32,则半径r =52.所以该圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.]8. 5 [不妨设F (-c ,0),虚轴的一个端点为B (0,b ). 依题意,点B 恰为线段PF 的中点,则P (c ,2b ),将P (c ,2b )代入双曲线方程,得⎝ ⎛⎭⎪⎫c a 2=5,因此e = 5.] 9.22[双曲线x 2-y 2=1的渐近线为x ±y =0. 又直线x -y +1=0与渐近线x -y =0平行, 所以两平行线间的距离d =|1-0|12+(-1)2=22, 由点P 到直线x -y +1=0的距离大于c 恒成立. 所以c ≤22,故c 的最大值为22.] 10.(1)证明 设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx +b 2-m 2=0, 故x M =x 1+x 22=-kb k 2+9,y M =kx M+b =9bk 2+9. 于是直线OM 的斜率k OM =y M x M=-9k,即k OM ·k =-9.所以直线OM 的斜率与l 的斜率的乘积为定值. (2)解 四边形OAPB 能为平行四边形.因为直线l 过点⎝ ⎛⎭⎪⎫m3,m ,所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3. 由(1)得OM 的方程为y =-9kx .设点P 的横坐标为x P ,由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m2得x 2P =k 2m 29k 2+81,即x P =±km 3k 2+9. 将点⎝ ⎛⎭⎪⎫m 3,m 的坐标代入l 的方程得b =m (3-k )3,因此x M =k (k -3)m 3(k 2+9). 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M .于是±km 3k 2+9=2×k (k -3)m 3(k 2+9),解得k 1=4-7,k 2=4+7. 因为k i >0,k i ≠3,i =1,2,所以当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.11.解 (1)由题意知m ≠0,可设直线AB 的方程为y =-1m x +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0,①将AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12解得b =-m 2+22m 2②由①②得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12.且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ), 所以S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22. 当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22. 12.解 (1)由于椭圆的离心率e =33,且a 2=b 2+c 2, ∴a 2=3c 2,且b 2=2c 2,设直线FM 的斜率为k (k >0),且焦点F (-c ,0). 则直线FM 的方程为y =k (x +c ).由已知,有⎝ ⎛⎭⎪⎫|kc |k 2+12+⎝ ⎛⎭⎪⎫c 22=⎝ ⎛⎭⎪⎫b 22,解得k =33.(2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解之得x =-53c 或x =c .因为点M 在第一象限,则点M 的坐标为⎝⎛⎭⎪⎫c ,23c 3.由|FM |=(c +c )2+⎝ ⎛⎭⎪⎫233c -02=433. 解得c =1,所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x ,y ),直线FP 的斜率为t , 得t =yx +1,即y =t (x +1)(x ≠-1),与椭圆方程联立. ⎩⎪⎨⎪⎧y =t (x +1),x 23+y22=1,消去y ,整理得2x 2+3t 2(x +1)2=6,又由已知,得t =6-2x23(x +1)2>2,解得-32<x <-1,或-1<x <0.设直线OP 的斜率为m ,得m =y x ,即y =mx (x ≠0),与椭圆方程联立,整理得m 2=2x 2-23.①当x ∈⎝ ⎛⎭⎪⎫-32,-1时,有y =t (x +1)<0.因此m >0,于是m =2x 2-23,得m ∈⎝ ⎛⎭⎪⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0. 因此m <0,于是m =-2x 2-23,得m ∈⎝ ⎛⎭⎪⎫-∞,-233. 综上,直线OP 的斜率的取值范围是⎝⎛⎭⎪⎫-∞,-233∪⎝ ⎛⎭⎪⎫23,233.。