高等数学-复合函数的偏导数

合集下载

§8-4__多元复合函数的微分法及偏导数的几何应用

§8-4__多元复合函数的微分法及偏导数的几何应用

8.4多元复合函数的微分法在一元函数微分学中,复合函数的链式求导法则是最重要的求导法则之一,它解决了很多比较复杂的函数的求导问题.对于多元函数,也有类似的求导法则.8.4.1多元复合函数的求导法则 1.二元复合函数求导法则与一元复合函数求导相比,二元复合函数的求导问题要复杂的多.对于二元函数),(v u f z =,中间变量u 和v 都可以是x 和y 的二元函数;也可以只是某一个变量t 的函数,还可能中间变量u 和v 分别是不同个数自变量的函数,譬如u 是y x ,的函数,而v 只是x 的函数;等等。

下面讨论二元复合函数的求导法则,对二元以上的多元函数的求导法则可类似推出.定理8.4.1设函数),(v u f z =是v u ,的函数,),(),,(y x v y x u ψϕ==.若),(),,(y x y x ψϕ在点),(y x 处偏导数都存在,),(v u f z =在对应点),(v u 处可微,则复合函数)],(),,([y x y x f z ψϕ=在点),(y x 处关于y x ,的两个偏导数都存在,且yv v z y u u z y z x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂∂∂⋅∂∂+∂∂⋅∂∂=∂∂, (8-1) 我们借助于复合函数的函数结构图对复合函数求偏导数的过程进行分析.函数)],(),,([y x y x f z ψϕ=的结构图,如图8-4所示.从函数结构图可以看出,z 和x 的函数关系可以由两条路径得到.一条是经中间变量u 到达自变量x ,还有一条是经中间变量v 到达自变量x 的.从公式(1)的第一式可以看出,z 和x 的函数关系有两条路径,对应公式中就有两项,其中每一项由两个因子的乘积表示,两个因子的乘积都是函数关于中间变量的偏导数和中间变量关于自变量的偏导数的乘积构成.例8.4.1设)sin(y x e z xy+=,求x z ∂∂和yz ∂∂. 解:令y x v xy u +==,,则v e z usin = 函数结构图,如图8-5所示.x z ∂∂=u z ∂∂x u ∂∂⋅+v z ∂∂xv ∂∂⋅=sin cos uu e v y e v ⋅+ =sin()cos()xy xye x y y e x y +++,y z ∂∂=u z ∂∂y u ∂∂⋅+v z ∂∂yv ∂∂⋅=sin cos uu e v x e v ⋅+=sin()cos()xy xye x y x e x y +++. 例8.4.2设2)(2y x y x z -+=,求x z ∂∂和yz ∂∂. 解:令22,y x v y x u -=+=,则vu z =,函数结构图,如图8-5所示.x z ∂∂=u z ∂∂x u ∂∂⋅+v z ∂∂xv∂∂⋅=1ln v v vu u u -+ =2222122()()()ln()x y x yx y x y x y x y ----+++-,y z ∂∂=u z ∂∂y u ∂∂⋅+v z ∂∂yv∂∂⋅=12ln (2)v v vu y u u y -+- =22221222()()2()ln()x y x yy x y x y y x y x y ----+-+-.2.二元复合函数求导法则的推广和变形多元复合函数的中间变量可能是一个,也可能多于一个,同样,自变量的个数可能只有一个,也可能是两个或者更多.我们可以对定理1进行推广和变形,分以下几种情形讨论:(1)当函数z 有两个中间变量,而自变量只有一个,即)(),(),,(t v v t u u v u f z ===.函数结构图,如图8-6所示.因此(8-1)变形成为dtdv v z dt du u z dt dz ⋅∂∂+⋅∂∂=.因为复合结果和中间变量都是t 的一元函数,应该使用一元函数的导数记号;为了与一元函数的导数相区别,我们称复合后一元函数的导数dtdz 为全导数.当函数z 有三个中间变量,而自变量只有一个,即)(),(),(),,,(t w w t v v t u u w v u f z ====.函数结构图,如图8-7所示.因此公式(8-1)可以推广成为 dt dw w z dt dv v z dt du u z dt dz ⋅∂∂+⋅∂∂+⋅∂∂=.(2)当函数z 有一个中间变量,而自变量有两个.例如),(),,(y x u x u f z ϕ==.函数结构图,如图8-8所示.此时(8-1)变形成为.yu u f y z x f x u u f x z ∂∂⋅∂∂=∂∂∂∂+∂∂⋅∂∂=∂∂, 在上面第一个式中,xz∂∂表示在复合函数]),,([x y x f z ϕ=中,把y 看作常量,求得的z 对x 的偏导数;xf∂∂表示在复合函数],[x u f z =中,把u 看作常量,求得的z 对x 的偏导数,因此x z ∂∂和xf ∂∂表示的含义不同,在求偏导数是一定要注意,记号上不能混淆. 例如),(),(y x u u f z ϕ==,函数结构图,如图8-9所示.此时(8-1)变形成为.yu du dz y z x u du dz x z ∂∂⋅=∂∂∂∂⋅=∂∂,(3)当函数z 有两个中间变量,而自变量有三个,即),,(),,,(),,(w v u y y w v u x x y x f z ===.函数结构图,如图8-10所示。

复合函数的偏导数

复合函数的偏导数

由于函数z f (u, v)在点(u, v)有连续偏导数
z

z u
u

z v
v

1u

2v,
当u 0,v 0时, 1 0, 2 0
z tz u源自u tz v

v t

1
u t


2
v t
当t 0时, u 0,v 0
证: 把 u (x2 y2 )看作是由函数
u (z)及 z x2 y2
复合而成,分别对 x 与 y求导得
u (z) 2x, u (z) 2y,
x
y
从而 x u y u 2xy(z) 2xy(z) 0.
y x
例8 设z f (u, x, y), 其中 f 具有对各变量的连续的 二阶偏导数,且 u xey , 求 2 z . yx
ux
zv
z z u z v z w y u y v y w y
wy
特殊地 z f (u, x, y) 其中 u ( x, y)
即 z f [( x, y), x, y], 令 v x, w y,
v 1, w 0,
x
x
其中 fij表示 f 先对第i个变量求导,再对第j个求二阶偏导.
三、小结
1、链式法则 (特别要注意课中所讲的特殊情况)
2、全微分形式不变性 (理解其实质)
思考题
设z f (u,v, x),而u ( x) ,v ( x),
则 dz f du f dv f , dx u dx v dx x
中的 y 看作不变而对x 的偏导数 变而对x 的偏导数

7-4第四节 多元复合函数和隐函数的偏导数

7-4第四节  多元复合函数和隐函数的偏导数

LOGO
y 的偏导数,复合 x 和 w w( x , y ) 都在点( x , y ) 具有对
函数 z f [ ( x , y ), ( x , y ), w( x , y )] 在对应点( x , y ) 两个偏导数存在,且可用下列公式计算
z z u z v z w , x u x v x w x z z u z v z w z . y u y v y w y
z Fx , x Fz
Fy z . y Fz
LOGO
例:设由方程
e xy 2 z e z 0所确定的隐函数 z z z f ( x , y ),试求 , . x y
YOUR SITE HERE
z 例 5 设 x y z 4 z 0 ,求 2 . x
YOUR SITE HERE
t t
e (cos t sin t ) cos t .
t
YOUR SITE HERE
3、全微分形式不变性
LOGO
z z dz du dv ;当 u ( x , y ) 、v ( x , y ) u v z z dx dy . 时,有dz x y
中的 y 看作不变而对x 的偏导数
变而对 x 的偏导数
v 1, x
w 0, x
v 0, y
w 1. y
YOUR SITE HERE
例 1 设 z e u sin v ,而u xy ,v x y ,
LOGO
z z 求 和 . x y

z z u z v x u x v x
第四节 多元复合函数与隐函 数的求导法则
目录

复合函数求偏导

复合函数求偏导

x u x v x z z u z v .
(1)
y u y v y
复合函数的结构图是
公式(1)给出z对x的偏导数是
z z u z v
(*)
x u x v x
公式(*)与结构图两者之间的对应关系是:偏导数 z 是由两项组成的,每项又是两个偏导数的乘积,公 x 式(*)的这两条规律,可以通过函数的结构图得到,即
y u y v y
u v
其中 z , z不能再具体计算了,这是因为外层函数f u v
仅是抽象的函数记号,没有具体给出函数表达式.
例3 设 w f (x2, xy, xyz),其中f(u,v,w)为可微函数, 求 w, w, w.
x y z
解 令 u x2,v xy,t xyz.可得
z z u z v y u y v y
eu sin v x eu cos v 1
exy[xsin( x y) cos( x y)].
解法2 对于具体的二元复合函数,可将中间变量u,v, 用x,y代入,则得到 z exy sin( x y) ,z 是x,y二元复合函数,根 据复合函数的链式法则,得
例8
求u
x
x
例1
设 z eu sinv,u
xy,v
x
y, 求 z , z . x y
解法1 得
z z u z v x u x v x
eu sin v y eu cos v 1
exy[ y sin(x y) cos(x y)],
z z u z v z w.
(2)
x u x v x w x
同理可得到,

求复合函数偏导数的链式法则解

求复合函数偏导数的链式法则解
z x
Yunnan University
e [ y sin( x y ) cos( x y )]dx
xy
z y
e xy [ x sin( x y ) cos( x y )]dy .
§2. 求复合函数偏导数的链式法则
例 9 已知 e

xy
d e
2 z e 0 ,求 z 和 z .
Yunnan University
§2. 求复合函数偏导数的链式法则
u u 证明: ' ', a ' a ', x t 2u 2u 2 2 '' '', a '' a '', 2 2 x t 所以
2 2u u 2 a . 2 2 t x
将 x0 , y0 换成D内任一点 x , y , 有 xf yf nf x , y ,
' 1 ' 2
即 f f x y nf . x y
Yunnan University
§2. 求复合函数偏导数的链式法则
对z f x , y
x 2 y 2 , 它满足
Yunnan University
§2. 求复合函数偏导数的链式法则
二、复合函数的全微分
设函数 z f ( u, v ) 具有连续偏导数,则 u,v 不论是 自变量还是中间变量,总有全微分
dz z du z d,结论显然。
(2)如果 u,v 是中间变量, u ( x , y ), v ( x , y ). 有全微分:
§2. 求复合函数偏导数的链式法则

高等数学基础概念解读及例题演练-偏导数及多元复合函数的求导法则

高等数学基础概念解读及例题演练-偏导数及多元复合函数的求导法则

存在,那么称极限为函数z= J(x,y) 在点(布,Yo ) 处对于x的偏导数,记作
一|。'ZI
δ!X lx=xo
;:ll'I ,斗ax lx=xo
,z;lx=句或兀(xo ,Yo ). )I=均
类似的,函数 z =f(x,y) 在点(x。. ,Yo ) 对y的偏导数定义为
lim /(布,Yo +11y)-f(句,Yo )
dt
[答案J e' (cost-sint)+cost
第三节全微分及全微分形式不变性 设函数Z = f(x,y) 在点。,y) 的某邻域内有定义,如果函数在点(x,y) 的全增量
&=f(x+缸, y+6y)-f(x,y)
可以表示为 &=AAt+B6y+o(p),
其中 A,B 不依赖于 llx和6y ,而仅与 x和y 有关, p=o(」(At)2+(6y)勺,那么称函数
az , az 例13设
z=f(lnx

一),其中函数
y
f(u

可微,贝tlx

ax

Y'�



[答案JO
(2012年,数学二)
f 例14设 z = f(x+ y,x-y,圳,其中 具有二阶连续偏导数, 求dz 与£ axay 乙
λ(
[答案]飞
’+J;’+yj3' I)dx+飞(刀’+儿’+乓f;' I)命;
【解题步骤】理清函数与变元之间的关系z (1)画出函数结构图,理清函数间复合关系,注意到哪些变元是自变量,中间变量,因变量. (2)注意函数映射是多元函数,还是一元函数, 注意导数符号的不同. (3)先对中间变量求偏导,再乘以中间变量对自变量的偏导数.

高等数学偏导数

高等数学偏导数

授课单元7教案课题1 偏导数一、复习x处的导数,y=f(x)的导数一元函数y=f(x)在二、偏导数的概念、我们已经知道一元函数的导数是一个很重要的概念,是研究函数的有力工具,它反映了该点处函数随自变量变化的快慢程度。

对于多元函数同样需要讨论它的变化率问题。

虽然多元函数的自变量不止一个,但实际问题常常要求在其它自变量不变的条件下,只考虑函数对其中一个自变量的变化率。

例如,一定量的理想气体P ,体积V ,热力学温度T 的关系式为常数)R V RTP (,= (1)当温度不变时(等温过程),压强P 关于体积V 的变化率为2T VRT )(-=为常数dV dP (2)当体积V 不变时(等容过程),压强P 关于温度T 的变化率为V RdTdP V ==常数)(. 这种变化率依然是一元函数的变化率问题,这就是偏导数概念,对此给出如下定义。

1、z=f(x,y)在),(00y x 处的偏导数 (1) z =f (x , y )在点(x 0, y 0)处对x 的偏导数设函数z =f (x , y )在点(x 0, y 0)的某一邻域内有定义, 当y 固定在y 0而x 在x 0处有增量∆x 时, 相应地函数有增量f (x 0+∆x , y 0)-f (x 0, y 0).如果极限xy x f y x x f x ∆-∆+→∆),(),(lim00000存在,则称此极限为函数z =f (x , y )在点(x 0, y 0)处对x 的偏导数, 记作),(00y x x z ∂∂,),(00y x xf∂∂, ),(00y x xz ', 或),(00y x f x '.即 xy x f y x x f y x f x x ∆-∆+='→∆),(),(lim),(0000000(2)z =f (x , y )在点(x 0, y 0)处对y 的偏导数),(00y x yz ∂∂=),(00y x yf ∂∂=),(00y x yz '=),(00y x f y '=yy x f y y x f y ∆-∆+→∆),(),(lim000002、偏导函数(简称偏导数) (1)z =f (x , y )对自变量x 的偏导函数如果函数z =f (x , y )在区域D 内每一点(x , y )处对x 的偏导数都存在, 那么这个偏导数就是x 、y 的函数, 它就称为函数z =f (x , y )对自变量x 的偏导函数, 记作x z ∂∂= x f ∂∂= 'x z =),(y x f x'xy x f y x x f x ∆-∆+=→∆),(),(lim 0.(2) z =f (x , y )对y 的偏导函数y z ∂∂=y f∂∂= 'y z =),(y x f y '=yy x f y y x f y ∆-∆+→∆),(),(lim 0说明(1)由偏导数的定义可知,求二元函数的偏导数并不需要新的方法求xz ∂∂时,把y 视为常数而对x 求导;求yz∂∂时,把x 视为常数而对y 导,这仍然是一元函数求导问题 (2)偏导数的概念还可推广到二元以上的函数. 例如三元函数u =f (x , y , z )在点(x , y , z )处对x 的偏导数定义为 xz y x f z y x x f z y x f x x ∆-∆+=→∆),,(),,(lim),,(0例 求z =x 2sin 2y 的偏导数. 解y x xz 2sin 2=∂∂, y x y z 2cos 22=∂∂例 求z =x 2+3xy +y 2在点(1, 2)处的偏导数. 解y x xz 32+=∂∂, y x y z 23+=∂∂. 8231221=⋅+⋅=∂∂==y x x z , 7221321=⋅+⋅=∂∂==y x yz 例 设f(x,y)= ,求)0,1(x f '解 如果先求偏导数),(y x f x '是比较复杂的,但是若先把函数中的y 固定在y = 0,则有 f (x ,0) = 2ln x ,从而xx f x 2)0,(=',)0,1(x f '=2 说明 求z=f(x,y)在),(00y x 处的偏导数方法(1)00),(),(00y y x x x x y x f y x f =='=', 00),(),(00y y x x y y y x f y x f =='='(2)0]),([),(000x x x y x f dx d y x f ==', 0]),([),(000y y y y x f dyd y x f =='.例 设)1,0(≠>=x x x z y , 求证: zyz x x z y x 2ln 1=∂∂+∂∂证1-=∂∂y yx xz , x x y z y ln =∂∂ ,z x x x x x yx y x y z x x z y x y y y y 2ln ln 1ln 11=+=+=∂∂+∂∂-. 例 求222z y x r ++=的偏导数. 解r x z y x x x r =++=∂∂222; ry z y x y y r =++=∂∂222.例 已知理想气体的状态方程为pV =RT (R 为常数),求证:1-=∂∂⋅∂∂⋅∂∂pTT V V p . 证 因为V RT p =, 2V RT V p -=∂∂; p RT V =, p R T V =∂∂; RpV T =, R V p T =∂∂;所以12-=-=⋅⋅-=∂∂⋅∂∂⋅∂∂pV RT RV p R V RT p T T V V p .)ln(22arctany x e xy +说明 偏导数的记号是一个整体记号, 不能看作分子分母之商. 练习 求下列函数的偏导数)ln(222y x x z +=,xy e u =,x y z arctan=,y x xy z +=,22yx xy z += 例 并联可变电阻总电阻的调节问题由n 个可变电阻并联成为一个总的可变电阻器,其中各个可变电阻的电阻值 之间的大小关系为⋅<<<n R R R 21现在用通过对各个电阻进行逐个调节 的方法来达到对总电阻的调节。

第67讲 多元抽象复合函数的偏导数计算

第67讲 多元抽象复合函数的偏导数计算

所以
1 = 1,1 + 1,1 ⋅ (1,1) +
= + +(+) =+ + + .
(1,1) ⋅ ( (1,1) +
(1,1)
= −2 , 例 67.6 设变换 = + 可将方程 6 +
= 0,求常数 .
− = 0 简化为
பைடு நூலகம்
【解】由于 = + , = ⋅ (−2) + ⋅ = −2 + ,
=+
+
+ = +2
依题意,有 6 + − = 0, 但10 + 5 ≠ 0 , 故 = 3.
例67.1 设函数 = ( , , ), = ( , ), = ( , )均具有一阶连续 偏导数,求 , . 【解】如图,由 至 的路径为
→, → →, → →→.
因此, = +
+
.
同理,由 至 的路径为 → , → → → .
因此,
=+
.
【注】用树形图的方法求多元抽象复合函数的偏导数的步骤如下: (1) 按从因变量到自变量的顺序用有向线段表示函数关系,
=+
, ,其中 具有连续的一阶偏导数,求 , .
=+
⋅ + ⋅ ⋅2
+2
.
==
⋅2 + ⋅ ⋅ =2
+
.
【注】抽象复合函数与其他函数进行四则运算而得到的函数,在对其求偏 导数时,要同时利用一元函数的求导四则运算法则及复合函数求导的链式 法则.
例67.4 设 = ( + ) + ( + ),其中 , 具有二阶连续导数, 证明: − 2 + = 0.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z
u du , v dv t dt t dt
uv
o( )
tt
(△t<0 时,根式前加“–”号)
d z z d u z dv ( 全导数公式 ) d t u d t v d t
4
说明: 若定理中
偏导数连续减弱为
偏导数存在, 则定理结论不一定成立.
例如: z f (u, v)
f 具有二阶连续偏导数,
求 w, 2w . x xz
w , f1 , f2
解: 令 u x y z , v xyz , 则
uv
w f (u, v)
w x
f2 yz
x y zx y z
y z f2 (x y z, xyz)
2w xz
f12 x y
解: u f x x

2xex2
y2 z2
2ze x 2

y
2

z
2

2
x sin
y
u
2 x (1 2 x2 sin 2 y) e x2 y2 x4 sin 2 y
xyz
u y

f y

f z

z y
2ye x2 y2 z2 2ze x2 y2 z2 x2 cos y
1) 中间变量多于两个的情形. 例如, z f (u, v, w) ,
u (t), v (t), w (t)
dz z du z dv z dw d t u d t v dt w dt
z
uvw
f1 f2 f3

f12
f2 2
x
yx y
6
3) z f (x, v) , v (x, y)
当它们都具有可微条件时, 有
z f
z x

f x
z y
f1 f21 f2 2
xv xy
注意: 这里 z 与 f 不同, x x
z 表示固定 y 对 x 求导, f 表示固定 v 对 x 求导
uvt tt
注意:多元抽象复合函数求导在偏微分方程变形与 验证解的问题中经常遇到, 下列两个例题有助于掌握 这方面问题的求导技巧与常用导数符号.
11
练习2:
u x

f1
u y

f1
u z
f 2

1 y
f1
f2


x y2
f1

1 z
f 2


y z2
f 2
12
例4. 设
f22 x y
为简便 起f11见
,y引(x入 z记) f号12
f1xy
2zf u
f,22f12yf2u2fv
,

13
练习3:
z x
f1
2z x y
f2
f 11
f 21 f 23
f 13
v y
eu sin v eu cos v 1
uv x yx y
8
练习1:
z z z
v x
y
1

y x2

x y2

u
2
u
v
2
(1)
9
例2. u f (x, y, z) ex2 y2 z2 , z x2sin y, 求 u , u x y
2) 中间变量是多元函数的情形.例如,
t tt
z f (u, v) , u (x, y), v (x, y)
z x
z u z v u x vuv
z z u z v y u y v y
u
u2v 2 v
2
,
0,
u2 v2 0 u2 v2 0
ut, vt
易知:
但复合函数 z f (t, t ) t 2
d z 1 z du z dv 0 1 0 1 0
d t 2 u dt v dt
5
推广: 设下面所涉及的函数都可微 .
第四节 多元复合函数的求导法则
1
一元复合函数 求导法则
微分法则
本节内容: 一、多元复合函数求导的链式法则 二、多元复合函数的全微分
2
一、多元复合函数求导的链式法则
定理. 若函数
z f (u, v)
处偏导连续, 则复合函数
在点 t 可导, 且有链式法则
d z z d u z dv d t u d t v d t
x
x
口诀 : 分段用乘, 分叉用加, 单路全导, 叉路偏导
7
例1. 设 z eu sin v , u xy , v x y , 求 z , z .
x y
解: z
z v
x
v x
eu sin v eu cos v 1
z
z
z v
y
z
uv
证: 设 t 取增量△t , 则相应中间变量 有增量△u ,△v ,
z z u z v o ( )
u v
tt
3
z z u z v o( ) ( (u)2 (v)2 )
t u t v t t
则有 u 0, v 0,
14
二、多元复合函数的全微分
设函数
都可微,
则复合函数 z f ( (x, y) , (x, y))的全微分为
dz z dx z dy x y
( z u z v ) dy u y v y
( u dx u dy ) x y
( v dx v dy ) x y
du dv
可见无论 u , v 是自变量还是中间变量, 其全微分表达 形式都一样, 这性质叫做全微分形式不变性.
15
例 6. 利用全微分形式不变性再解例1.
2 ( y x4 sin y cos y ) e x2 y2 x4 sin 2 y
xy
10
例3. 设 z uv sin t , u et , v cost , 求全导数 dz .
dt
解: dz z du
z
dt u dt
t
z
vet
cost
e t (cos t sin t) cos t
相关文档
最新文档