高考数学大二轮复习精品(文理通用)练习:第1部分专题2函数与导数第2讲

合集下载

全国高考数学第二轮复习专题二函数与导数第讲导数及其应用理

全国高考数学第二轮复习专题二函数与导数第讲导数及其应用理
年全国高考数学第二轮复习-专题二-函数与导数第讲-导数及其应用-理
———————————————————————————————— 作者:
———————————————————————————————— 日期:
专题二 函数与导数第3讲 导数及其应用
真题试做
1.(2012·课标全国高考,理12)设点P在曲线y=ex上,点Q在曲线y=ln(2x)上,则|PQ|的最小值为( ).
(1)求a的值;
(2)求函数f(x)的极值.
6.(2012·山东高考,理22)已知函数f(x)= (k为常数,e=2.718 28…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(1)求k的值;
(2)求f(x)的单调区间;
(3)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数,证明:对任意x>0,g(x)<1+e-2.
(3)在(2)的条件下,是否存在实数b,使得函数g(x)=bx的图象与函数f(x)的图象恰有3个交点?若存在,请求出实数b的取值范围;若不存在,试说明理由.
规律方法利用导数研究函数极值的一般步骤:(1)确定函数的定义域;(2)求函数f(x)的导数f′(x);(3)①若求极值,则先求出方程f′(x)=0的根,再检验f′(x)在方程根左右边f′(x)的符号,求出极值.当根中有参数时要注意分类讨论根是否在定义域内.②若已知极值大小或存在情况,则转化为已知方程f′(x)=0根的大小或存在情况,从而求解.
(1)当a=2时,求函数f(x)的单调递增区间;
(2)若函数f(x)在(-1,1)上单调递增,求a的取值范围.
规律方法利用导数研究函数单调性的一般步骤:
(1)确定函数的定义域;

2020高考文科数学二轮专题辅导通用版课件:专题1 函数与导数2.1.高考小题 2

2020高考文科数学二轮专题辅导通用版课件:专题1 函数与导数2.1.高考小题 2

【解析】(1)选A.令m1=-26.7,m2=-1.45, 则m2-m1=-1.45-(-26.7)=25.25= , lg =10.1, =1010.1.
E1
E1
E2
E2
5 lg E1 2 E2

(2)依题意有a·e-b×8= a,
所以b= ,
1
所以y=a· .若容器中只有开始时的2八分之一, 则解有得at=·24=,所lan以. 2再经过的时间为24-8=16(min).
【变式训练】(1)函数f(x)= 则下列结论成立的是
(
的图) 象如图所示a,x+b
A.a>0,b>0,c<0 B.a<0,b>0,c>0
(x+c)2
C.a<0,b>0,c<0
D.a<0,b<0,c<0
(2)已知函数f(x)=ax+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b=________.
(2)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形 结合求解. (3)分离参数法:先将参数分离,转化成求函数的值域问题加以解决.
【变式训练】
(1)函数f(x)=ln x+x- ,则函数的零点所在区间

()
A. C.
B. D.(1,2)
1
2
(1,1 ) 42 ( 3,1) 4
考向三 函数的实际应用(保分题型考点) 【题组通关】 1.某棵果树前n年的总产量Sn与n之间的关系如图所示.从目前记录的结果看,前m年的 年平均产量最高,m的值为 ( )
A.5
B.7
C.9
D.11

2020版高考数学二轮复习教程第二编专题一函数与导数第2讲导数及其应用练习理

2020版高考数学二轮复习教程第二编专题一函数与导数第2讲导数及其应用练习理

第2讲导数及其应用「考情研析」 1.导数的几何意义和运算是导数应用的基础,是高考的一个热点. 2.利用导数解决函数的单调性与极值(最值)问题是高考的常见题型.核心知识回顾1.导数的几何意义(1)函数y=f(x)在错误!x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x0))处切线的斜率,即k=错误!f′(x0).(2)曲线y=f(x)在点(x0,f(x0))处的切线方程为错误!y-f(x0)=f′(x0)(x-x0).2.函数的单调性(1)在某个区间(a,b)内,如果错误!f′(x)>0(f′(x)〈0),那么函数y=f(x)在这个区间内错误!单调递增(单调递减).(2)利用导数求函数f(x)的单调区间的一般步骤:①确定函数错误!f(x)的定义域;②求□,04导数f′(x);③在函数f(x)的定义域内错误!解不等式f′(x)>0或f′(x)〈0;④根据③的结果确定函数f(x)的错误!单调区间.3.导数与极值函数f(x)在x0处的导数错误!f′(x0)=0且f′(x)在x0附近“错误!左正右负”⇔f(x)在x0处取得错误!极大值;函数f(x)在x0处的导数□,04f′(x0)=0且f′(x)在x0附近“错误!左负右正”⇔f(x)在x0处取得错误!极小值.4.求函数f(x)在区间[a,b]上的最值的一般步骤(1)求函数y=f(x)在[a,b]内的错误!极值;(2)比较函数y=f(x)的错误!各极值与错误!端点处的函数值错误!f(a),f(b)的大小,最大的一个是最大值,最小的一个是最小值.热点考向探究考向1 导数的几何意义例1 (1)(2019·唐山市高三第二次模拟)已知函数f(x)=错误!为奇函数,则f(x)在x=2处的切线斜率等于()A.6 B.-2C.-6 D.-8答案B解析设x>0,则-x〈0,f(-x)=x2-2x,又f(x)为奇函数,则f(x)=-f(-x)=-x2+2x,f′(x)=-2x+2,则f′(2)=-2,故选B.(2)设直线y =错误!x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为( )A .ln 2-1B .ln 2-2C .2ln 2-1D .2ln 2-2答案 A解析 设切点坐标为(x 0,ln x 0),则错误!=错误!,即x 0=2,∴切点坐标为(2,ln 2),又切点在直线y =错误!x +b 上,∴ln 2=1+b ,即b =ln 2-1.(3)已知曲线y =错误!x 3+错误!,则曲线在点P (2,4)处的切线方程为_____________;曲线过点P (2,4)的切线方程为__________________________.答案 4x -y -4=0 4x -y -4=0或x -y +2=0解析 ①∵P (2,4)在曲线y =13x 3+错误!上,y ′=x 2, ∴在点P (2,4)处的切线的斜率为y ′|x =2=4。

新教材2024高考数学二轮专题复习分册一专题七函数与导数课件

新教材2024高考数学二轮专题复习分册一专题七函数与导数课件
同的情况;而我国北宋学者沈括在他的著作《梦溪笔谈》中,也讨论
过这个问题,他分析得出一局围棋不同的变化大约有“连书万字五十
361
3
00052,下列数据最接近
的是(lg
52
10 000
二种”,即10
A.10-37
B.10-36
C.10-35
3≈0.477)(
)
D.10-34
答案:B
3361
3361
361
⑤将y=f(x)在y轴左侧部分去掉,再作右侧关于y轴的对称图象,合
起来得到y=f(|x|)的图象.
x ln x
1.[2023·山东德州三模]函数f(x)= x −x的图象大致是(
e +e
答案:D
)
2.设奇函数f(x)在(0,+∞)上为单调递增函数,且f(2)=0,则不等
f −x −f x

x
≥0的解集为(
(4)从函数的周期性,判断图象的循环往复.
2.利用函数性质解题的策略
(1)具有奇偶性的函数在关于原点对称的区间上其图象、函数值、解析
式和单调性联系密切,研究问题时可转化到只研究部分(一半)区间
上.尤其注意偶函数f(x)的性质:f(|x|)=f(x).
(2)利用周期性可以转化函数的解析式、图象和性质,把不在已知区间
B.[-3,-1]∪ 0,1
C.[-1,0]∪ 1, + ∞
D.[-1,0]∪ 1,3
答案:D
解析:通解 由题意知f(x)在(-∞,0),(0,+∞)单调递减,且f(-2)=f(2)=
f(0)=0≤3;当x<0时,令f(x-
1)≤0,得-2≤x-1≤0,∴-1≤x≤1,又x<0,∴-1≤x<0;当x=0时,显然

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-

第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。

(新人教版)最新届高考数学大二轮复习 第1部分 专题2 函数与导数 第2讲 函数与方程及函数的应用练习【经典

(新人教版)最新届高考数学大二轮复习 第1部分 专题2 函数与导数 第2讲 函数与方程及函数的应用练习【经典

第一部分 专题二 第二讲 函数与方程及函数的应用A 组1.(文)函数f (x )=-1x+log 2x 的一个零点落在区间( B )A .(0,1)B .(1,2)C .(2,3)D .(3,4)[解析] ∵f (1)·f (2)<0,∴选B .(理)在用二分法求方程x 3-2x -1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为( D )A .(1.4,2)B .(1.1,4)C .(1,32)D .(32,2)[解析] 令f (x )=x 3-2x -1,则f (1)=-2<0,f (2)=3>0,f (32)=-58<0,∴选D .2.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( D )A .12,0 B .-2,0 C .12D .0[解析] 当x ≤1时,由f (x )=2x-1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解.综上,函数f (x )的零点只有0.3.已知函数f (x )=(12)x-cos x ,则f (x )在[0,2π]上的零点个数为( C )A .1B .2C .3D .4[解析] 作出g (x )=(12)x与h (x )=cos x 的图象,可以看出其在[0,2π]上的交点个数为3.故选C .4.已知函数y =f (x )的周期为2,当x ∈[-1,1]时,f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( A )A .10个B .9个C .8个D .1个[解析] 在同一平面直角坐标系中分别作出y =f (x )和y =|lg x |的图象,如图.又lg 10=1,由图象知选A .5.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( D )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油 [解析] 对于A 选项,从图中可以看出当乙车的行驶速度大于40 km/h 时的燃油效率大于5 km/L ,故乙车消耗1升汽油的行驶路程可大于5千米,所以A 错误.对于B 选项,由图可知甲车消耗汽油最少.对于C 选项,甲车以80 km/h 的速度行驶时的燃油效率为10 km/L ,故行驶1小时的路程为80千米,消耗8 L 汽油,所以C 错误.对于D 选项,当最高限速为80 km/h 且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以D 正确.6.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,x -2,x >2,函数g (x )=3-f (2-x ),则函数y =f (x )-g (x )的零点的个数为( A )A .2B .3C .4D .5[解析] 当x <0时,f (2-x )=x 2,此时函数f (x )-g (x )=-1-|x |+x 2的小于零的零点为x =-1+52;当0≤x ≤2时,f (2-x )=2-|2-x |=x ,函数f (x )-g (x )=2-|x |+x-3=-1无零点;当x >2时,f (2-x )=2-|2-x |=4-x ,函数f (x )-g (x )=(x -2)2+4-x -3=x 2-5x +5大于2的零点有一个.因此函数y =f (x )-g (x )共有零点2个.7.已知函数f (x )=(15)x-log 3x ,若x 0是函数y =f (x )的零点,且0<x 1<x 0,则f (x 1)>0(填“>”、“<”、“≥”、“≤”).[解析] 方法一:∵f (x )=(15)x-log 3x 在(0,+∞)上为减函数,且0<x 1<x 0,∴f (x 1)>f (x 0).方法二:如图知,f (x 1)>f (x 0).8.(文)函数f (x )对一切实数x 都满足f (12+x )=f (12-x ),并且方程f (x )=0有三个实根,则这三个实根的和为32.[解析] 函数图象关于直线x =12对称,方程f (x )=0有三个实根时,一定有一个是12,另外两个关于直线x =12对称,其和为1,故方程f (x )=0的三个实根之和为32.(理)(2015·四川卷,13)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =ekx +b(e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是24小时.[解析] 由题意得⎩⎪⎨⎪⎧e b=192,e 22k +b=48,∴e 22k =48192=14,e 11k=12,∴x =33时,y =e33k +b=(e 11k )3·e b=18×192=24.9.有一种新型的洗衣液,去污速度特别快.已知每投放k (1≤k ≤4,且k ∈R )个单位的洗衣液在一定量水的洗衣机中,它在水中释放在浓度y (克/升)随着时间x (分钟)变化的函数关系式近似为y =k ·f (x ),其中f (x )=⎩⎪⎨⎪⎧248-x -1,0≤x ≤4,7-12x ,4<x ≤14.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4克/升时,它才能起到有效去污的作用.(1)若只投放一次k 个单位的洗衣液,当两分钟时水中洗衣液的浓度为3克/升,求k 的值.(2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?(3)若第一次投放2个单位的洗衣液,10分钟后再投放1个单位的洗衣液,则在第12分钟时洗衣液是否还能起到有效去污的作用?请说明理由.[解析] (1)由题意知k (248-2-1)=3,所以k =1. (2)因为k =4,所以y =⎩⎪⎨⎪⎧968-x -4,0≤x ≤4,28-2x ,4<x ≤14.当0≤x ≤4时,由968-x -4≥4,解得-4≤x <8,所以0≤x ≤4.当4<x ≤14时,由28-2x ≥4,解得x ≤12, 所以4<x ≤12.综上可知,当y ≥4时,0≤x ≤12,所以只投放一次4个单位的洗衣液的有效去污时间可达12分钟. (3)在第12分钟时,水中洗衣液的浓度为2×(7-12×12)+1×[248---1]=5(克/升),又5>4,所以在第12分钟时还能起到有效去污的作用.B 组1.已知函数f (x )=e x+x ,g (x )=ln x +x ,h (x )=ln x -1的零点依次为a ,b ,c ,则( A ) A .a <b <c B .c <b <a C .c <a <bD .b <a <c[解析] 由f (a )=e a+a =0,得a =-e a<0;b 是函数y =ln x 和y =-x 图象交点的横坐标,画图(图略)可知0<b <1;由h (c )=ln c -1=0知c =e ,所以a <b <c .2.(2018·湖北武昌1月调研)已知函数f (x )=2ax -a +3,若∃x 0∈(-1,1),f (x 0)=0,则实数a 的取值范围是( A )A .(-∞,-3)∪(1,+∞)B .(-∞,-3)C .(-3,1)D .(1,+∞)[解析] 函数f (x )=2ax -a +3,由∃x 0∈(-1,1),f (x 0)=0,可得(-3a +3)(a +3)<0,解得a ∈(-∞,-3)∪(1,+∞).3.利民工厂某产品的年产量在150t 至250t 之间,年生产的总成本y (万元)与年产量x (t)之间的关系可近似地表示为y =x 210-30x +4000,则每吨的成本最低时的年产量为( B )A .240B .200C .180D .160[解析] 依题意得每吨的成本是y x =x 10+4000x -30,则yx ≥2x10·4000x-30=10,当且仅当x 10=4000x,即x =200时取等号,因此当每吨的成本最低时,相应的年产量是200t ,选B .4.(2017·郑州质量预测)设函数f (x )=e x+2x -4,g (x )=ln x +2x 2-5,若实数a ,b 分别是f (x ),g (x )的零点,则( A )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0[解析] 依题意,f (0)=-3<0,f (1)=e -2>0,且函数f (x )是增函数,因此函数f (x )的零点在区间(0,1)内,即0<a <1.g (1)=-3<0,g (2)=ln 2+3>0,函数g (x )的零点在区间(1,2)内,即1<b <2,于是有f (b )>f (1)>0.又函数g (x )在(0,1)内是增函数,因此有g (a )<g (1)<0.所以g (a )<0<f (b ).故选A .5.(2017·湖北宜昌模拟)某种新药服用x 小时后血液中的残留量为y 毫克,如图所示为函数y =f (x )的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为( C )A .上午10:00B .中午12:00C .下午4:00D .下午6:00[解析] 当x ∈[0,4]时,设y =k 1x ,把(4,320)代入,得k 1=80,∴y =80x . 当x ∈[4,20]时,设y =k 2x +b .把(4,320),(20,0)代入得⎩⎪⎨⎪⎧4k 2+b =320,20k 2+b =0,解得⎩⎪⎨⎪⎧k 2=-20,b =400,∴y =400-20x .∴y =f (x )=⎩⎪⎨⎪⎧80x ,0≤x ≤4,400-20x ,4<x ≤20,由y ≥240,得⎩⎪⎨⎪⎧0≤x ≤4,80x ≥240,或⎩⎪⎨⎪⎧4<x ≤20,400-20x ≥240.解得3≤x ≤4或4<x ≤8, ∴3≤x ≤8.故第二次服药最迟应在当日下午4:00. 故选C .6.若函数f (x )=⎩⎪⎨⎪⎧x +3x, x ≤013x 3-4x +a , x >0在其定义域上只有一个零点,则实数a 的取值范围是( A )A .a >163B .a ≥163C .a <163D .a ≤163[解析] 当x ≤0时,函数y =-x 与函数y =3x的图象有一个交点, 所以函数y =f (x )有一个零点;而函数f (x )在其定义域上只有一个零点, 所以当x >0时,f (x )没有零点. 当x >0时,f ′(x )=x 2-4,令f ′(x )=0得x =2,所以f (x )在(0,2)上递减,在(2,+∞)上递增,因此f (x )在x =2处取得极小值f (2)=a -163>0,解得a >163.故选A .7.已知[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.2]=-2.x 0是函数f (x )=ln x -2x的零点,则[x 0]=2.[解析] 函数f (x )的定义域为(0,+∞),且易判断函数f (x )在(0,+∞)上单调递增.由f (2)=ln 2-1<0,f (e)=ln e -2e>0,知x 0∈(2,e),所以[x 0]=2.8.定义域为R 的偶函数f (x )满足对∀x ∈R ,有f (x +2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2x 2+12x -18,若函数y =f (x )-log a (|x |+1)在(0,+∞)上至多有三个零点,则a 的取值范围是(5,1)∪(1,+∞). [解析] 对于偶函数f (x ),f (x +2)=f (x )-f (1),令x =-1,则f (1)=f (-1)-f (1),因为f (-1)=f (1),所以f (-1)=f (1)=0,所以f (x )=f (x +2),故f (x )的图象如图所示,则问题等价于f (x )的图象与函数y =log a (|x |+1)的图象在(0,+∞)上至多有三个交点,显然a >1符合题意;若0<a <1,则由图可知,只需点(4,-2)在函数y =log a (|x |+1)图象的上方,所以log a 5<-2=log a 1a 2⇒5>1a 2⇒55<a <1.综上,实数a 的取值范围是(55,1)∪(1,+∞).9.已知函数y =f (x ),若在定义域内存在x 0,使得f (-x 0)=-f (x 0)成立,则称x 0为函数f (x )的局部对称点.(1)若a ∈R 且a ≠0,证明:函数f (x )=ax 2+x -a 必有局部对称点;(2)若函数f (x )=2x+b 在区间[-1,2]内有局部对称点,求实数b 的取值范围; (3)若函数f (x )=4x -m ·2x +1+m 2-3在R 上有局部对称,求实数m 的取值范围.[解析] (1)由f (x )=ax 2+x -a 得f (-x )=ax 2-x -a , 代入f (-x )=-f (x )得ax 2+x -a +ax 2-x -a =0, 得到关于x 的方程ax 2-a =0(a ≠0), 其中Δ=4a 2,由于a ∈R 且a ≠0, 所以Δ>0恒成立,所以函数f (x )=ax 2+x -a 必有局部对称点. (2)f (x )=2x+b 在区间[-1,2]内有局部对称点, 所以方程2x +2-x+2b =0在区间[-1,2]上有解, 于是-2b =2x +2-x ,设t =2x,12≤t ≤4,所以-2b =t +1t ,其中2≤t +1t ≤174,所以-178≤b ≤-1.(3)因为f (-x )=4-x-m ·2-x +1+m 2-3,由f (-x )=-f (x ),所以4-x-m ·2-x +1+m 2-3=-(4x -m ·2x +1+m 2-3),于是4x+4-x-2m (2x +2-x )+2(m 2-3)=0…(*)在R 上有解, 令t =2x +2-x (t ≥2),则4x +4-x =t 2-2,所以方程(*)变为t 2-2mt +2m 2-8=0在区间[2,+∞)内有解,需满足条件:⎩⎪⎨⎪⎧Δ=4m 2-m 2-,2m +-m22≥2,即⎩⎨⎧-22≤m ≤22,1-3≤m ≤22,化简得1-3≤m ≤2 2.。

高考数学新课标全国二轮复习课件2.函数与导数2

高考数学新课标全国二轮复习课件2.函数与导数2
第二讲
导数
导数及其应用 (1)导数概念及其几何意义
①了解导数概念的实际背景. ②理解导数的几何意义.
(2)导数的运算
①能根据导数定义求函数y=C(C为常数),
y=x,y=x2,y=x3,y=������ ,y= ������的导数.
②能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单
������ ������
过点 P(2,-5),且该曲线在点 P 处的切线与直线 7x+2y+3=0 平行,则 a+b 的值是 . 解析:由曲线 y=ax2+������ 过点 P(2,-5), 得 4a+2 =-5. 又 y'=2ax-������ 2 ,
������ ������ ������

调区间(其中多项式函数一般不超过三次).
②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、
极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值
(其中多项式函数一般不超过三次). (4)生活中的优化问题 会利用导数解决某些实际问题.
1.导数的几何意义 (1)函数y=f(x)在x=x0处的导数f'(x0)等于曲线y=f(x)在点(x0,f(x0))处的切线的斜率, 即k= f'(x0). (2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)= f'(x0)(x-x0). (3)导数的物理意义:s'(t)=v(t),v'(t)=a(t).
在点
π 2
,2 处的切线与直线 x+ay+1=0 垂直,则
(2-cos ������ )'sin ������ -(2-cos ������ )(sin ������ )' 1-2cos ������ si n 2 ������ π 2

高考数学大二轮复习精品(文理通用)练习:第1部分专题2函数与导数第1讲

高考数学大二轮复习精品(文理通用)练习:第1部分专题2函数与导数第1讲

第一部分 专题二 第一讲A 组1.已知函数f (x )的定义域为[3,6],则函数y =f (2x )log 12(2-x )的定义域为( B )A .[32,+∞)B .[32,2)C .(32,+∞)D .[12,2)[解析] 要使函数y =f (2x )log 12(2-x )有意义,需满足⎩⎪⎨⎪⎧3≤2x ≤6,log 12(2-x )>0⇒⎩⎪⎨⎪⎧32≤x ≤3,0<2-x <1⇒32≤x <2.故选B .2.(2018·河南南阳一模)设x >0,且1<b x <a x ,则( C ) A .0<b <a <1 B .0<a <b <1 C .1<b <aD .1<a <b[解析] ∵当x >0时1<b x <a x , ∴b >1,a >1,又b x <a x ,∴(a b )x >1,∴ab>1,∴a >b .故选C . 3.设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( C )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数 [解析] 由题意可知f (-x )=-f (x ),g (-x )=g (x ),对于选项A ,f (-x )·g (-x )=-f (x )·g (x ),所以f (x )g (x )是奇函数,故A 项错误;对于选项B ,|f (-x )|g (-x )=|-f (x )|g (x )=|f (x )|g (x ),所以|f (x )|·g (x )是偶函数,故B 项错误;对于选项C ,f (-x )|g (-x )|=-f (x )|g (x )|,所以f (x )|g (x )|是奇函数,故C 项正确;对于选项D ,|f (-x )·g (-x )|=|-f (x )g (x )|=|f (x )g (x )|,所以|f (x )g (x )|是偶函数,故D 项错误.故选C .4.(2018·河南南阳一模)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)的值为( B )A .4B .-4C .6D .-6[解析] 由题意,f (0)=30+m =0,解得m =-1, 故当x ≥0时,f (x )=3x -1,∴f (-log 35)=-f (log 35)=-(3log 35-1)=-4.故选B .5.(2018·山西四校联考)函数y =2x sin (π2+6x )4x -1的图象大致为( D )[解析] y =2x sin (π2+6x )4x-1=2xcos6x 22x -1=cos6x2x -2-x,由此容易判断函数为奇函数,可以排除A ;又函数有无数个零点,可排除C ;当x 取一个较小的正数时,y >0,由此可排除B ,故选D .6.设f (x )=⎩⎪⎨⎪⎧log 3(x 2+t ),x <0,2(t +1)x,x ≥0,且f (1)=6,则f (f (-2))的值为( B ) A .18 B .12 C .112D .118[解析] 因为1>0,所以f (1)=2(t +1)=6,即t +1=3,解得t =2.故f (x )=⎩⎪⎨⎪⎧log 3(x 2+2),x <0,2×3x ,x ≥0, 所以f (-2)=log 3[(-2)2+2]=log 36>0, f (f (-2))=f (log 36)=2×3log 36=2×6=12.7.函数f (x )=ax +b(x +c )2的图象如图所示,则下列结论成立的是( C )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0[解析] 由题中图象可知-c >0, 所以c <0,当x =0时,f (0)=bc 2>0⇒b >0,当y =0时,ax +b =0⇒x =-ba>0⇒a <0.8.已知函数f (x )=|log 2x |,正实数m ,n 满足m <n ,且f (m )=f (n ).若f (x )在区间[m 2,n ]上的最大值为2,则m ,n 的值分别为( A )A .12,2B .12,4C .22, 2 D .14,4[解析] (数形结合求解)f (x )=|log 2x |=⎩⎪⎨⎪⎧log 2x ,x ≥1,-log 2x ,0<x <1,根据f (m )=f (n )(m <n )及f (x )的单调性,知mn =1且0<m <1,n >1. 又f (x )在[m 2,n ]上的最大值为2,由图象知:f (m 2)>f (m )=f (n ), ∴f (x )max =f (m 2),x ∈[m 2,n ]. 故f (m 2)=2,易得n =2,m =12.9.设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是( A ) A .⎝⎛⎭⎫13,1 B .⎝⎛⎭⎫-∞,13∪(1,+∞) C .⎝⎛⎭⎫-13,13 D .⎝⎛⎭⎫-∞,-13∪⎝⎛⎭⎫13,+∞ [解析] f (x )是偶函数,且在[0,+∞)上是增函数,所以f (x )>f (2x -1)⇔f (|x |)>f (|2x -1|) ⇔|x |>|2x -1|⇔13<x <1.故选A .10.(2018·长春一模)若关于x 的不等式4a x -1<3x -4(a >0,且a ≠1)对于任意的x >2恒成立,则a 的取值范围为( B )A .(0,12)B .(0,12]C .[2,+∞)D .(2,+∞)[解析] 不等式4a x -1<3x -4等价于a x -1<34x -1.令f (x )=a x -1,g (x )=34x -1.当a >1时,在同一坐标系中作出两个函数的图象,如图所示,由图知不满足条件;当0<a <1时,如图2所示,则f (2)≤g (2),即a 2-1≤34×2-1,即a ≤12,所以a 的取值范围是(0,12].11.(2017·天津卷,6)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( C )A .a <b <cB .c <b <aC .b <a <cD .b <c <a[解析] 依题意a =g (-log 25.1)=(-log 25.1)·f (-log 25.1)=log 25.1f (log 25.1)=g (log 25.1). 因为f (x )在R 上是增函数,可设0<x 1<x 2, 则f (x 1)<f (x 2).从而x 1f (x 1)<x 2f (x 2),即g (x 1)<g (x 2). 所以g (x )在(0,+∞)上也为增函数. 又log 25.1>0,20.8>0,3>0, 且log 25.1<log 28=3,20.8<21<3, 而20.8<21=log 24<log 25.1, 所以3>log 25.1>20.8>0, 所以c >a >b . 故选C .12.(2018·洛阳一模)已知a >0,设函数f (x )=2 018x +1+2 0162 018x +1(x ∈[-a ,a ])的最大值为M ,最小值为N ,那么M +N =( C )A .2 017B .2 018C .4 034D .4 036[解析] 由题意得f (x )=2 018x +1+2 0162 018x +1=2 018-22 018x +1.因为y =2 018x +1在[-a ,a ]上是单调递增的,所以f (x )=2 018-22 018x +1在[-a ,a ]上是单调递增的,所以M =f (a ),N =f (-a ),所以M +N =f (a )+f (-a )=4 036-22 018a+1-22 018-a +1=4 034. 13.(2018·淄博模拟)已知函数y =log 2(ax -1)在(1,2)上单调递增,则a 的取值范围是a ≥1. [解析] 函数y =log 2(ax -1)由y =log 2u ,u =ax -1复合而成,由于y =log 2u 是单调递增函数,因此u =ax -1是增函数,所以a >0,由于u =ax -1>0恒成立,当x =1时,有最小值,ax -1>a -1≥0,所以a ≥1.14.(2018·西安模拟)已知函数y =f (log 2x )的定义域为(1,4),则函数y =f (2sin x -1)的定义域是{x |2k π+π6<x <2k π+5π6},k ∈Z .[解析] 因为y =f (log 2x )的定义域为(1,4), 所以1<x <4,则0<log 2x <2, 即y =f (x )的定义域为(0,2). 由0<2sin x -1<2,得12<sin x <32,即12<sin x ≤1, 解得2k π+π6<x <2k π+5π6,k ∈Z ,即函数y =f (2sin x -1)的定义域是{x |2k π+π6<x <2k π+5π6},k ∈Z .15.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为-10. [解析] 因为f (x )是定义在R 上且周期为2的函数,所以f (32)=f (-12),且f (-1)=f (1),故f (12)=f (-12),从而12b +212+1=-12a +1,即3a +2b =-2.①由f (-1)=f (1),得-a +1=b +22,即b =-2a .②由①②得a =2,b =-4,从而a +3b =-10.16.(2018·衡水一模)若函数f (x )=2x +sin x 对任意的m ∈[-2,2],有f (mx -3)+f (x )<0恒成立,则x 的取值范围是(-3,1).[解析] 易知f (x )是R 上的奇函数, 由f ′(x )=2+cos x >0,知f (x )为增函数, 因为f (mx -3)+f (x )<0可变形为f (mx -3)<f (-x ), 所以mx -3<-x , 所以mx -3+x <0. 设g (m )=xm -3+x ,由题意知当m ∈[-2,2]时,g (m )<0恒成立, 则当x ≥0时,g (2)<0,即2x -3+x <0, 则0≤x <1;当x <0时,g (-2)<0, 即-2x -3+x <0,则-3<x <0. 所以所求x 的取值范围是(-3,1).B 组1.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( C )A .-3B .-1C .1D .3[解析] 令x =-1,得f (-1)-g (-1)=(-1)3+(-1)2+1=1. ∵f (x ),g (x )分别是偶函数和奇函数, ∴f (-1)=f (1),g (-1)=-g (1), 即f (1)+g (1)=1. 故选C .2.函数y =f (x )在[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( B ) A .f (1)<f (52)<f (72)B .f (72)<f (1)<f (52)C .f (72)<f (52)<f (1)D .f (52)<f (1)<f (72)[解析] ∵f (x +2)是偶函数, ∴f (x )的图象关于直线x =2对称, ∴f (x )=f (4-x ),∴f (52)=f (32),f (72)=f (12).又0<12<1<32<2,f (x )在[0,2]上单调递增,∴f (12)<f (1)<f (32),即f (72)<f (1)<f (52).3.已知函数f (x )是定义在R 上的奇函数,若对于任意给定的不等实数x 1、x 2,不等式x 1f (x 1)+x 2f (x 2)<x 1f (x 2)+x 2f (x 1)恒成立,则不等式f (1-x )<0的解集为( C )A .(-∞,0)B .(0,+∞)C .(-∞,1)D .(1,+∞)[解析] 由条件式得(x 1-x 2)[f (x 1)-f (x 2)]<0, ∴x 1<x 2时,f (x 1)>f (x 2),x 1>x 2时,f (x 1)<f (x 2), ∴f (x )为减函数,又f (x )为R 上的奇函数, ∴f (0)=0,∴不等式f (1-x )<0化为f (1-x )<f (0), ∴1-x >0,∴x <1,故选C .4.如图,过单位圆O 上一点P 作圆O 的切线MN ,点Q 为圆O 上一动点,当点Q 由点P 逆时针方向运动时,设∠POQ =x ,弓形PRQ 的面积为S ,则S =f (x )在x ∈[0,2π]上的大致图象是( B )[解析] S =f (x )=S 扇型PRQ +S △POQ =12(2π-x )·12+12sin x =π-12x +12sin x ,则f ′(x )=12(cos x-1)≤0,所以函数S =f (x )在[0,2π]上为减函数,当x =0和x =2π时,分别取得最大值与最小值.又当x 从0逐渐增大到π时,cos x 逐渐减小,切线斜率逐渐减小,曲线越来越陡;当x 从π逐渐增大到2π时,cos x 逐渐增大,切线斜率逐渐增大,曲线越来越平缓,结合选项可知,B 正确.5.已知g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,g (x ),x >0,若f (2-x 2)>f (x ),则x 的取值范围是( C )A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)[解析] 因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ), 所以当x >0时,-x <0,g (-x )=-ln(1+x ), 即当x >0时,g (x )=ln(1+x ),因为函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,g (x ),x >0,所以函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0ln (1+x ),x >0.函数f (x )的图象如下:可判断f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (1+x ),x >0.在(-∞,+∞)上单调递增.因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1. 故选C .6.对定义在[0,1]上,并且同时满足以下两个条件的函数f (x )称为M 函数. (1)对任意的x ∈[0,1],恒有f (x )≥0;(2)当x 1≥0,x 2≥0,x 1+x 2≤1时,总有f (x 1+x 2)≥f (x 1)+f (x 2)成立. 则下列3个函数中不是M 函数的个数是( B ) ①f (x )=x 2 ②f (x )=x 2+1 ③f (x )=2x -1 A .0 B .1 C .2D .3[解析] 在[0,1]上,3个函数都满足f (x )≥0.当x 1≥0,x 2≥0,x 1+x 2≤1时:对于①,f (x 1+x 2)-f [f (x 1)+f (x 2)]=(x 1+x 2)2-(x 21+x 22)=2x 1x 2≥0,满足;对于②,f (x 1+x 2)-[f (x 1)+f (x 2)]=[(x 1+x 2)2+1]-[(x 21+1)+(x 22+1)]=2x 1x 2-1<0,不满足;对于③,f (x 1+x 2)-[f (x 1)+f (x 2)]=(2x 1+x 2-1)-(2x 1-1+2x 2-1)=2x 12x 2-2x 1-2x 2+1=(2x 1-1)(2x 2-1)≥0,满足.故选B .7.(2018·广州二模)已知定义在R 上的函数f (x ),对任意x ∈R ,都有f (x +4)=f (x )+f (2)成立,若函数y =f (x +1)的图象关于直线x =-1对称,则f (2 018)的值为( C )A .2 018B .-2 018C .0D .4[解析] 依题意得,函数y =f (x )的图象关于直线x =0对称,因此函数y =f (x )是偶函数,且f (-2+4)=f (-2)+f (2),即f (2)=f (2)+f (2),所以f (2)=0,所以f (x +4)=f (x ),即函数y =f (x )是以4为周期的函数,f (2 018)=f (4×504+2)=f (2)=0.8.(2018·珠海一模)若函数f (x )=log a (x 3-ax )(a >0且a ≠1)在区间(-12,0)内单调递增,则a 的取值范围是( B )A .[14,1)B .[34,1)C .[94,+∞)D .(1,94)[解析] 由题意,得x 3-ax >0在(-12,0)上恒成立,即a >x 2在(-12,0)上恒成立,所以a ≥14.若0<a <1,则g (x )=x 3-ax 在(-12,0)上单调递减,即g ′(x )=3x 2-a ≤0在(-12,0)上恒成立,所以3×(-12)2-a ≤0,得34≤a <1;若a >1,则g (x )=x 3-ax 在(-12,0)上单调递增,即g ′(x )=3x 2-a ≥0在(-12,0)上恒成立,所以a ≤0,这与a >1矛盾.综上,实数a的取值范围是[34,1).9.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0,则下列结论正确的是( D )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)[解析] 因为f (π)=π2+1,f (-π)=-1,所以f (-π)≠f (π),所以函数f (x )不是偶函数,排除A ;因为函数f (x )在(-2π,-π)上单调递减,排除B ;函数f (x )在(0,+∞)上单调递增,所以函数f (x )不是周期函数,排除C ;因为x >0时,f (x )>1,x ≤0时,-1≤f (x )≤1,所以函数f (x )的值域为[-1,+∞).10.(2018·秦皇岛模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2(x +1),x >1且f (a )=-3,则f (6-a )=( A )A .-74B .-54C .-34D .-14[解析] 因为f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2(x +1),x >1,f (a )=-3,所以⎩⎪⎨⎪⎧ a >1,-log 2(a +1)=-3或⎩⎪⎨⎪⎧a ≤1,2a -1-2=-3,解得a =7,所以f (6-a )=f (-1)=2-1-1-2=-74.11.(2018·唐山一模)已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( C )A .(-∞,-1]B .(-1,12)C .[-1,12)D .(0,12)[解析] 要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,所以⎩⎪⎨⎪⎧a <12,a ≥-1,所以-1≤a <12.12.已知函数f (x )是定义在R 上的奇函数,且在区间[0,+∞)上单调递增,若|f (ln x )-f (ln 1x)|2<f (1),则x 的取值范围是( C )A .(0,1e )B .(0,e)C .(1e,e)D .(e ,+∞)[解析] 因为函数f (x )是定义在R 上的奇函数, 所以f (ln x )-f (ln 1x)=f (ln x )-f (-ln x )=f (ln x )+f (ln x )=2f (ln x ),所以|f (ln x )-f (ln 1x )|2<f (1)等价于|f (ln x )|<f (1), 又f (x )在区间[0,+∞)上单调递增,所以-1<ln x <1,解得1e<x <e. 13.已知函数f (x )是定义在R 上的奇函数,且对于任意x ∈R ,恒有f (x -1)=f (x +1)成立,当x ∈[-1,0]时,f (x )=2x -1,则f (2 019)=12. [解析] 由f (x -1)=f (x +1)得f (x )的周期为2,则f (2 019)=f (1)=-f (-1)=-(2-1-1)=12. 14.(2018·云南昆明模拟)已知函数f (x )=a x +x -b 的零点x 0∈(n ,n +1)(n ∈Z ),其中常数a ,b 满足2a =3,3b =2,则n =-1.[解析] a =log 23>1,0<b =log 32<1,令f (x )=0,得a x =-x +b .在同一平面直角坐标系中画出函数y =a x 和y =-x +b 的图象,如图所示,由图可知,两函数的图象在区间(-1,0)内有交点,所以函数f (x )在区间(-1,0)内有零点,所以n =-1.15.若函数f (x )=⎩⎪⎨⎪⎧x -1,0<x ≤2,-1,-2≤x ≤0,g (x )=f (x )+ax ,x ∈[-2,2]为偶函数,则实数a =-12. [解析] 因为f (x )=⎩⎪⎨⎪⎧ x -1,0<x ≤2,-1,-2≤x ≤0, 所以g (x )=f (x )+ax =⎩⎪⎨⎪⎧ ax -1,-2≤x ≤0,(1+a )x -1,0<x ≤2, 因为g (x )=⎩⎪⎨⎪⎧ax -1,-2≤x ≤0,(1+a )x -1,0<x ≤2为偶函数, 所以g (-1)=g (1),即-a -1=1+a -1=a ,所以2a =-1,所以a =-12. 16.已知函数f (x )=⎩⎪⎨⎪⎧log 2(1-x )+1,-1≤x <0,x 3-3x +2,0≤x ≤a 的值域是[0,2],则实数a 的取值范围[解析] 函数f (x )=⎩⎪⎨⎪⎧log 2(1-x )+1,-1≤x <0,x 3-3x +2,0≤x ≤a 的图象如图所示.因为函数f (x )的值域是[0,2], 所以1∈[0,a ],即a ≥1.又当f (x )=2时,x 3-3x =0, 解得x =3(0,-3舍去),所以a ≤ 3. 综上,a 的取值范围是[1,3].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分 专题二 第二讲A 组1.(文)函数f (x )=-1x +log 2x 的一个零点落在区间( B )A .(0,1)B .(1,2)C .(2,3)D .(3,4)[解析] ∵f (1)·f (2)<0,∴选B .(理)在用二分法求方程x 3-2x -1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为( D )A .(1.4,2)B .(1.1,4)C .(1,32)D .(32,2)[解析] 令f (x )=x 3-2x -1,则f (1)=-2<0,f (2)=3>0,f (32)=-58<0,∴选D .2.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( D )A .12,0B .-2,0C .12D .0[解析] 当x ≤1时,由f (x )=2x -1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解.综上,函数f (x )的零点只有0.3.已知函数f (x )=(12)x -cos x ,则f (x )在[0,2π]上的零点个数为( C )A .1B .2C .3D .4[解析] 作出g (x )=(12)x 与h (x )=cos x 的图象,可以看出其在[0,2π]上的交点个数为3.故选C .4.已知函数y =f (x )的周期为2,当x ∈[-1,1]时,f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( A )A .10个B .9个C .8个D .1个[解析] 在同一平面直角坐标系中分别作出y =f (x )和y =|lg x |的图象,如图.又lg 10=1,由图象知选A .5.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( D )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油 [解析] 对于A 选项,从图中可以看出当乙车的行驶速度大于40 km/h 时的燃油效率大于5 km/L ,故乙车消耗1升汽油的行驶路程可大于5千米,所以A 错误.对于B 选项,由图可知甲车消耗汽油最少.对于C 选项,甲车以80 km/h 的速度行驶时的燃油效率为10 km/L ,故行驶1小时的路程为80千米,消耗8 L 汽油,所以C 错误.对于D 选项,当最高限速为80 km/h 且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以D 正确.6.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=3-f (2-x ),则函数y =f (x )-g (x )的零点的个数为( A )A .2B .3C .4D .5[解析] 当x <0时,f (2-x )=x 2,此时函数f (x )-g (x )=-1-|x |+x 2的小于零的零点为x =-1+52;当0≤x ≤2时,f (2-x )=2-|2-x |=x ,函数f (x )-g (x )=2-|x |+x -3=-1无零点;当x >2时,f (2-x )=2-|2-x |=4-x ,函数f (x )-g (x )=(x -2)2+4-x -3=x 2-5x +5大于2的零点有一个.因此函数y =f (x )-g (x )共有零点2个.7.已知函数f (x )=(15)x -log 3x ,若x 0是函数y =f (x )的零点,且0<x 1<x 0,则f (x 1)>0(填“>”、“<”、“≥”、“≤”).[解析] 方法一:∵f (x )=(15)x -log 3x 在(0,+∞)上为减函数,且0<x 1<x 0,∴f (x 1)>f (x 0).方法二:如图知,f (x 1)>f (x 0).8.(文)函数f (x )对一切实数x 都满足f (12+x )=f (12-x ),并且方程f (x )=0有三个实根,则这三个实根的和为32.[解析] 函数图象关于直线x =12对称,方程f (x )=0有三个实根时,一定有一个是12,另外两个关于直线x =12对称,其和为1,故方程f (x )=0的三个实根之和为32.(理)(2015·四川卷,13)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是24小时.[解析] 由题意得⎩⎪⎨⎪⎧e b =192,e22k +b =48,∴e 22k =48192=14,e 11k =12,∴x =33时,y =e 33k +b =(e 11k )3·e b =18×192=24.9.有一种新型的洗衣液,去污速度特别快.已知每投放k (1≤k ≤4,且k ∈R )个单位的洗衣液在一定量水的洗衣机中,它在水中释放在浓度y (克/升)随着时间x (分钟)变化的函数关系式近似为y =k ·f (x ),其中f (x )=⎩⎨⎧248-x-1,0≤x ≤4,7-12x ,4<x ≤14.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4克/升时,它才能起到有效去污的作用.(1)若只投放一次k 个单位的洗衣液,当两分钟时水中洗衣液的浓度为3克/升,求k 的值.(2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?(3)若第一次投放2个单位的洗衣液,10分钟后再投放1个单位的洗衣液,则在第12分钟时洗衣液是否还能起到有效去污的作用?请说明理由.[解析] (1)由题意知k (248-2-1)=3,所以k =1. (2)因为k =4,所以y =⎩⎪⎨⎪⎧968-x -4,0≤x ≤4,28-2x ,4<x ≤14.当0≤x ≤4时,由968-x -4≥4,解得-4≤x <8,所以0≤x ≤4.当4<x ≤14时,由28-2x ≥4,解得x ≤12, 所以4<x ≤12.综上可知,当y ≥4时,0≤x ≤12,所以只投放一次4个单位的洗衣液的有效去污时间可达12分钟.(3)在第12分钟时,水中洗衣液的浓度为2×(7-12×12)+1×[248-(12-10)-1]=5(克/升),又5>4,所以在第12分钟时还能起到有效去污的作用.B 组1.已知函数f (x )=e x +x ,g (x )=ln x +x ,h (x )=ln x -1的零点依次为a ,b ,c ,则( A ) A .a <b <c B .c <b <a C .c <a <bD .b <a <c[解析] 由f (a )=e a +a =0,得a =-e a <0;b 是函数y =ln x 和y =-x 图象交点的横坐标,画图(图略)可知0<b <1;由h (c )=ln c -1=0知c =e ,所以a <b <c .2.(2018·湖北武昌1月调研)已知函数f (x )=2ax -a +3,若∃x 0∈(-1,1),f (x 0)=0,则实数a 的取值范围是( A )A .(-∞,-3)∪(1,+∞)B .(-∞,-3)C .(-3,1)D .(1,+∞)[解析] 函数f (x )=2ax -a +3,由∃x 0∈(-1,1),f (x 0)=0,可得(-3a +3)(a +3)<0,解得a ∈(-∞,-3)∪(1,+∞).3.利民工厂某产品的年产量在150t 至250t 之间,年生产的总成本y (万元)与年产量x (t)之间的关系可近似地表示为y =x 210-30x +4000,则每吨的成本最低时的年产量为( B )A .240B .200C .180D .160[解析] 依题意得每吨的成本是y x =x 10+4000x -30,则yx≥2x 10·4000x-30=10,当且仅当x 10=4000x,即x =200时取等号,因此当每吨的成本最低时,相应的年产量是200t ,选B .4.(2017·郑州质量预测)设函数f (x )=e x +2x -4,g (x )=ln x +2x 2-5,若实数a ,b 分别是f (x ),g (x )的零点,则( A )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0[解析] 依题意,f (0)=-3<0,f (1)=e -2>0,且函数f (x )是增函数,因此函数f (x )的零点在区间(0,1)内,即0<a <1.g (1)=-3<0,g (2)=ln 2+3>0,函数g (x )的零点在区间(1,2)内,即1<b <2,于是有f (b )>f (1)>0.又函数g (x )在(0,1)内是增函数,因此有g (a )<g (1)<0.所以g (a )<0<f (b ).故选A .5.(2017·湖北宜昌模拟)某种新药服用x 小时后血液中的残留量为y 毫克,如图所示为函数y =f (x )的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为( C )A .上午10:00B .中午12:00C .下午4:00D .下午6:00[解析] 当x ∈[0,4]时,设y =k 1x ,把(4,320)代入,得k 1=80,∴y =80x . 当x ∈[4,20]时,设y =k 2x +b .把(4,320),(20,0)代入得⎩⎪⎨⎪⎧4k 2+b =320,20k 2+b =0,解得⎩⎪⎨⎪⎧k 2=-20,b =400,∴y =400-20x .∴y =f (x )=⎩⎪⎨⎪⎧80x ,0≤x ≤4,400-20x ,4<x ≤20,由y ≥240,得⎩⎪⎨⎪⎧ 0≤x ≤4,80x ≥240,或⎩⎪⎨⎪⎧4<x ≤20,400-20x ≥240.解得3≤x ≤4或4<x ≤8, ∴3≤x ≤8.故第二次服药最迟应在当日下午4:00. 故选C .6.若函数f (x )=⎩⎪⎨⎪⎧x +3x, x ≤013x 3-4x +a , x >0在其定义域上只有一个零点,则实数a 的取值范围是( A )A .a >163B .a ≥163C .a <163D .a ≤163[解析] 当x ≤0时,函数y =-x 与函数y =3x 的图象有一个交点, 所以函数y =f (x )有一个零点;而函数f (x )在其定义域上只有一个零点, 所以当x >0时,f (x )没有零点. 当x >0时,f ′(x )=x 2-4,令f ′(x )=0得x =2,所以f (x )在(0,2)上递减,在(2,+∞)上递增,因此f (x )在x =2处取得极小值f (2)=a -163>0,解得a >163.故选A .7.已知[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.2]=-2.x 0是函数f (x )=ln x -2x的零点,则[x 0]=2. [解析] 函数f (x )的定义域为(0,+∞),且易判断函数f (x )在(0,+∞)上单调递增.由f (2)=ln 2-1<0,f (e)=ln e -2e>0,知x 0∈(2,e),所以[x 0]=2.8.定义域为R 的偶函数f (x )满足对∀x ∈R ,有f (x +2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2x 2+12x -18,若函数y =f (x )-log a (|x |+1)在(0,+∞)上至多有三个零点,则a 的取值范围是(5,1)∪(1,+∞). [解析] 对于偶函数f (x ),f (x +2)=f (x )-f (1),令x =-1,则f (1)=f (-1)-f (1),因为f (-1)=f (1),所以f (-1)=f (1)=0,所以f (x )=f (x +2),故f (x )的图象如图所示,则问题等价于f (x )的图象与函数y =log a (|x |+1)的图象在(0,+∞)上至多有三个交点,显然a >1符合题意;若0<a <1,则由图可知,只需点(4,-2)在函数y =log a (|x |+1)图象的上方,所以log a 5<-2=log a 1a 2⇒5>1a 2⇒55<a <1.综上,实数a 的取值范围是(55,1)∪(1,+∞).9.已知函数y =f (x ),若在定义域内存在x 0,使得f (-x 0)=-f (x 0)成立,则称x 0为函数f (x )的局部对称点.(1)若a ∈R 且a ≠0,证明:函数f (x )=ax 2+x -a 必有局部对称点;(2)若函数f (x )=2x +b 在区间[-1,2]内有局部对称点,求实数b 的取值范围; (3)若函数f (x )=4x -m ·2x +1+m 2-3在R 上有局部对称,求实数m 的取值范围.[解析] (1)由f (x )=ax 2+x -a 得f (-x )=ax 2-x -a , 代入f (-x )=-f (x )得ax 2+x -a +ax 2-x -a =0, 得到关于x 的方程ax 2-a =0(a ≠0), 其中Δ=4a 2,由于a ∈R 且a ≠0, 所以Δ>0恒成立,所以函数f (x )=ax 2+x -a 必有局部对称点. (2)f (x )=2x +b 在区间[-1,2]内有局部对称点, 所以方程2x +2-x +2b =0在区间[-1,2]上有解,于是-2b =2x +2-x ,设t =2x ,12≤t ≤4,所以-2b =t +1t ,其中2≤t +1t ≤174,所以-178≤b ≤-1.(3)因为f (-x )=4-x -m ·2-x +1+m 2-3,由f (-x )=-f (x ),所以4-x -m ·2-x +1+m 2-3=-(4x -m ·2x +1+m 2-3),于是4x +4-x -2m (2x +2-x )+2(m 2-3)=0…(*)在R 上有解, 令t =2x +2-x (t ≥2),则4x +4-x =t 2-2,所以方程(*)变为t 2-2mt +2m 2-8=0在区间[2,+∞)内有解,需满足条件: ⎩⎪⎨⎪⎧Δ=4m 2-8(m 2-4)≥0,2m +4(8-m 2)2≥2, 即⎩⎨⎧-22≤m ≤22,1-3≤m ≤22,化简得1-3≤m ≤2 2.。

相关文档
最新文档