高等数学教学设计课题——导数
同济大学高等数学《导数及其应用》word教案

同济大学高等数学《导数及其应用》w o r d教案(总35页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第 9 次课 2 学时第二章 导数与微分导数和微分是高等数学中的重要内容之一,也是今后讨论一切问题的基础。
导数数大体上变化多少,它从根本上反映了函数的变化情况。
本章主要学习和讨论导数和微分的概念以及它们的计算方法,以后将陆续的介绍它们的用途。
§2、1 导数的概念 一、 引例 1、切线问题:切线的概念在中学已见过。
从几何上看,在某点的切线就是一直线,它在该点和曲线相切。
准确地说,曲线在其上某点P 的切线是割线PQ 当Q 沿该曲线无限地接近于P 点的极限位置。
设曲线方程为)(x f y =,设P 点的坐标为),(00y x p ,动点Q 的坐标为),(y x Q ,要求出曲线在P 点的切线,只须求出P 点切线的斜率k 。
由上知,k 恰好为割线PQ 的斜率的极限。
我们不难求得PQ 的斜率为:0)()(x x x f x f --;因此,当Q P →时,其极限存在的话,其值就是k ,即00)()(limx x x f x f k x x --=→。
若设α为切线的倾角,则有αtan =k 。
2、速度问题:设在直线上运动的一质点的位置方程为)(t s s =(t 表示时刻),又设当t 为0t 时刻时,位置在)(0t s s =处,问:质点在0t t =时刻的瞬时速度是多少?为此,可取0t 近邻的时刻t ,0t t >,也可取0t t <,在由0t 到t 这一段时间内,质点的平均速度为00)()(t t t s t s --,显然当t 与0t 越近,用00)()(t t t s t s --代替0t 的瞬时速度的效果越佳,特别地,当0t t →时,00)()(t t t s t s --→某常值0v ,那么0v 必为0t 点的瞬时速度,此时,00)()(lim 0t t t s t s v t t --=→二、 导数的定义综合上两个问题,它们均归纳为这一极限00)()(limx x x f x f x x --→(其中0x x -为自变量x在0x 的增量,)()(0x f x f -为相应的因变量的增量),若该极限存在,它就是所要讲的导数。
高等数学-导数的概念-教案

辽宁省农村信用社招聘:时政考点模拟试题本卷共分为1大题50小题,作答时间为180分钟,总分100分,60分及格。
一、单项选择题(共50题,每题2分。
每题的备选项中,只有一个最符合题意)1.(★★☆☆☆)张某窃得同事一张银行借记卡及身份证,向丈夫何某谎称路上所拾。
张某与何某根据身份证号码试出了借记卡密码,持卡消费5000元。
关于本案,下列哪一说法是正确的__A.张某与何某均构成盗窃罪B.张某与何某均构成信用卡诈骗罪C.张某构成盗窃罪,何某构成信用卡诈骗罪D.张某构成信用卡诈骗罪,何某不构成犯罪2.我国对法律溯及力问题,实行的原则是__。
A.法在任何情况下均溯及既往B.法在任何情况下均不溯及既往C.法在一般情况下溯及既往,但为了更好地保护公民、法人或者其他组织的权利和利益而作的特别规定除外D.法在一般情况下不溯及既往,但为了更好地保护公民、法人或者其他组织的权利和利益而作的特别规定除外3.出席中国共产党第一次全国代表大会的12名党员代表所代表的党员数为__。
A.40多名B.100多名C.70多名D.50多名4.人民群众之所以是历史的创造者,其根本的原因在于__。
A.人民群众是人口的大多数B.人民群众是社会生产力的体现者C.人民群众具有先进思想D.人民群众通晓历史发展规律5. 中国倡导包容性增长,根本目的是__。
A.让所有的人都能参与到经济社会发展过程中B.在可持续发展中实现经济社会协调发展C.消除社会阶层,社会群体之间的隔阂和裂隙D.让经济全球化和经济发展成果惠及所有国家6. 社会主义法治理念是中国特色社会主义理论体系的组成部分,这个理论体系包含邓小平理论。
20世纪70年代末至90年代初,中共中央领导集体的主要代表邓小平曾创造性地提出一系列具体的法律思想。
判断下列哪一项不是邓小平理论法律思想的重要内容__ A.“有法可依、有法必依、执法必严、违法必究”的十六字方针B.一手抓建设和改革,一手抓法制C.用法律措施维护安定团结的政治局面D.明确提出“依法治国,建设社会主义法治国家”的基本方略7. 以下是客观唯心主义的是__。
导数的概念教案及说明

导数的概念教案及说明一、教学目标1. 让学生理解导数的定义和几何意义。
2. 掌握导数的计算方法。
3. 能够应用导数解决实际问题,如速度、加速度等。
二、教学内容1. 导数的定义2. 导数的几何意义3. 导数的计算方法4. 导数在实际问题中的应用三、教学重点与难点1. 重点:导数的定义、几何意义和计算方法。
2. 难点:导数的计算方法和在实际问题中的应用。
四、教学方法1. 采用讲解、演示、练习、讨论相结合的方法。
2. 使用多媒体课件辅助教学。
五、教学过程1. 导入:回顾函数的斜率概念,引导学生思考函数在某一点的瞬时变化率。
2. 导数的定义:介绍导数的定义,强调极限的思想,引导学生理解导数的含义。
3. 导数的几何意义:通过图形演示,让学生直观地理解导数表示曲线在某一点的切线斜率。
4. 导数的计算方法:讲解导数的计算方法,包括基本导数公式、导数的四则运算等。
5. 应用导数解决实际问题:举例说明导数在实际问题中的应用,如速度、加速度等。
6. 练习:布置练习题,让学生巩固导数的概念和计算方法。
7. 总结:对本节课的内容进行总结,强调导数的重要性和应用价值。
8. 作业:布置作业,巩固所学内容。
六、教学反思在教学过程中,注意观察学生的反应,根据学生的实际情况调整教学节奏和难度。
针对学生的薄弱环节,加强讲解和练习。
七、教学评价通过课堂表现、作业和练习,评价学生对导数的理解和应用能力。
鼓励学生积极参与讨论,提高解决问题的能力。
八、课时安排本节课安排2课时,共计45分钟。
九、教学资源1. 多媒体课件2. 练习题3. 相关参考资料十、教学拓展1. 导数的进一步应用,如函数的单调性、极值等。
2. 导数在其他学科中的应用,如物理、化学等。
六、教学策略1. 案例分析:通过分析具体的函数实例,让学生理解导数的计算过程和应用场景。
2. 小组讨论:鼓励学生分组讨论导数问题,培养合作解决问题的能力。
3. 实际操作:让学生利用计算器求解导数,增强实践操作能力。
大学导数优秀教案设计

教学目标:1. 理解导数的概念,掌握导数的定义和几何意义。
2. 掌握导数的计算方法,包括求导公式和导数法则。
3. 能够运用导数解决实际问题,如函数的单调性、极值、最值等。
4. 培养学生的逻辑思维能力和分析问题、解决问题的能力。
教学重点:1. 导数的定义和几何意义。
2. 导数的计算方法,包括求导公式和导数法则。
3. 导数的应用。
教学难点:1. 导数的定义和几何意义的理解。
2. 导数计算方法的掌握。
教学过程:一、导入1. 通过实际问题引入导数的概念,如曲线的切线斜率、瞬时速度等。
2. 引导学生思考如何求解曲线在某一点的切线斜率。
二、新课讲授1. 导数的定义:- 给出函数在某一点的导数的定义,让学生理解导数的含义。
- 通过几何意义解释导数,如曲线在某一点的切线斜率。
2. 导数的计算方法:- 介绍求导公式,如幂函数、指数函数、对数函数、三角函数等的导数。
- 讲解导数法则,如和差法则、乘除法则、链式法则等。
3. 导数的应用:- 讲解函数的单调性、极值、最值等概念。
- 通过实例讲解如何运用导数解决实际问题。
三、课堂练习1. 学生独立完成导数计算题目,巩固所学知识。
2. 教师巡视指导,解答学生在解题过程中遇到的问题。
四、课堂小结1. 回顾本节课所学内容,强调导数的定义、计算方法和应用。
2. 引导学生总结导数在实际问题中的应用,如物理、经济、工程等领域。
五、课后作业1. 完成课后习题,巩固所学知识。
2. 查阅资料,了解导数在其他领域的应用。
教学评价:1. 课堂表现:观察学生在课堂上的参与程度、回答问题的情况。
2. 作业完成情况:检查学生课后作业的完成质量。
3. 期末考试:通过试卷考察学生对导数知识的掌握程度。
大学导数的概念教案

一、教学目标1. 知识目标:理解导数的概念,掌握导数的定义、性质和计算方法。
2. 能力目标:能够运用导数解决实际问题,提高数学思维能力。
3. 情感目标:培养学生严谨、求实的作风,激发对数学学习的兴趣。
二、教学内容1. 导数的定义2. 导数的性质3. 导数的计算方法4. 导数的应用三、教学过程(一)导入1. 引入问题:在物理学中,速度是描述物体运动快慢的物理量,那么如何描述物体在某一瞬间的运动快慢呢?2. 引出导数的概念:导数是描述函数在某一点处变化快慢的物理量。
(二)讲解导数的定义1. 定义:设函数y=f(x)在点x0的某邻域内有定义,如果极限lim[f(x) - f(x0)] / (x - x0)存在,则称函数y=f(x)在点x0可导,该极限值称为函数y=f(x)在点x0的导数,记作f'(x0)或dy/dx|x=x0。
2. 强调定义中的关键点:函数在某点的导数存在,意味着函数在该点附近的变化趋势可以由该点的导数来描述。
(三)讲解导数的性质1. 线性性质:若函数y=f(x)和y=g(x)在点x0可导,则函数y=f(x) + g(x)和y=kf(x)在点x0也可导,且(f+g)'(x0) = f'(x0) + g'(x0),(kf)'(x0) =kf'(x0)。
2. 可导性:若函数y=f(x)在点x0可导,则其反函数y=g(x)在点f(x0)也可导,且g'(f(x0)) = 1 / f'(x0)。
(四)讲解导数的计算方法1. 基本求导公式:常数的导数为0,幂函数的导数为x^n的n次方,指数函数的导数为e^x,对数函数的导数为1/x。
2. 导数的运算法则:和、差、积、商的导数法则。
(五)讲解导数的应用1. 求函数在某点的瞬时变化率。
2. 求函数在某点附近的切线方程。
3. 求函数的极值和拐点。
4. 解决实际问题。
(六)课堂小结1. 总结导数的概念、性质和计算方法。
导数的概念教案及说明

导数的概念教案及说明一、教学目标1. 理解导数的定义和物理意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。
二、教学内容1. 导数的定义:引入极限的概念,讲解导数的定义及求导法则;2. 导数的计算:讲解基本函数的导数公式,四则运算法则,复合函数的链式法则;3. 导数的应用:讲解导数在实际问题中的应用,如运动物体的瞬时速度、加速度,函数的单调性、极值等。
三、教学重点与难点1. 导数的定义及求导法则;2. 导数的计算方法;3. 导数在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解导数的定义、求导法则及应用;2. 利用例题,演示导数的计算过程;3. 引导学生运用导数解决实际问题。
五、教学过程1. 引入极限的概念,讲解导数的定义:导数表示函数在某一点的瞬时变化率,通过极限的概念来理解导数;2. 讲解基本函数的导数公式,四则运算法则,复合函数的链式法则:引导学生掌握导数的计算方法;3. 利用例题,演示导数的计算过程:让学生通过例题,加深对导数计算方法的理解;4. 讲解导数在实际问题中的应用:如运动物体的瞬时速度、加速度,函数的单调性、极值等,培养学生运用导数解决实际问题的能力;5. 课堂练习:布置相关练习题,巩固所学知识。
教学评价:通过课堂讲解、例题演示、练习题等方式,评价学生对导数的概念、计算方法及应用的掌握程度。
六、教学拓展1. 导数的几何意义:讲解导数表示曲线在某一点的切线斜率,引导学生理解导数的几何interpretation;2. 导数与函数的单调性:讲解导数与函数单调性的关系,引导学生理解如何利用导数判断函数的单调性;3. 导数与函数的极值:讲解导数与函数极值的关系,引导学生如何利用导数求函数的极值。
七、教学案例分析1. 分析实际问题,引导学生运用导数求解:如物体运动的速度、加速度问题,函数的单调性问题等;2. 分析复杂函数的导数求解过程:引导学生理解并掌握复杂函数导数的求解方法。
高等数学导数的概念教案

1. 让学生理解导数的概念,掌握导数的定义和性质。
2. 培养学生运用导数解决实际问题的能力。
3. 引导学生掌握求导数的基本方法。
二、教学内容1. 导数的定义2. 导数的性质3. 求导数的方法4. 导数在实际问题中的应用三、教学重点与难点1. 重点:导数的定义、性质和求导数的方法。
2. 难点:导数的直观理解和求复杂函数的导数。
四、教学过程1. 导入:通过生活中的实例,如速度、加速度等,引导学生思考导数的概念。
2. 讲解:讲解导数的定义,引导学生理解导数的几何意义。
3. 练习:让学生独立完成一些简单函数的导数计算,巩固导数的求法。
4. 应用:结合实际问题,让学生运用导数解决问题,体会导数的应用价值。
5. 总结:对本节课的内容进行总结,强调导数的重要性和求导数的方法。
五、课后作业1. 完成教材上的课后练习题。
2. 找一些实际问题,运用导数解决。
3. 复习本节课的内容,准备下一节课的学习。
1. 评价学生对导数概念的理解程度。
2. 评价学生掌握导数性质和求导数方法的情况。
3. 评价学生在实际问题中运用导数的熟练程度。
七、教学策略1. 采用生动的生活实例引入导数概念,提高学生的学习兴趣。
2. 通过多媒体手段展示导数的几何意义,增强学生的直观感受。
3. 设计具有梯度的练习题,让学生在实践中掌握求导数的方法。
4. 鼓励学生参与课堂讨论,提高学生的思维能力和解决问题的能力。
八、教学资源1. 教材:高等数学导数部分。
2. 多媒体课件:用于展示导数的几何意义和实例分析。
3. 练习题库:用于巩固所学知识和提高解题能力。
4. 网络资源:用于拓展学生视野,了解导数在实际应用中的广泛性。
九、教学反思在教学过程中,要及时关注学生的学习反馈,根据学生的实际情况调整教学节奏和难度。
针对学生的薄弱环节,要加强针对性训练,提高学生的理解能力和应用能力。
注重培养学生的数学思维,激发学生学习高等数学的兴趣。
十、教学拓展1. 导数在微积分学中的应用:极限、积分等。
关于大学导数的教案

一、教学目标1. 知识与技能:掌握导数的定义、性质、计算方法及应用。
2. 过程与方法:通过观察、实验、分析、归纳等方法,培养学生的数学思维能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养严谨的学术态度。
二、教学重点1. 导数的定义2. 导数的性质3. 导数的计算方法4. 导数的应用三、教学难点1. 导数的定义的理解2. 导数的计算方法的应用3. 导数的应用在解决实际问题中的应用四、教学过程(一)导入1. 提问:同学们,我们之前学习了函数,那么什么是函数的瞬时变化率呢?2. 引入导数的概念,说明导数在数学和实际生活中的应用。
(二)新课讲授1. 导数的定义- 通过实例,让学生理解导数的定义,即函数在某一点处的瞬时变化率。
- 讲解导数的几何意义,即函数在某一点处的切线斜率。
- 举例说明导数的物理意义,如速度、加速度等。
2. 导数的性质- 介绍导数的四则运算法则,如和的导数、差的导数、积的导数、商的导数等。
- 讲解导数的复合函数求导法则,如链式法则、乘积法则等。
3. 导数的计算方法- 介绍导数的计算方法,如直接求导法、求导公式法、求导表格法等。
- 通过实例,让学生掌握导数的计算方法。
4. 导数的应用- 讲解导数在几何、物理、经济学等领域的应用。
- 通过实例,让学生理解导数在解决实际问题中的应用。
(三)课堂练习1. 让学生完成课后习题,巩固所学知识。
2. 教师巡视课堂,解答学生提出的问题。
(四)总结1. 回顾本节课所学内容,强调导数的定义、性质、计算方法及应用。
2. 引导学生思考导数在实际生活中的应用,激发学生对数学的兴趣。
五、教学反思1. 关注学生的学习情况,及时调整教学策略。
2. 注重培养学生的数学思维能力,提高学生的数学素养。
3. 结合实际,让学生体会导数在各个领域的应用,激发学生的学习兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)例 ,求
例 ,求
例 ,求
例 ,求
例 假设气体以100立方厘米/秒的速度注入气球,假定气体的压力不变,那么当半径是10厘米时,气球半径增加的速率是多少?
教师启发讲解
板书
师生研讨
45分钟
4
(任务3)
反函数求导
(1)学生阅读52-53页,总结反函数求导的办法
(2)
例 根据 的导数,求 的导数
任务1导数的四则运算
任务2复合函数求导数法则
任务3反函数求导法则
任务4 隐函数求导法则
任务5 对数求导法则
任务6 参数方程求导法则
案例1 ,求 ,
案例2(注水问题)若水以2立方米/分的速度灌入一个高为10米的、底面半径是5米的圆锥形水槽中,问当水深为6米时,水位的上升速度是多少?
案例3求方程 所确定的一阶导数 的值,再求二阶导数
例 计算 的二阶导数
教师启发讲解
板书
师生研讨
40分钟
5
(任务4)
总结基本初等函数的导数运算公式
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12) ,
(13)
(14)
(15)
(16)
学生讨论总结
30分钟
5
(案例)
案例应用
案例1电流强度模型 设在时间 这段时间通过导线横截面的电流是 ,利用导数概念分析电流强度
案例4求由方程 确定的隐函数的导数
教学
材料
高等数学教材 侯风波主编 高等教育
高等数学习题集 天德主编 科技
高等数学应用205例 心灿主编高等教育
经济数学基础 顾静相主编 高等教育
二、教学设计
步骤
教学容
教学方法
教学手段
学生活动
时间
分配
1
(告知)
本单元学习目标:
导数的四则运算
复合函数求导数法则
反函数求导法则
例 根据 的导数求 的导数
例 ,求
例 ,求
教师启发讲解
板书
师生研讨
45分钟
5
(任务4)
隐函数求导法
(1)学生阅读55页容总结隐函数求导法则
(2)方程两侧对x求导,遇到含有y的项,先对y求导,再对x求到,这样得到一个含有 的式子,求出 即可
例求由方程 确定的隐函数的导数
例设曲线 ,求在 处的切线斜率和切线方程
案例2细杆的线密度模型设一根质量非均匀分布的细杆放在x轴上,在[0,x]上的质量是x的函数m=m(x),求杆上点 处的线密度
学生分组自主学习法
学生讨论
35分钟
作业
默写基本初等函数导数公式
课后
体会
3.2求导法则单元教学设计
一、教案头
单元标题:
求导法则
单元教学学时
8
在整体设计中的位置
第17-20次
授课班级
隐函数求导法则
对数求导法则
参数方程求导法则
述
板书
识记
10分钟
2
(引入
任务1)
导数的四则运算
(1)学生阅读教材47页容
(2)学生总结导数如何四则运算
(3)
例 ,求
例 ,求
例 ,求
例 ,求
例 ,
求
教师讲解
教师提示
学生认真听讲
分组研讨
45分钟
3
(任务2)
复合函数求导数
(1)学生阅读49页容总结如何求复合函数的导数
案例3 求方程 所确定的一阶导数 的值,再求二阶导数
案例4 求由方程 确定的隐函数的导数
学生自行讨论解决
50分钟
作业
59页 1 2 3 4 5 6
课后
体会
3.3微分单元教学设计
一、教案头
单元标题:
微分
单元教学学时
上课地点
教学
目标
能力目标
知识目标
素质目标
➀能够掌握导数的四则运算并运用
➁能够掌握复合函数求导数法则并运用
➂能够掌握反函数求导法则并运用
➃能够掌握隐函数求导法则并运用
➄能够掌握对数求导法则并运用
➅能够掌握参数方程求导法则并运用
导数运算法则6条
➀深刻思维能力
➁团结合作能力
➂语言表达能力
能力训练任务
及案例
3.1导数概念单元教学设计
一、教案头
单元标题:
导数概念
单元教学学时
4
在整体设计中的位置
第15、16次
授课班级
上课地点
教学
目标
能力目标
知识目标
素质目标
➀能够变速直线运动速度、切线斜率
➁能够抽象出导数概念
➂能够利用导数概念计算导数
➃能够计算高阶导数
➄能够总结基本函数的导数运算公式
导数概念
左右导数
计算导数
设一个物体的路程与时间的函数是s=s(t),试研究在时刻 时的瞬时速度
(2)切线斜率
函数y=f(x)在 处的切线斜率
教师画图讲解
教师提示
学生认真听讲
分组研讨
50分钟
3
(任务2)
导数
通过任务2,抽象出任意函数f=f(x)在 的导数概念
右导数:
左导数:
例 求 在x=2处的导数
例 求 在 处的导数
例 求 在 处的导数
教学
材料
高等数学教材 侯风波主编 高等教育
高等数学习题集 天德主编 科技
高等数学应用205例 心灿主编高等教育
经济数学基础 顾静相主编 高等教育
二、教学设计
步骤
教学容
教学方法
教学手段
学生活动
时间
分配
1
(告知)
本单元学习目标:
瞬时速度,切线斜率
导数概念,高阶导数
述
板书
识记
5分钟
2
(引入
任务1)
(1)瞬时速度
例求由方程 确定的隐函数的导数 。
例求由方程 确定的隐函数的导数
学生分组自主学习法
教师提示
学生讨论
45分钟
6
(任务5)
对数求导法则
(1)学生阅读56页容总结对数求导法则
(2)对数求导事实上是把一些通过乘除乘方开方构成的复杂函数转化成隐函数,然后再运用隐函数求导法则求出导数
例 ,求
例 ,求
例 ,求
例 ,求
例设 求
例设 ,其中 在 处连续,求
例设函数 在 处可导,且 ,求
教师启发讲解
注意两个定义公式
板书
师生研讨
50分钟
4
(任务3)
高阶导数
在一阶导数的基础上再求导就是二阶导数
在二阶导数的基础上再求导就是三阶导数
以此类推
一阶导数记作:
二阶导数记作:
三阶导数记作:
阶导数记作:
例 计算 的二阶导数
例 计算 的二阶导数
➀深刻思维能力
➁团结合作能力
➂语言表达能力
能力训练任务
及案例
任务1理解变速直线运动速度、切线斜率
任务2抽象导数概念
任务3 简单计算导数、高阶导数
任务4 总结基本函数的导数运算公式
案例1(电流强度模型)电流强度模型 设在时间 这段时间通过导线横截面的电流是 ,利用导数概念分析电流强度
案例2(细杆的线密度模型)设一根质量非均匀分布的细杆放在x轴上,在[0,x]上的质量是x的函数m=m(x),求杆上点 处的线密度
学生分组自主学习法
教师提示
学生讨论
45分钟
7
(任务6)
参数方程求导
(1)学生阅读57页总结参数方程求导法
(2)设参数方程
则
例设参数方程 ,求
例设 ,求
学生分组自主学习法
教师提示
学生讨论
45分钟
8
(案例)
案例应用
案例1 ,求 ,
案例2 若水以2立方米/分的速度灌入一个高为10米的、底面半径是5米的圆锥形水槽中,问当水深为6米时,水位的上升速度是多少?