第三章 导数的应用章末复习课最新衡水中学自用精品教学与导学设计
高中数学 第三章 导数及其应用 3.1.3 导数的几何意义导学案 新人教A版选修1-1(2021年

河北省承德市高中数学第三章导数及其应用3.1.3 导数的几何意义导学案新人教A版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省承德市高中数学第三章导数及其应用3.1.3 导数的几何意义导学案新人教A版选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省承德市高中数学第三章导数及其应用3.1.3 导数的几何意义导学案新人教A版选修1-1的全部内容。
导数的几何意义1。
了解导函数的概念,通过函数图象直观地理解导数的几何意义.2.会求导函数,能根据导数的几何意义求曲线上某点处的切线方程.重点:理解导数的几何意义,会求曲线上某点处的切线方程.难点:对导数几何意义的理解.方法:合作探究一新知导学1.曲线的切线:过曲线y=f(x)上一点P作曲线的割线PQ,当Q点沿着曲线无限趋近于P时,若割线PQ趋近于某一确定的直线PT,则这一确定的直线PT称为曲线y=f(x)在点P的__________.设P(x0,y0),Q(xn,yn),则割线PQ的斜率kn=2.导数的几何意义函数y=f(x)在x=x0处的导数,就是曲线y=f(x)在x=x0处的____________,即k=f′(x0)=___________________.3.函数的导数对于函数y=f(x),当x=x0时,f′(x0)是一个确定的数.当x 变化时,f′(x)便是一个关于x的函数,我们称它为函数y=f(x)的导函数(简称为导数),即f′(x)=y′=________________。
4.深刻理解“函数在一点处的导数”、“导函数”、“导数”的区别与联系(1)函数在一点处的导数f ′(x0)是一个__________,不是变量.(2)函数的导数,是针对某一区间内任意点x而言的.函数f(x)在区间(a,b)内每一点都可导,是指对于区间(a,b)内的每一个确定的值x0,都对应着一个确定的导数f ′(x0).根据函数的定义,在开区间(a,b)内就构成了一个新的函数,就是函数f(x)的导函数__________.(3)函数y=f(x)在点x0处的导数f ′(x0)就是导函数f ′(x)课堂随笔:在点x=x0处的__________,即f ′(x0)=____________. 5.导数的物理意义:物体的运动方程s=s(t)在点t0处的导数s′(t0),就是物体在t0时刻的__________.牛刀小试1.设f ′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴斜交2.(2015·三峡名校联盟联考)曲线y=x2在点P(1,1)处的切线方程为( )A.y=2x B.y=2x-1C.y=2x+1 D.y=-2x3.如果曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y -3=0,那么( )A.f ′(x0)〉0 B.f ′(x0)<0C.f ′(x0)=0 D.f ′(x0)不存在4.函数y=f(x)=错误!在x=1处的切线方程为__________.二.例题分析例1若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y =f(x)在区间[a,b]上的图象可能是()练习:已知y=f(x)的图象如图所示,则f ′(xA)与f ′(xB)的大小关系是()A.f ′(xA)〉f ′(xB)B.f ′(xA)=f ′(xB)C.f ′(xA)〈f ′(xB)D.f ′(xA)与f ′(xB)大小不能确定例2已知曲线C:f(x)=x3.(1)求曲线C上横坐标为1的点处的切线的方程;(2)求过点(1,1)与曲线C相切的直线方程.练习:已知曲线方程为y=x2,求:(1)过点A(2,4)且与曲线相切的直线方程;(2)过点B(3,5)且与曲线相切的直线方程.例3 若抛物线y=4x2上的点P到直线y=4x-5的距离最短,求点P的坐标.练习:曲线y=-x2上的点到直线x-y+3=0的距离的最小值为__________。
推荐高中数学第三章导数及其应用3.3导数的应用3.3.3导数的实际应用预习导学案新人教B版选修1

最新中小学教案、试题、试卷
教案、试题、试卷中小学 1 3.3.3 导数的实际应用
预习导航
1.最优化问题
在经济生活中,人们经常遇到最优化问题.例如,为使经营利润最大、生产效率最高,或为使用力最省、用料最少、消耗最省等等,需要寻求相应的最佳方案或最佳策略,这些都是最优化问题.导数是解决这类问题的方法之一.
2.解决优化问题的基本思路
思考利用导数解决生活中优化问题的一般步骤有哪些?
提示:(1)函数建模,细致分析实际问题中各个量之间的关系,正确设定所求最大值或最小值的变量y 与自变量x ,把实际问题转化为数学问题,即列出函数关系式y =f (x );
(2)确定定义域,一定要从问题的实际意义去考察,舍去没有实际意义的变量的范围;
(3)求最值,此处尽量使用导数法求出函数的最值;
(4)下结论,回扣题目,给出完整的答案.
温馨提示求解应用问题的方法
解决实际应用问题的关键在于建立数学模型和目标函数,把“问题情景”译为数学语言.要先找出问题的主要关系,并把问题的主要关系近似化、形式化,抽象成数学问题,再化归为常规问题,最后选择合适的数学方法求解.对于这类问题,我们往往忽视了数学语言和普通语言的理解与转换,从而造成了解决应用问题的最大思维障碍.
运算不过关,就得不到正确的答案,对数学思想方法不理解或理解不透彻,则找不到正确的解题思路.在此正需要我们依据问题本身提供的信息,利用所谓的动态思维,去寻求有利于问题解决的新的途径和方法,并从中进行一番选择.。
高中数学 第三章 导数及其应用 3.3 导数的应用 3.3.3

3.3.3 导数的实际应用1.会利用导数解决实际问题中的最优化问题.2.体会导数在解决实际问题中的作用.1.最优化问题在经济生活中,人们经常遇到最优化问题.例如,为使经营利润最大、生产效率最高,或为使用力最省、用料最少、消耗最省等等,需要寻求相应的________或________,这些都是最优化问题.导数是解决这类问题的方法之一.【做一做1】下列问题不是最优化问题的是( )A.利润最大 B.用料最省C.求导数 D.用力最省2.求实际问题的最大(小)值的步骤(1)建立实际问题的数学模型,写出实际问题中变量之间的函数关系y=f(x),注明定义域.(2)求函数的导数f′(x),解方程________,确定极值点.(3)比较函数在________和________处的函数值的大小,最大(小)者为实际问题的最大(小)值.实际问题中的变量是有范围的,即应考虑实际问题的意义,注明定义域.【做一做2】求实际问题的最值与求函数在闭区间上的最值的主要区别是________________.利用导数解决实际问题时应注意什么?剖析:(1)写出变量之间的函数关系y=f(x)后一定要写出定义域.(2)求实际问题的最值,一定要从问题的实际意义去分析,不符合实际意义的极值点应舍去.(3)在实际问题中,一般地,f′(x)=0在x的取值范围内仅有一个解,即函数y=f(x)只有一个极值点,则该点处的值就是问题中所指的最值.题型实际问题中最值的求法【例1】某商场从生产厂家以每件20元的进价购进一批商品,若该商品的售价定为p 元,则销售量Q(单位:件)与零售价p(单位:元)有如下关系:Q=8 300-170p-p2.问该商品零售价定为多少时利润最大,最大利润是多少?分析:建立销售利润关于零售价的函数,应用导数研究最值.反思:根据课程标准的规定,有关函数最值的实际问题,一般指的是单峰函数,也就是说在实际问题中,如果遇到函数在一个区间内只有一个点使f′(x)=0,且该函数在这点取得极大(小)值,那么不与区间端点的函数值比较,就可以知道这就是实际问题的最大(小)值.【例2】将一段长为100 cm 的铁丝截成两段,一段弯成正方形,一段弯成圆,问怎样截能使正方形与圆的面积之和最小?分析:设其中一段长为x cm ,则另一段长为(100-x ) cm ,然后用x 表示出正方形与圆的面积之和S ,求出方程S ′=0的根,该根即为所求.反思:在求最值时,往往需要建立函数关系式,若问题中给出的量较多时,一定要通过建立各个量之间的关系,通过消元法达到建立函数关系式的目的.1要做一个圆锥形漏斗,其母线长为20 cm ,要使其体积最大,则其高应为( ) A .2033cm B .100 cmC .20 cmD .203cm2某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总收益R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧400x -12x 2x,x ,则总利润最大时,每年生产的产品数量是( )A .100单位B .150单位C .200单位D .300单位3把长40 cm 的铁丝围成矩形,当长为__________ cm ,宽为__________ cm 时,矩形面积最大.4将长为52 cm 的铁丝剪成2段,各围成一个长与宽之比为2∶1及3∶2的矩形,那么面积之和的最小值为__________.5某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品则损失100元,已知该厂制造电子元件过程中,次品率p 与日产量x 的函数关系是:p =3x4x +32(x ∈N *).(1)将该厂的日盈利额T (元)表示为日产量x (件)的函数__________; (2)为获得最大盈利,该厂的日产量应定为__________. 答案:基础知识·梳理1.最佳方案 最佳策略 【做一做1】C2.(2)f ′(x )=0 (3)区间端点 极值点 【做一做2】求实际问题的最值需先建立数学模型,写出变量之间的函数关系y =f (x ),并写出定义域典型例题·领悟【例1】解:设利润为L (p ),由题意可得L (p )=(p -20)·Q =(p -20)(8 300-170p -p 2)=-p 3-150p 2+11 700p -166 000(p >0),∴L ′(p )=-3p 2-300p +11 700.令L ′(p )=0,得p =30或p =-130(舍去). 则L (30)=23 000.∵0<p <30时,L ′(p )>0;p >30时,L ′(p )<0,∴p =30时,L (p )取得极大值.根据实际问题的意义知,L (30)就是最大值,即零售价定为每件30元时,利润最大,最大利润为23 000元.【例2】解:设弯成圆的一段铁丝长为x cm ,则另一段长为(100-x ) cm ,记正方形与圆的面积之和为S cm 2,则正方形的边长a =100-x 4,圆的半径r =x2π.∴S =π⎝ ⎛⎭⎪⎫x 2π2+⎝ ⎛⎭⎪⎫100-x 42=x 24π+x 216-252x +625(0<x <100).又S ′=x 2π+x 8-252.令S ′=0,则x =100π4+π.当0<x <100π4+π时,S ′<0;当100π4+π<x <100时,S ′>0.所以当x =100π4+π时,S 取得极小值,也为最小值.故当弯成圆的铁丝长度为100π4+π cm 时,正方形和圆的面积之和最小.随堂练习·巩固1.A 设圆锥的高为h cm ,则V (h )=π3(400-h 2)h ,h ∈(0,20).令V ′(h )=π3(400-3h 2)=0,得h =2033.2.D 当x >400时,利润f (x )=80 000-20 000-100x , ∴当x >400时,f (x )<20 000. 当0≤x ≤400时,f (x )=R (x )-20 000-100x =-12x 2+300x -20 000=-12(x -300)2+25 000.∴当x =300单位时,利润为最大. 3.10 104.78 cm 2设剪成的2段中其中一段为x cm ,则另一段为(52-x ) cm ,围成两个矩形的面积和为S cm 2.依题意知,S =x 6×2x6+-x10×-x 10=118x 2+350(52-x )2,S ′=19x -325(52-x ),令S ′=0,解得x =27.则另一段为52-27=25(cm).此时S min =78 cm 2.5.(1)T =x -x 2x +8(2)16件 (1)由题意知,每日生产的次品数为px 件,正品数为(1-p )x 件,∴T =200(1-p )x -100px =200x -300px =200x -900x24x +32=x -x 2x +8.(2)T ′=-2xx +-x -x 2x +2=-x +x -x +2.令T ′=0,得x =16或x =-32(舍去).当0<x <16时,T ′>0;当x >16时,T ′<0.∴当x =16时,T 取得最大值,即当日产量定为16件时,获得最大盈利.。
高中数学 第三章 导数及其应用 3.3.1 函数的单调性与导数导学案 新人教A版选修1-1(202

河北省承德市高中数学第三章导数及其应用3.3.1 函数的单调性与导数导学案新人教A版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省承德市高中数学第三章导数及其应用3.3.1 函数的单调性与导数导学案新人教A版选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省承德市高中数学第三章导数及其应用3.3.1 函数的单调性与导数导学案新人教A 版选修1-1的全部内容。
函数的单调性与导数结合实例,借助几何直观图探索并了解函数的单调性与导数的关系,能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间.重点:利用求导的方法判断函数的单调性.难点:探索发现函数的导数与单调性的关系.方法:合作探究一新知导学一)函数的单调性与导函数正负的关系1.观察函数y=x2的图象,x<0时,切线的斜率都取_______值,函数单调递减;x〉0时,切线的斜率都取______值,函数单调递增.再观察函数y=错误!的图象,除原点外每一点的切线斜率都取_______值,函数单调递增.思维导航1.结合高台跳水运动和函数y=3x,y=x2,y=x3,y=错误!,y =错误!的单调性与导函数值正负的关系,你能得出什么结论?2.设函数y=f(x)在区间(a,b)内可导,(1)如果在区间(a,b)内,f ′(x)>0,则f(x)在此区间单调__________;(2)如果在区间(a,b)内,f ′(x)〈0,则f(x)在此区间内单调__________.二)函数的变化快慢与导数的关系思维导航2.上面我们已经知道f ′(x)的符号反映f(x)的增减情况,那么能否用导数解释f(x)变化的快慢呢?3.在同一坐标系中画出函数y=2x,y=3x,y=,y=x2,y=x3的图象,观察x>0时,函数增长的快慢,与各函数的导数值的大小课堂随笔:作对比,你发现了什么?3.如果一个函数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化较__________,其图象比较__________.牛刀小试1.函数y=f(x)在定义域(-错误!,3)内可导,其图象如图所示.记y=f(x)的导函数为y=f′(x),则不等式f′(x)≤0的解集为( )A.[-错误!,1]∪[2,3) B.[-1,错误!]∪[错误!,错误!]C.(-错误!,错误!]∪[1,2] D.(-错误!,-1]∪[错误!,错误!]∪[错误!,3)2.函数y=x3+x的单调递增区间为()A.(0,+∞)B.(-∞,1)C.(1,+∞) D.(-∞,+∞)3.若函数y=x3+x2+mx+1是R上的单调函数,则实数m的取值范围是( )A.(错误!,+∞) B.(-∞,错误!]C.[错误!,+∞)D.(-∞,错误!)4.若在区间(a,b)内有f′(x)>0,且f(a) ≥0,则在(a,b)内有()A.f(x)>0 B.f(x)<0C.f(x)=0 D.不能确定5.函数y=ax3-1在(-∞,+∞)上是减函数,则a的取值范围是__________。
选修1-1第三章-导数及其应用导学案

沈丘三高高二数学导学案编写人:楚志勇 审稿人:高二数学组§ 变化率问题【使用课时】:1课时 【学习目标】:1.感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程. 体会数学的博大精深以及学习数学的意义;2.理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景. 【学习重点】:平均变化率的概念、函数在某点处附近的平均变化率. 【学习方法】:分组讨论学习法、探究式. 【学习过程】:一、课前准备(预习教材P 72~ P 74,找出疑惑之处) 问题1 气球膨胀率我们都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π= 如果将半径r 表示为体积V 的函数,那么343)(πV V r = 在吹气球问题中,当空气容量V 从0增加到1L 时,气球的平均膨胀率为__________ 当空气容量V 从1L 增加到2L 时,气球的平均膨胀率为__________________ 当空气容量从V 1增加到V 2时,气球的平均膨胀率为_____________ 问题2 高台跳水在高台跳水运动中,,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= ++10. 如何用运动员在某些时间段内的平均速度v 粗略地描述其运动状态在5.00≤≤t 这段时间里,v =_________________ 在21≤≤t 这段时间里,v =_________________问题3 平均变化率 已知函数()x f ,则变化率可用式子_____________,此式称之为函数()x f 从1x 到2x ___________.习惯上用x ∆表示12x x -,即x ∆=___________,可把x ∆看做是相对于1x 的一个“增量”,可用+1x x ∆代替2x ,类似有=∆)(x f __________________,于是,平均变化率可以表示为_______________________提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中二、新课导学 学习探究 探究任务一:问题1:气球膨胀率,求平均膨胀率吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象问题2:高台跳水,求平均速度新知:平均变化率:2121()()f x f x fx x x-∆=-∆试试:设()y f x =,1x 是数轴上的一个定点,在数轴x 上另取一点2x ,1x 与2x 的差记为x ∆,即x ∆= 或者2x = ,x ∆就表示从1x 到2x 的变化量或增量,相应地,函数的变化量或增量记为y ∆,即y ∆= ;如果它们的比值yx∆∆,则上式就表示为 ,此比值就称为平均变化率.反思:所谓平均变化率也就是 的增量与 的增量的比值. 典型例题例1 过曲线3()y f x x ==上两点(1,1)P 和(1,1)Q x y +∆+∆作曲线的割线,求出当0.1x ∆=时割线的斜率.变式:已知函数2()f x x x =-+的图象上一点(1,2)--及邻近一点(1,2)x y -+∆-+∆,则yx∆∆=例2 已知函数2()f x x =,分别计算()f x 在下列区间上的平均变化率: (1)[1,3];(2)[1,2];(3)[1,];(4)[1,]沈丘三高高二数学导学案编写人:周方 审稿人:高二数学组§ 导数的概念【使用课时】:1课时 【学习目标】:1.掌握用极限给瞬时速度下的精确的定义; 2.会运用瞬时速度的定义,求物体在某一时刻的瞬时速度. 【学习重点】:导数概念的形成,导数内涵的理解 【学习方法】:分组讨论学习法、探究式. 【学习过程】: 一、课前准备(预习教材P 74~ P 76,找出疑惑之处)复习1:气球的体积V 与半径r 之间的关系是()r V =V 从0增加到1时,气球的平均膨胀率.复习2:高台跳水运动中,运动员相对于水面的高度h 与起跳后的时间t 的关系为:2() 4.9 6.510h t t t =-++. 求在12t ≤≤这段时间里,运动员的平均速度.二、新课导学 学习探究探究任务一:瞬时速度问题1:我们把物体在某一时刻的速度称为________.一般地,若物体的运动规律为)(t f s =,则物体在时刻t 的瞬时速度v 就是物体在t 到t t ∆+这段时间内,当_________时平均速度的极限,即tsv x ∆∆=→∆0lim=___________________()105.69.42++-=t t t h问题2: 瞬时速度是平均速度ts∆∆当t ∆趋近于0时的 得导数的定义:函数()y f x =在0x x =处的瞬时变化率是0000()()limlimx x f x x f x fxx ∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y ='即000()()()lim x f x x f x f x x∆→+∆-'=∆注意:(1)函数应在点0x 的附近有定义,否则导数不存在 (2)在定义导数的极限式中,x ∆趋近于0可正、可负、但不为0,而y ∆可以为0(3)xy∆∆是函数)(x f y =对自变量x 在x ∆范围内的平均变化率,它的几何意义是过曲线)(x f y =上点()(,00x f x )及点)(,(00x x f x x ∆+∆+)的割线斜率(4)导数xx f x x f x f x ∆-∆+=→∆)()(lim )(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处变化的快慢程度.小结:由导数定义,高度h 关于时间t 的导数就是运动员的瞬时速度,气球半径关于体积V 的导数就是气球的瞬时膨胀率. 典型例题例1 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热. 如果在第xh 时,原油的温度(单位:0c )为2()715(08)f x x x x =-+≤≤. 计算第2h 和第6h 时,原油温度的瞬时变化率,并说明它们的意义.总结:函数平均变化率的符号刻画的是函数值的增减;它的绝对值反映函数值变化的快慢.例2 已知质点M 按规律s =2t 2+3做直线运动(位移单位:cm ,时间单位:s),(1)当t =2,Δt =时,求t s∆∆.(2)当t =2,Δt =时,求ts∆∆.(3)求质点M 在t =2时的瞬时速度小结:利用导数的定义求导,步骤为:第一步,求函数的增量00()()y f x x f x ∆=+∆-;第二步:求平均变化率0()f x x y x x+∆∆=∆∆; 第三步:取极限得导数00()lim x yf x x∆→∆'=∆.沈丘三高高二数学导学案编写人:楚士东 审稿人:高二数学组§ 导数的几何意义【使用课时】:1课时 【学习目标】:通过导数的图形变换理解导数的几何意义就是曲线在该点的切线的斜率,理解导数的概念并会运用概念求导数. 【学习重点】:曲线的切线的概念、切线的斜率、导数的几何意义. 【学习方法】:分组讨论学习法、探究式. 【学习过程】: 一、课前准备(预习教材P 76~ P 79,找出疑惑之处) 1.曲线的切线及切线的斜率(1)如图,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,即0→∆x 时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为 . (2)割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 沿着曲线无限接近点P 时,n k 无限趋近于切线PT 的斜率k ,即k = =2.导数的几何意义函数)(x f y =在0x x =处的导数等于在该点00(,())x f x 处的切线的斜率, 即0()f x '= . 二、新课导学 学习探究探究任务:导数的几何意义 1.曲线的切线及切线的斜率(1)如图,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么(2)如何定义曲线在点P 处的切线(3)割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系(4)切线PT 的斜率k 为多少说明: (1)当0→∆x 时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率. 这个概念: ①提供了求曲线上某点切线的斜率的一种方法; ②切线斜率的本质—函数在0x x =处的导数. (2)曲线在某点处的切线: 1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多. 2.导数的几何意义(1)函数)(x f y =在0x x =处的导数的几何意义是什么图(2)将上述意义用数学式表达出来。
高中数学第三章导数及其应用3.3.3导数的实际应用学案新人教B版选修110719245

高中数学第三章导数及其应用3.3.3导数的实际应用学案新人教B版选修1107192451.掌握应用导数解决实际问题的基本思路.(重点)2.灵活利用导数解决实际生活中的优化问题,提高分析问题,解决问题的能力.(难点)[基础·初探]教材整理优化问题阅读教材P99~P100,完成下列问题.1.优化问题(1)生活中经常会遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.(2)用导数解决优化问题的实质是求函数的最值.2.用导数解决优化问题的基本思路甲工厂八年来某种产品年产量与时间(单位:年)的函数关系如图338所示:图338现有下列四种说法:①前四年该产品产量增长速度越来越快;②前四年该产品产量增长速度越来越慢;③第四年后该产品停止生产;④第四年后该产品年产量保持不变.其中说法正确的有( )A.①④B.②④C.①③D.②③【解析】由图象可知,②④是正确的.【答案】 B[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_____________________________________________________解惑:______________________________________________________疑问2:_____________________________________________________解惑:______________________________________________________疑问3:_____________________________________________________解惑:_______________________________________________________[小组合作型]面积、体积最值问题用长为90 cm、宽为48 cm的长方形铁皮做一个无盖的容器,先在四个角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图339).问该容器的高为多少时,容器的容积最大?最大容积是多少?图339【精彩点拨】设自变量(高)为x→根据长方体的体积公式建立体积关于x的函数→利用导数求出容积的最大值→结论【自主解答】设容器的高为x cm,容器的容积为V(x)cm3,则:V(x)=x(90-2x)(48-2x)=4x3-276x2+4 320x(0<x<24).所以V′(x)=12x2-552x+4 320=12(x2-46x+360)=12(x-10)(x-36).令V′(x)=0,得x=10或x=36(舍去).当0<x <10时,V ′(x )>0,即V (x )是增加的; 当10<x <24时,V ′(x )<0,即V (x )是减少的.因此,在定义域(0,24)内,函数V (x )只有当x =10时取得最大值,其最大值为V (10)=19 600(cm 3).因此当容器的高为10 cm 时,容器的容积最大,最大容积为19 600 cm 3.1.求几何体面积或体积的最值问题,关键是分析几何体的几何特征,根据题意选择适当的量建立面积或体积的函数,然后再用导数求最值.2.实际问题中函数定义域确定的方法(1)根据图形确定定义域,如本例中长方体的长、宽、高都大于零;(2)根据问题的实际意义确定定义域,如人数必须为整数,销售单价大于成本价、销售量大于零等.[再练一题]1.若将铁皮改为边长为60 cm 的正方形,则容器底边长为多少时,容器的容积最大?最大容积是多少? 【导学号:25650134】图3310【解】 法一:设容器底边长为x cm ,则高h =60-x2 cm ,∴容器容积V (x )=x 2h =-12x 3+30x 2(0<x <60).则V ′(x )=-32x 2+60x ,令V ′(x )=0,解得x =40,且是定义域(0,60)内的唯一极大值点, ∴此时V (x )取得最大值,且V (x )max =16 000 cm 3.即容器底边长为40 cm 时,容器容积最大,最大容积是16 000 cm 3. 法二:设容器的高为x cm ,则容器底边长为(60-2x ) cm , 则容器的容积V (x )关于容器的高x 的函数为V (x )=(60-2x )2x=4x 3-240x 2+3 600x (0<x <30),∴V ′(x )=12x 2-480x +3 600 =12(x 2-40x +300)(0<x <30).令V ′(x )=0,得x =10或x =30(舍去). 当0<x <10时,V ′(x )>0,函数单调递增; 当10<x <30时,V ′(x )<0,函数单调递减. ∴当x =10时,函数V (x )取得最大值.此时底面边长为40 cm ,V (10)=V (x )max =16 000 cm 3.即当容器底边长为40 cm 时,容器的容积最大,最大容积是16 000 cm 3.用料(费用)最省问题某网球中心欲建连成片的网球场数块,用128万元购买土地10 000平方米,该中心每块球场的建设面积为1 000平方米,球场的总建筑面积的每平方米的平均建设费用与球场数有关,当该中心建球场x 块时,每平方米的平均建设费用(单位:元)可近似地用f (x )=800⎝⎛⎭⎪⎫1+15ln x 来刻画.为了使该球场每平方米的综合费用最省(综合费用是建设费用与购地费用之和),该网球中心应建几个球场?【精彩点拨】 先求每平方米的购地费用,综合费用是建设费用与购地费用之和. 【自主解答】 设建成x 个球场,则1≤x ≤10,每平方米的购地费用为128×1041 000x =1 280x元,因为每平方米的平均建设费用(单位:元)可近似地用f (x )=800⎝ ⎛⎭⎪⎫1+15ln x 来表示,所以每平方米的综合费用为g (x )=f (x )+1 280x =800+160ln x +1 280x(x >0),所以g ′(x )=160x -8x 2(x >0),令g ′(x )=0,则x =8,当0<x <8时,g ′(x )<0,当x >8时,g ′(x )>0,所以x =8时,函数取得极小值,且为最小值. 故当建成8个球场时,每平方米的综合费用最省.实际生活中用料最省、费用最低、损耗最小、最节省时间等问题都需要利用导数求解相应函数的最小值.根据f ′(x )=0求出极值点(注意根据实际意义舍去不合适的极值点)后,函数在该点附近满足左减右增,则此时唯一的极小值就是所求函数的最小值.[再练一题]2.甲、乙两地相距400千米,汽车从甲地匀速行驶到乙地,速度不得超过100千米/时,已知该汽车每小时的运输成本P (元)关于速度v (千米/时)的函数关系是P =119 200v 4-1160v 3+15v . (1)求全程运输成本Q (元)关于速度v 的函数关系式;(2)为使全程运输成本最少,汽车应以多大速度行驶?并求此时运输成本的最小值. 【导学号:25650135】【解】 (1)Q =P ·400v=⎝ ⎛⎭⎪⎫119 200v 4-1160v 3+15v ·400v=⎝⎛⎭⎪⎫119 200v 3-1160v 2+15·400 =v 348-52v 2+6 000(0<v ≤100). (2)Q ′=v 216-5v ,令Q ′=0,则v =0(舍去)或v =80, 当0<v <80时,Q ′<0; 当80<v ≤100时,Q ′>0,∴v =80千米/时时,全程运输成本取得极小值,即最小值,且Q min =Q (80)=2 0003(元).[探究共研型]利润最大(成本最低)问题探究 关于利润问题常用的等量关系有哪些? 【提示】 关于利润问题常用的两个等量关系: ①利润=收入-成本;②利润=每件产品的利润×销售件数.某生产饮料的企业拟投入适当的广告费对产品进行促销,在一年内,预计年销量Q (万件)与广告费x (万元)之间的函数关系为Q =3x +1x +1(x ≥0),已知生产此产品的年固定投入为3万元,每生产1万件此产品需再投入32万元.若每件产品售价为“年平均每件成本的150%”与“年平均每件所占广告费的50%”之和,则(1)试将年利润y (万元)表示为年广告费x (万元)的函数.如果年广告费投入100万元,那么企业是亏损还是盈利?(2)当年广告费投入多少万元时,企业年利润最大?【精彩点拨】 (1)利用题中等量关系列出y 与x 的函数关系式,将x =100代入所求关系式判断y >0还是y <0;(2)先求出(1)中函数关系式的导函数,再利用导数求最值.【自主解答】 (1)由题意,每年销售Q 万件,成本共计为(32Q +3)万元.销售收入是(32Q +3)·150%+x ·50%,∴年利润y =年收入-年成本-年广告费 =12(32Q +3-x ) =12⎝ ⎛⎭⎪⎫32×3x +1x +1+3-x =-x 2+98x +352x +1(x ≥0),∴所求的函数关系式为:y =-x 2+98x +352x +1(x ≥0).因为当x =100时,y <0,所以当年广告费投入100万元时,企业亏损.(2)由y =f (x )=-x 2+98x +352x +1(x ≥0),得f ′(x )=-2x +98·2x +1-2-x 2+98x +354x +12=-x 2-2x +632x +12(x ≥0). 令f ′(x )=0,则x 2+2x -63=0. ∴x =-9(舍去)或x =7. 又∵当x ∈(0,7)时,f ′(x )>0; 当x ∈(7,+∞)时,f ′(x )<0, ∴f (x )极大值=f (7)=42.又∵在(0,+∞)上只有一个极值点, ∴f (x )max =f (x )极大值=f (7)=42.故当年广告费投入7万元时,企业年利润最大.1.利润最大问题是生活中常见的一类问题,一般根据“利润=收入-成本”或“利润=每件产品利润×销售件数”建立函数关系式,再用导数求最大值.2.解答此类问题时,要认真理解相应的概念,如:成本、利润、单价、销售量、广告费等等,以免因概念不清而导致解题错误.[再练一题]3.某工厂生产某种产品,已知该产品的月生产量x (吨)与每吨产品的价格p (元/吨)之间的关系式为p =24 200-15x 2,且生产x 吨产品的成本为R =50 000+200x (元).问该工厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本)【解】 每月生产x 吨时的利润为f (x )=⎝⎛⎭⎪⎫24 200-15x 2x -(50 000+200x )=-15x 3+24 000x -50 000(x ≥0).由f ′(x )=-35x 2+24 000=0,解得x 1=200,x 2=-200(舍去).因为f (x )在[0,+∞)内只有一个点x =200使f ′(x )=0, 故它就是最大值点,且最大值为f (200)=-15×2003+24 000×200-50 000=3 150 000(元).所以每月生产200吨产品时利润达到最大,最大利润为315万元.[构建·体系]1.要做一个圆锥形漏斗,其母线长为20 cm ,要使其体积最大,则其高为( )A.2033cm B .100 cm C .20 cmD.203cm 【解析】 设圆锥的高为h cm ,则V =13π(400-h 2)×h ,所以V ′(h )=13π(400-3h 2).令V ′(h )=0,得h 2=4003,所以h =2033.故选A.【答案】 A2.某产品的销售收入y 1(万元)是产品x (千台)的函数:y 1=17x 2(x >0);生产总成本y 2(万元)也是x 的函数:y 2=2x 3-x 2(x >0),为使利润最大,应生产( )A .9千台B .8千台C .6千台D .3千台【解析】 利润函数y =y 1-y 2=18x 2-2x 3(x >0),求导得y ′=36x -6x 2,令y ′=0,得x =6或x =0(舍去).因0<x <6时,y =18x 2-2x 3递增,x >6时,y =18x 2-2x 3递减,∴x =6时利润最大,故选C. 【答案】 C3.把长度为16的线段分成两段,各围成一个正方形,则它们的面积和的最小值为________. 【导学号:25650136】【解析】 设其中一段长为x ,则另一段长为16-x ,设两正方形的面积分别为S 1,S 2,面积之和为S ,则S =S 1+S 2=⎝ ⎛⎭⎪⎫x 42+⎝⎛⎭⎪⎫16-x 42=116x 2+116x 2-2x +16 =18x 2-2x +16(0<x <16). 令S ′=14x -2=0,得x =8.即x =8时, S 有最小值,最小值为8. 【答案】 84.某商品一件的成本为30元,在某段时间内,若以每件x 元出售,可卖出(200-x )件,当每件商品的售价为________元时,利润最大.【解析】 利润为S (x )=(x -30)(200-x )=-x 2+230x -6 000,S ′(x )=-2x +230, 由S ′(x )=0得x =115,这时利润达到最大.【答案】1155.某造船公司年最高造船量是20艘,已知造船x艘的产值函数为R(x)=3 700x+45x2-10x3(单位:万元),成本函数为C(x)=460x+5 000(单位:万元).求:(1)利润函数P(x)(提示:利润=产值-成本)的解析式;(2)年造船量安排多少艘时,可使造船公司的年利润最大?【解】(1)P(x)=R(x)-C(x)=-10x3+45x2+3 240x-5 000(x∈N且x∈[1,20]).(2)P′(x)=-30x2+90x+3 240=-30(x+9)(x-12)(x∈N且x∈[1,20]),当1≤x≤12时,P′(x)>0,P(x)单调递增;当12<x≤20时,P′(x)<0,P(x)单调递减;∴x=12时,P(x)取最大值,即年造船12艘时,造船公司的年利润最大.。
人教版高中选修1-1第三章导数及其应用课程设计

人教版高中选修1-1第三章导数及其应用课程设计一、课程背景本课程是人教版高中选修1-1第三章导数及其应用课程设计,主要面向高中一年级学生,介绍导数的概念、性质以及其在几何、物理等领域中的一些应用。
在基础知识的掌握上,重点突出了导函数的求法和利用导数解决问题的方法。
二、课程目标1.掌握导数的概念、性质,并能正确运用导数的基本公式求导;2.理解导函数的概念,在实际应用中能正确求解;3.能够应用导数的求法,解决几何、物理等相关问题;4.提高学生对数学的兴趣,增强数学思维能力。
三、教学内容1. 导数的概念与求法(1)导数的定义导数的定义、几何意义和物理意义。
(2)导数的求法应用导数的基本公式,如幂函数、指数函数、对数函数等的求导法则。
(3)导数的性质对导数的加法、减法、乘法、除法运算法则的学习。
2. 导函数的求法与应用(1)导函数的概念导函数的概念及其几何意义。
(2)导函数的求法应用导数的运算法则,求出函数的导函数。
(3)导函数的应用介绍导数在极值、凸性、函数图像研究、边界条件问题等方面的应用。
3. 积分与微积分基本定理(1)积分的概念积分的基本概念及其场景应用。
(2)微积分基本定理微积分基本定理的概述及其在求不定积分和定积分中的应用。
四、教学方法1. 探究式学习法利用问题导向的学习方法,启发学生思考,提高学生自主学习能力。
2. 教师引导法教师根据学生的基础与能力,引导学生进行分析、反思和总结。
3. 交互式教学法教师与学生之间进行交互式的教学模式,营造积极、健康的课堂气氛。
五、教学评估1. 平时评估平时成绩占全年总成绩30%;包括课堂表现、作业完成情况、参与课外活动等。
2. 期中期末考试期中考试占全年总成绩30%;期末考试占全年总成绩40%。
六、教学资源1. 学生教材人教版高中选修1-1教材。
2. 实验器材教师准备导数计算器、积分计算器、激光仪等。
七、教学反思通过教学实践,本教案把“探究式学习法”、“教师引导法”、“交互式教学法”等多种教学方法融合在一起,形成了自我启发、团队学习、交互参与等特点鲜明的“高中选修1-1导数及其应用”互动教学模式,活跃了课堂气氛,激发了学生学习的兴趣,提升了他们的学习成绩和自主学习能力。
选修1-1-第三章-《导数及其应用》教案

第三章 导数及其应用备课人 周志英3.1 导数的概念教学目的1.了解导数形成的背景、思想和方法;正确理解导数的定义、几何意义;2.使学生在了解瞬时速度的基础上抽象出变化率,建立导数的概念;掌握用导数的定义求导数的一般方法3.在教师指导下,让学生积极主动地探索导数概念的形成过程,锻炼运用分析、抽象、归纳、总结形成数学概念的能力,体会数学知识在现实生活中的广泛应用。
教学重点和难点导数的概念是本节的重点和难点 教学过程一、前置检测(导数定义的引入)1.什么叫瞬时速度?(非匀速直线运动的物体在某一时刻t0的速度) 2.怎样求非匀速直线运动在某一时刻t0的速度?在高台跳水运动中,如果我们知道运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在关系()105.69.42++-=t t t h ,那么我们就会计算任意一段的平均速度v ,通过平均速度v 来描述其运动状态,但用平均速度不一定能反映运动员在某一时刻的瞬时速度,那么如何求运动员的瞬时速度呢?问题:2秒时的瞬时速度是多少?我们现在会算任意一段的平均速度,先来观察一下2秒附近的情况。
先计算2秒之前的t ∆时间段内的平均速度v ,请同学们完成表格1左边部分,(事先准备好的),再完成表格的右边部分〉表格1 格 20<∆t 时,在[]2,2t ∆+这段时间内0>∆t 时,在[]t ∆+2,2这段时间内()()()1.139.41.139.422222-∆-=∆-∆+∆=∆+-∆+-=t tt t t t h h v ()()()1.139.41.139.422222-∆-=∆∆-∆-=-∆+-∆+=t tt t t h t h v 当-=∆t 0.01时,-=v 13.051; 当=∆t 0.01时,-=v 13.149; 当-=∆t 0.001时,-=v 13.095 1; 当=∆t 0.001时,-=v 13.104 9; 当-=∆t 0.000 1时,-=v 13.099 51;当=∆t 0.000 1时,-=v 13.100 49;当-=∆t 0.000 01时,-=v 1 3.099 951;当=∆t 0.000 01时,-=v 13.100 049; 当-=∆t 0.000 001时,-=v 13.099 995 1;当=∆t 0.000 001时,-=v 13.100 004 9;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型一分类讨论思想在导数中的应用
例1设函数f(x)=2x3-3(a-1)x2+1,其中a≥1.
(1)求f(x)的单调区间;
(2)讨论f(x)的极值.
解(1)由已知得f′(x)=6x[x-(a-1)],
令f′(x)=0,解得x1=0,x2=a-1.
当a=1时,f′(x)=6x2,f(x)在(-∞,+∞)上单调递增.当a>1时,f′(x),f(x)随x的变化情况如下表:
(2)由(1)知,当a =1时,函数f (x )没有极值; 当a >1时,函数f (x )在x =0处取得极大值1, 在x =a -1处取得极小值1-(a -1)3.
反思与感悟 分类讨论是一种逻辑方法,也是一种数学思想,其实质是“化整为零,各个击破,再积零为整”.通过分类讨论,可以把一个变幻不定的问题分解成若干个相对确定的问题,从而使问题变得条理清晰,层次分明,易于解决.
分类讨论思想在本章中主要体现在问题中含有参数或问题是分类给出的题型中.例如,单调性的判断、求极值、求最大(小)值等问题往往要用到分类讨论.
跟踪训练1 设函数f (x )是定义在[-1,0)∪(0,1]上的偶函数,当x ∈[-1,0)时,f (x )=x 3-ax (a 为实数).
(1)当x ∈(0,1]时,求f (x )的解析式;
(2)若a >3,试判断f (x )在(0,1]上的单调性,并证明你的结论; (3)是否存在a ,使得x ∈(0,1]时,f (x )有最大值1? 解 (1)设x ∈(0,1],则-x ∈[-1,0). ∵f (x )为偶函数,
∴f (x )=f (-x )=-x 3+ax , 即x ∈(0,1]时,f (x )=-x 3+ax . (2)f (x )在(0,1]上单调递增,证明如下: f ′(x )=-3x 2+a ,x ∈(0,1], ∴-3x 2∈[-3,0).
又a >3,∴a -3x 2>0,即f ′(x )>0. ∴f (x )在(0,1]上单调递增.
(3)当a >3时,f (x )在(0,1]上单调递增, ∴f (x )max =f (1)=a -1=1. ∴a =2与a >3矛盾.
当0≤a ≤3时,令f ′(x )=a -3x 2=0, 得x =a
3
或x =-a
3
(舍去). x ∈⎝
⎛⎦
⎤
0,
a 3时,f ′(x )>0, ∴f (x )在⎝
⎛⎦
⎤
0,
a 3上单调递增. x ∈⎣
⎡
⎦
⎤
a 3,1时,f ′(x )<0, ∴f (x )在⎣
⎡
⎦
⎤
a 3,1上单调递减.。