典型高考数学试题解读与变式考点对数函数的图象与性质Word版含解析
第19讲 对数函数图像及性质

第19讲对数函数图像及性质【知识点梳理】1.对数函数的定义及图像(1)对数函数的定义:函数log a y x =(0a >且1)a ≠叫做对数函数,它是指数函数x y a =(0a >且1)a ≠的反函数.对数函数的图象:由于对数函数是指数函数的反函数,所以对数函数的图象只须由相应的指数函数图象作关于y x =的对称图形,即可获得.同样也分1a >与01a <<两种情况归纳:以2log y x =与12log y x =为例1a >01a <<图象性质定义域:(0)+∞,值域:R过定点(10),,即1x =时,0y =在(0)+∞,上增函数在(0)+∞,上是减函数当01x <<时,0y <,当1x ≥时,0y ≥当01x <<时,0y >,当1x ≥时,0y≤(2)底数变化与图象变化的规律在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)图2-3-3【典型例题】题型一:对数函数的概念【例1】下列函数是对数函数的是()A .()log 2a yx =B .lg10xy =C .()2log a y x x =+D .ln y x=【题型专练】1.已知函数①4x y =;②log 2x y =;③3log y x =-;④0.2log y =3log 1y x =+;⑥()2log 1y x =+.其中是对数函数的是()A .①②③B .③④⑤C .③④D .②④⑥题型二:对数函数的定义域【例1】函数()ln 1f x -的定义域为()A .(]1,2B .[]1,4C .()1,4D .[]2,4【例2】函数y =)A .2,3⎛⎫-∞ ⎪⎝⎭B .2,3⎛⎫+∞ ⎪⎝⎭C .2,13⎛⎤⎥⎝⎦D .[)1,+∞【例3】已知函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦,则函数2(log )y f x =的定义域为()A .(0,)+∞B .(0,1)C .2⎤⎥⎣⎦D .⎤⎦【例4】下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是()A .y =xB .y =lg xC .y =2xD .y【例5】已知函数()21f x +的定义域为[]1,2,则函数()()()lg 2f x g x x =-的定义域为()A .[]2,5B .()(]2,33,5⋃C .(]2,5D .[)(]2,33,5⋃【题型专练】1.函数()()2ln 56f x x x =-+-的定义域是__________.2.已知函数(2)x y f =的定义域是[]1,1-,则函数3(log )f x 的定义域是()A .[]1,1-B .1,33⎡⎤⎢⎥⎣⎦C .[]1,3D .3.函数()()1log 121-=x x f 的定义域为().A .(),2-∞B .()2,C .()1,2D .(]1,24.函数()21log (3)f x x =-的定义域为题型三:对数函数的定义域为R 和值域为R 的区别【例1】已知函数()()2lg 32f x ax x =++的定义域为R ,则实数a 的取值范围是___________.【例2】函数()()2lg 234f x mx x =-+的值域为R ,则实数m 的取值范围为______.【题型专练】1.(1)若函数()()22log 1f x ax ax =++的定义域为R ,则实数a 的取值范围是___________;(2)若函数()()22log 1f x ax ax =++的值域为R ,则实数a 的取值范围是___________.2.若函数()12log 22++=x ax y 的定义域为R ,则a 的范围为__________。
专题27 对数函数的图像和性质(一)(解析版)

专题27 对数函数的图像和性质(一)题组1 对数函数的图像1.已知函数f (x )=133,1log ,1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( )A. B. C. D.【答案】D【解析】先画出函数f (x )=133,1log ,1x x x x ⎧≤⎪⎨>⎪⎩的草图,令函数f (x )的图象关于y 轴对称,得函数f (-x )的图象,再把所得的函数f (-x )的图象,向右平移1个单位,得到函数y =f (1-x )的图象,故选:D.2.函数f (x )=10x 与函数g (x )=lgx 的图象 A.关于x 轴对称 B.关于y 轴对称 C.关于原点对称 D.关于y=x 对称【答案】D【解析】因为f (x )=10x 与函数g (x )=lgx 是一对反函数,所以其图象关于y=x 对称. 故选D. 3.函数f (x )=ln|11xx+-|的大致图象是( ) A. B. C. D.【答案】D【解析】因为()()11lnln 11x xf x f x x x-+-==-=-+-,所以函数()f x 是奇函数,图象关于原点对称,可排除,A C ;由()2ln30f =>,可排除B ,故选D.4.函数f (x )=log 2(x+1)与g (x )=2﹣x +1在同一直角坐标系下的图象大致是( )A. B. C. D.【答案】B 【解析】定义域为,函数为增函数;定义域为,函数为减函数,所以结合指数函数对数函数的性质可知B 图像正确5.已知函数f(x)=-x 2+2,g(x)=log 2|x |,则函数F(x)=f(x)·g(x)的图象大致为( )A. B. C. D.【答案】B【解析】由题意得,函数()(),f x g x 为偶函数,∴函数()()()F x f x g x =为偶函数,其图象关于y 轴对称, 故只需考虑0x >时的情形即可.由函数()(),f x g x 的取值情况可得,当0x >时,函数()F x 的取值情况为先负、再正、再负, 所以结合各选项得B 满足题意.故选B. 6.设函数()()21ln 11f x x x=+-+,则使()()21f x f x >-成立的x 的取值范围是( ) A.1,13⎛⎫ ⎪⎝⎭B.()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C.11,33⎛⎫- ⎪⎝⎭D.11,,33⎛⎫⎛⎫-∞+∞ ⎪⎪⎝⎭⎝⎭【答案】A【解析】因为函数()()21ln 11f x x x =+-+定义域为R ,关于原点对称, 且()()()()()2211ln 1ln 111f x x x f x xx -=+--=+-=++-, 所以函数()f x 是偶函数, 又()f x 在()0,∞+是增函数, 所以()()21f x f x >-等价于()()21fx f x >-,所以2213410x x x x >--+<,, 解得113x <<,故选:A7.函数2()ln(1)x xe ef x x --=+在[3,3]-的图象大致为( )A. B. C . D.【答案】C【解析】函数2()ln(1)x xe ef x x --=+,则2()()ln(1)x xe ef x f x x ---==-+,所以()f x 为奇函数,排除B 选项; 当x →+∞时,2()ln(1)x xe ef x x --=→+∞+,所以排除A 选项; 当1x =时,11 2.720.37(1) 3.4ln(11)ln 20.69e e e ef -----==≈≈+, 排除D 选项;综上可知,C 为正确选项, 故选:C. 8.函数()1ln 1y x x=-+的图象大致为( ) A. B. C. D.【答案】A【解析】0x >时,函数为减函数,排除B ,10x -<<时,函数也是减函数,排除D ,又1x =时,1ln 20y =->,排除C ,只有A 可满足.故选:A. 9.函数()()22ln 11x f x x +=+的大致图像为( )A. B. C. D.【答案】B【解析】因为()()22ln 11x f x x +=+是由()22ln xg x x=向左平移一个单位得到的, 因为()22ln ()(0)()xg x g x x x --==≠-,所以函数()22ln xg x x=为偶函数,图像关于y 轴对称, 所以()f x 的图像关于1x =-对称,故可排除A ,D 选项; 又当2x <-或0x >时,2ln 10x +>,()210x +>, 所以()0f x >,故可排除C 选项 故选:B .10.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( ) A. B. C. D.【答案】D【解析】当01a <<时,函数xy a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.故选:D11.函数()24ln x f x x=的部分图象大致为( )A. B. C. D.【答案】A【解析】因为()24ln x f x x =是偶函数,排除B ,当01x <<时,ln 0x <,()204ln x f x x=<,排除C , 当x e =时()214ef e =>,排除D.故选:A.12.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2﹣2x ﹣3,求当x≤0时,不等式f (x )≥0整数解的个数为( ) A.4 B.3 C.2 D.1 【答案】A【解析】由函数为奇函数可知当x≤0时,不等式f (x )≥0整数解的个数与0x ≥时()0f x ≤的个数相同,由奇函数可知()00f =,由2230x x --≤得()()320x x -+≤,所以整数解为1,2,3,所以满足题意要求的整数点有4个 13.若x 1,x 2是方程2x =12⎛⎫ ⎪⎝⎭+1-1x 的两个实数解,则x 1+x 2=________.【答案】-1 【解析】 ∵2x =1112x-+⎛⎫⎪⎝⎭,∴2x =112x -,∴x =1x-1,∴x 2+x -1=0. ∴x 1+x 2=-1. 故答案:-114.已知函数()lg f x x =.(1)画出函数()y f x =的草图,并根据草图求出满足()1f x >的x 的集合; (2)若0a b <<,且()()f a f b >,求证:1ab <. 【答案】(1)图见解析,(0,110)∪(10,+∞).(2)证明见解析 【解析】(1)画出函数()y f x =的草图,如图所示:令()1f x =,则lg 1,lg 1x x ==±,可得10x =或110x =. 故满足()1f x >的x 的集合为1(0,)(10,)10⋃+∞. (2)证明:若0a b <<,且()()f a f b >,则lg lg a b >. 当01a b <<≤时, lg lg a b >显然成立且1ab <.当01a b <≤≤,因为lg lg a b >则lg lg lg +lg 0lg 01a b a b ab ab -><⇒<⇒<,成立 当1a b ≤<时, lg lg a b >不成立. 综上所述1ab <成立.15.已知函数2()4||3f x x x =-+,(1)试证明函数()f x 是偶函数;(2)画出()f x 的图象;(要求先用铅笔画出草图,再用黑色签字笔描摹,否则不给分) (3)请根据图象指出函数()f x 的单调递增区间与单调递减区间;(不必证明)(4)当实数k 取不同的值时,讨论关于x 的方程24||3x x k -+=的实根的个数;(不必求出方程的解) 【答案】(1)详见解析(2)详见解析(3)增区间()()+∞-,2,0,2减区间)2,0(),2,(--∞(4)①当1k <-时,方程无实数根;②当1k =-或3k >时,方程有两个实数根;③当3k =时,方程有三个实数根;④当13k -<<时,方程有四个实数根【解析】(1)()f x 的定义域为R ,且2()()4||3f x x x -=---+ 24||3()x x f x =-+=故()f x 为偶函数; (2)如图(3)递增区间有:()()+∞-,2,0,2 递减区间有:)2,0(),2,(--∞ (4)根据图象可知,①当1k <-时,方程无实数根;②当1k =-或3k >时,方程有两个实数根; ③当3k =时,方程有三个实数根; ④当13k -<<时,方程有四个实数根; 16.已知函数f (x )=x ln x -x .(1)设g (x )=f (x )+|x -a |,a ∈R.e 为自然对数的底数.①当32a e=-时,判断函数g (x )零点的个数; ②1,x e e ⎡⎤∈⎢⎥⎣⎦时,求函数g (x )的最小值.(2)设0<m <n <1,求证:()2201mf n m +<+ 【答案】(1)① g (x )有且仅有两个零点.②a -e.(2)证明见解析 【解析】(1)①当32a e =-时, g (x )=x ln x -x +|x +32e |=x ln x +32e, g′(x )=1+ln x ,当0<x <1e 时,g′(x )<0;当x >1e时,g′(x )>0; 因此g (x )在(0,1e )上单调递减,在(1e,+∞)上单调递增,又434412424g =0e e e e e -⎛⎫-=> ⎪⎝⎭,g (1e )=-1e +23322e e e-=<0,g (1)=32e >0, 所以g (x )有且仅有两个零点. ②(i )当a ≤1e时,g (x )=x ln x -x +x -a =x ln x -a , 因为x ∈[1e ,e ],g′(x )=1+lnx ≥0恒成立, 所以g (x )在[1e ,e ]上单调递增,所以此时g (x )的最小值为g (1e )=-1e-a .(ii )当a ≥e 时,g (x )=x ln x -x +a -x =x ln x -2x +a ,因为x ∈[1e ,e],g′(x )=ln x -1≤0恒成立, 所以g (x )在[1e ,e ]上单调递减,所以此时g (x )的最小值为g (e )=a -e .(iii )当1e <a <e 时,若1e≤x ≤a ,则g (x )=x ln x -x +a -x =x ln x -2x +a , 若a ≤x ≤e ,则g (x )=x ln x -x +x -a =x ln x -a , 由(i ),(ii )知g (x )在[1e,a ]上单调递减,在[a ,e ]上单调递增, 所以此时g (x )的最小值为g (a )=a ln a -a , 综上有:当a ≤1e 时,g (x )的最小值为-1e-a ;当1e<a <e 时,g (x )的最小值为a ln a -a ; 当a ≥e 时,g (x )的最小值为a -e . (2)设h (x )=221xx +, 则当x ∈(0,1)时,h′(x )=()()222211x x -+>0,于是h (x )在(0,1)单调递增,又0<m <n <1,所以h (m )<h (n ), 从而有()()()2222ln 111m f n f n h n n n m n ⎛⎫+<+=-+ ⎪++⎝⎭设φ(x )=22ln 11n n -++,x >0 则φ′(x )=()()()222222114011x xx x x x --=≥++因此φ(x )在(0,+∞)上单调递增,因为0<n <1,所以φ(n )<φ(1)=0,即ln n -1+221n +<0, 因此()2222ln 1011m f n n n m n ⎛⎫+<-+< ⎪++⎝⎭ 即原不等式得证.17.已知函数f (x )=xln x ,g (x )=-x 2+ax -2(e 为自然对数的底数,a ∈R ). (1)判断曲线y =f (x )在点(1,f (1))处的切线与曲线y =g (x )的公共点个数; (2)当1[,]x e e∈时,若函数y =f (x )-g (x )有两个零点,求a 的取值范围. 【答案】(1)答案不唯一,见解析;(2)3<a ≤e +2e+1. 【解析】(1)()1f x lnx '=+, 所以切线的斜率()11k f ='=, 又()10f =,所以曲线在点(1,0)处的切线方程为1y x =-,由221y x ax y x ⎧=-+-⎨=-⎩,得2(1)10x a x +-+=,由△22(1)423(1)(3)a a a a a =--=--=+-可得,当△0>时,即1a <-或3a >时,有两个公共点,当△0=时,即1a =-或3a =时,有一个公共点,当△0<时,即13a -<>时,没有公共点,(2)2()()2y f x g x x ax xlnx =-=-++,由0y =,得2a x lnx x =++, 令2()h x x lnx x =++,则2(1)(2)()x x h x x -+'=,当1[x e ∈,]e 时,由()0h x '=,得1x =,所以()h x 在1[e ,]e 上单调递减,在[1,]e 上单调递增,因此()()13min h x h ==,由11()21h e e e =+-,()21h e e e =++,比较可知()1h h e e ⎛⎫> ⎪⎝⎭,所以,结合函数图象可得,当231a e e <++时,函数()()y f x g x =-有两个零点.18.根据函数f(x)=log 2x 的图像和性质解决以下问题:(1)若f(a)>f(2),求a 的取值范围;(2)求y =log 2(2x -1)在[2,14]上的最值.【答案】(1) (2,+∞) (2) 最小值为log 23,最大值为log 227【解析】(1)由函数2()log f x x =的单调性及()(2)f a f >,即可求出a 的取值范围;(2)根据定义域为[2,14],表示出21x -的取值范围,结合对数函数的性质,即可求得最值.试题解析:函数f (x )=log 2x 的图象如图:(1)因为f (x )=log 2x 是增函数,故f (a )>f (2),即log 2a >log 22,则a >2.所以a 的取值范围为(2,+∞).(2)∵2≤x ≤14,∴3≤2x -1≤27,∴log 23≤log 2(2x -1)≤log 227.∴函数y =log 2(2x -1)在[2,14]上的最小值为log 23,最大值为log 227. 题组2 对数函数的性质 19.已知定义在R 上的函数()y f x =满足()()()111f x f x f x -=+=-,当[]12x ∈,时,2()log f x x =,若方程()0f x ax -=在()0+∞,上恰好有两个实数根,则正实数a 的值为( )A.2log ee B.1ln 2e C.12 D.2【答案】C【解析】由()()()111f x f x f x -=+=-,可知()f x 为偶函数,且一条对称轴为1x =,再由()()11f x f x +=-,可得()2()f x f x +=,即函数()f x 的周期为2.根据[]12x ∈,时,2()log f x x =作出函数()f x 的草图,如图所示:方程()0f x ax -=在()0+∞,上恰好有两个实数根,∴函数y ax =与()y f x =的图象在y 轴右侧有两个交点,设y ax =与2log y x =相切时,切点坐标为()020log x x ,,由1ln2y x '=,得2000log 1ln2x x x =,解得02x e =>.∴由图象可知,当直线y ax =过点()21,时,方程()0f x ax -=在()0+∞,上恰好有两个实数根,12a ∴=.故选:C .20.已知函数2|1|,0()log ,0x x f x x x +≤⎧=⎨>⎩,若方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则()3122341x x x x x ++的取值范围是( ). A.(1,)-+∞B.[1,1)-C.(,1)-∞D.(]1,1- 【答案】D 【解析】函数()21,0|log ,0x x f x x x ⎧+⎪=⎨>⎪⎩,的图象如下:根据图象可得:若方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则11x a +=-,21x a +=,23log x a =-,24log x a =.(01)a <≤122x x +=-,32a x -=,42a x =∴则31222344()22221222a a a a a x x x x x ---++=-⋅+=-⋅. 令2a t ,(1t ∈,2],而函数2y t t=-在(1,2]单调递增. 所以211t t -<-≤,则21212a a ∴-<-. 故选:D.21.函数()log 1xa f x a x =-有两个不同的零点,则实数a 的取值范围是( ) A.()1,10B.()1,+∞C.0,1D.()10,+∞【答案】B【解析】函数()f x 有两个零点等价于1x y a ⎛⎫= ⎪⎝⎭与log a y x =的图象有两个交点,当01a <<时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B.22.已知函数()2,11,12x a x f x x a x ⎧+≤⎪=⎨+>⎪⎩,其中a R ∈.如果函数()f x 恰有两个零点,则a 的取值范围为()A.1,2⎛⎤-∞- ⎥⎝⎦ B.[)2,-+∞ C.12,2⎡⎤--⎢⎥⎣⎦ D.12,2⎡⎫--⎪⎢⎣⎭【答案】D【解析】当1x ≤时,(]2,2x y a a a =+∈+,当1x >时,11,22y x a a ⎛⎫=+∈++∞ ⎪⎝⎭,两段均为增函数,函数()f x 恰有两个零点,可得102200a a a ⎧+<⎪⎪⎨+≥⎪⎪<⎩,解得12,2a ⎡⎫∈--⎪⎢⎣⎭.故选:D23.给出下列四个结论:(1)若集合A ={x,y },B ={0,2x },且A=B ,则x =1,y =0;(2)若函数f (x )的定义域为(-1,1),则函数f (2x +1)的定义域为(-1,0);(3)函数1()f x x =的单调减区间是{}0x x ≠;(4)若()()()f x y f x f y +=⋅,且(1)2f =,则(2)(4)(2014)(2016)(2018)2018(1)(3)(2013)(2015)(2017)f f ff f f f f f f +++++=其中不正确的有______.【答案】(3)【解析】(1)因为A=B ,所以20,0,1x y x x x ≠==∴=,故(1)正确;(2)因为函数f (x )的定义域为(-1,1),所以121110x x -<+<∴-<<,故(2)正确; (3)函数1()f x x =的单调减区间是(,0)-∞和(0,)+∞,故(3)错误;(4)因为()()()f x y f x f y +=⋅,所以(1)()(1)2()f x f x f f x +=⋅=,因此(2)(4)(2014)(2016)(2018)210092018(1)(3)(2013)(2015)(2017)f f f f f f f f f f +++++=⨯=,故(4)正确; 故答案为:(3)题组3 对数值大小比较24.已知1275a -⎛⎫= ⎪⎝⎭,1357b ⎛⎫= ⎪⎝⎭,25log 7c =,则a 、b 、c 的大小关系是( ).A.b a c <<B.c b a <<C.c a b <<D.b c a <<【答案】C 【解析】12125757a -⎛⎫=⎛⎫= ⎝⎭⎪⎭⎪⎝<135()7b =,225log log 107c =<=因此c a b <<故选:C.25.函数()log (2)a f x ax =-(0a >且1a ≠)在[]0,3上为增函数,则实数a 的取值范围是()A.2,13⎛⎫ ⎪⎝⎭ B.(0,1) C.20,3⎛⎫⎪⎝⎭ D.[)3,+∞【答案】C【解析】因为0a >且1a ≠,令2t ax =-,所以函数2t ax =-在[]0,3上为减函数, 所以函数log a y t =应是减函数,()f x 才可能是增函数,∴01a <<,因为函数()f x 在[]0,3上为增函数,由对数函数性质知230a ->,即23<a , 综上023a <<. 故选:C .26.设3log 7a =, 1.12b =, 3.10.8c =,则( )A.b a c <<B.a c b <<C.c b a <<D.c a b << 【答案】D【解析】因为333log 7(log 3,log 9)a =∈,所以(1,2)a ∈; 1.122b =>; 3.100.80.81c =<=; 所以c a b <<,故选D.27.三个数0.76,60.7,0.7log 6的大小顺序是( )A.60.70.7log 60.76<<B.60.70.70.76log 6<<C.0.760.7log 660.7<<D.60.70.70.7log 66<< 【答案】A 【解析】因为0.70661>=,6000.70.71<<=,0.70.7log 6log 10<=;所以60.70.7log 60.76<<.故选:A.28.已知0.42x =,2lg 5y =,0.425z ⎛⎫= ⎪⎝⎭,则下列结论正确的是( ) A.x y z <<B.y z x <<C.z y x <<D.z x y <<【答案】B【解析】0.40221x =>=,2lg lg105y =<=,0.4021525z ⎛⎫<= ⎪⎝⎫⎭⎭⎛=⎪⎝,又0z >,即01z <<.因此,y z x <<.故选:B.。
2018版高考数学考点07对数函数的图象与性质试题解读与变式

考点 7 对数函数的图象与性质【考纲要求】1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点. 3.知道对数函数是一类重要的函数模型.4.了解指数函数y =a x与对数函数y =log a x (a >0,且a ≠1)互为反函数. 【命题规律】高考对对数函数的图象与性质考查题型一般是选择题或填空题,难度中等以下,主要考查对数运算、对数函数的性质及运用、对数函数的图象性质. 【典型高考试题变式】 (一)对数运算例1. 【2017课标1】设x 、y 、z 为正数,且235xyz==,则( ) A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z << 【答案】D【名师点睛】对于连等问题,常规的方法是令该连等为同一个常数,在用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式和0与1的对数表示.【变式1】【改变例题中指数式的底数,结论变为求x yz+的值】设x 、y 、z 为正数,且248x y z ==,则x yz+= . 【答案】92【解析】令248(1)xyzk k ===>,则2log x k =,4211log log 22y k k x ===,8211log log 33z k k x ===,所以392123xx y z x +==.【变式2】【改变例题中指数式的底数,结论变为求x 、y 、z 之间的关系式】设x 、y 、z 为正数,且346xyz==,则x 、y 、z 之间的关系式为 .【答案】1112z x y-= 【解析】设346xyzt ===,由0x >知1t >,取以t 为底的对数可得log 3log 4log 61t t t x y z ===,所以1log 3tx =,1log 4t y =,1log 6t z =,所以1111log 6log 3log 2log 422t t t t z x y -=-===, 所以1112z x y-=.(二)对数函数的性质及运用例2.【2017天津,文6】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为( )A.a b c <<B.b a c <<C.c b a <<D.c a b <<【答案】C【名师点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数运算法则,()2log 5a f =,再比较0.822log 5,log 4.1,2比较大小.【变式1】【改变例题的条件】已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =12(log 3)f ,c =f (0.2-0.6),则a ,b ,c 的大小关系是( )A .c <a <bB .c <b <aC .b <c <aD .a <b <c 【答案】B【解析】因为12(log 3)f =-log 23=-log 49,所以b =12(log 3)f =f (-log 49)=f (log 49), log 47<log 49,0.2-0.6=351()5-334125322log 9=>=>,又f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数, 故f (x )在[0,+∞)上是单调递减的,所以0.6142(0,2)(log 3)(log 7)f f f -<<,即c <b <a ,故选B.【变式2】【改变例题的结论】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则(,),(),()f a f b f c 的大小关系为 .【答案】(,)()()f a f b f c >>(三)对数函数的图像性质例3.【2010全国1】已知函数()|lg |f x x =.若a b ≠且()()f a f b =,则a b +的取值范围是( )A .(1,)+∞B .[1,)+∞C .(2,)+∞D .[2,)+∞ 【答案】C【解析】函数()|lg |f x x =的图象如图所示,由图象知a ,b 一个大于1,一个小于1,不妨设1a >,01b <<. 因为()()f a f b =,所以1()|lg |lg ()lg lgf a a a f b b b ====-=,即1a b=, 所以1122a b b b b b+=+>⨯=. 【名师点睛】本题考查对数函数的图像性质.对数函数图象特点:当a >1时,对数函数的图象呈上升趋势;当0<a <1时,对数函数的图象呈下降趋势. 函数式中有绝对值符号,先用分段函数表示.【变式1】【把例题中的()|lg |f x x =改为()lg ||f x x =,结论变为比较大小】已知函数()lg ||f x x =在(0,)+∞上单调递增,则(2)f -、(1)f 、(2018)f 的大小关系为 .【答案】(1)(2)(2018)f f f <-<【解析】因为函数()lg ||f x x =在(0,)+∞上单调递增,所以1a >,(1)(2)(2018)f f f <<.又函数()lg ||f x x =为偶函数,所以(2)(2)f f =-,所以(1)(2)(2018)f f f <-<. 【变式2】【把例题中x 变为1x -,结论变为函数图象判断】函数y =lg|x -1|的图象是( )【答案】A【解析】因为lg(1),1lg |1|lg(1),1x x y x x x ->⎧=-=⎨-<⎩,当1x =时,函数无意义,故排除B 、D.又当2x =或0时,0y =,所以A 项符合题意. 【数学思想】① 数形结合思想:借助函数图象,可以研究函数的定义域、值域、单调性、奇偶性、对称性等性质;利用函数的图象,还可以判断方程f (x )=g (x )的解的个数、求不等式的解集等.② 分类讨论思想:画函数图象时,如果解析式中含参数,还要对参数进行讨论,分别画出其图象. 【温馨提示】①解决与对数有关的问题时:务必先研究函数的定义域;对数函数的单调性取决于底数a ,应注意底数的取值范围.②对公式要熟记,防止混用;③对数函数的单调性、最值与底数a 有关,解题时要按0<a<1和a>1分类讨论,否则易出错.④比较对数式的大小.①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论. 【典例试题演练】1. 【河南省豫北名校联盟2017届高三年级精英对抗赛,1】已知函数5log ,0,()2,0,x x x f x x >⎧=⎨≤⎩,则1(())25f f=( ) A .14 B .4 C .-4 D .14- 【答案】A 【解析】251111()log 2,(())(2)22525254f f f f -==-∴=-==,故选A. 2.【2017山东省烟台市期末】已知1a b >>, 01c <<,则下列不等式正确的是( ) A. c c a b < B. a b c c > C. log log a b c c > D.log log c c a b >【答案】C3.【2017河南濮阳市一高检测】函数21()log (12)1f x x x =-++的定义域为( ) A .1(0,)2 B .1(,)2-∞ C .1(1,0)(0,)2-D .1(,1)(1,)2-∞--【答案】D【解析】由120x ->,10x +≠,得12x <且1x ≠-,所以函数21()log (12)1f x x x =-++的定义域为1(,1)(1,)2-∞--,故选D.4.【2018安徽合肥市调研】若函数()f x 为奇函数,当0x >时, ()2log f x x =,则1(())2f f =( )A. 2-B. 1-C. 0D. 1 【答案】C【解析】()()2211(())(log 11log 1022f f f f f ==-=-=-=,故选C. 5.【江西九江地区2017届高三七校联考,7】若函数22()log (3)f x x ax a =--在区间(,2]-∞-上是减函数,则实数a 的取值范围是( )A .(,4)-∞B .(4,4]-C .(,4)[2,)-∞+∞D .[4,4)-【答案】D【解析】由题意得230x ax a -->在区间(,2]-∞-上恒成立且22a≥-,即2(2)(2)30a a ---->且4a ≥-,解得实数a 的取值范围是[4,4)-,选D.6.【2017山东省德州市模拟】函数()()1ln 12f x x =-的定义域为( )A. 1(,)2-∞-B. 1(0,)2C. ()(),00,-∞+∞ D.()1,0(0,)2-∞ 【答案】D【解析】函数()()1ln 12f x x =-有意义,可得1−2x >0,且ln(1−2x )≠0,解得x <12且x ≠0,即有定义域为(−∞,0)∪(0,12). 故选D. 7.【2017吉林省梅河口五中模拟】函数()()212log 23f x x x =+-的单调增区间是( )A. (),3-∞-B. (],3-∞- C. (),1-∞- D. ()3,1--【答案】A8.已知()()ln ,0ln ,0x x x f x x x x -->⎧=⎨--+<⎩,则关于m 的不等式11()ln 22f m <-的解集为( )A .1(0,)2B .()0,2C .11(,0)(0,)22- D .()()2,00,2-【答案】C【解析】()()f x f x -=,所以()f x 为偶函数,且左增右减,注意到()12ln22f =-,故112,2m m <->,解得11(,0)(0,)22m ∈-.故选C. 9.【2017河南百校联考】已知()1154279722,(),(),log 979xxf x a b c --=-===,则()()(),,f a f b f c 的大小顺序为( )A .()()()f b f a f c <<B .()()()f c f b f a <<C .()()()f c f a f b <<D .()()()f b f c f a << 【答案】B【解析】()22x xf x -=-为单调递增函数,而11154427997()()(),log 09779a b c -==>==<,所以()()()f c f b f a <<,故选B.10.【2017福建省三明市模拟】若0a >, 0b >,且lg a 和lg b 的等差中项是1,则11a b+的最小值是 . 【答案】15【解析】因为lg lg lg 2a b ab +==,所以100ab =,所以111112?5a b a b +≥=(当且仅当a b =时等号成立).11.【湖北2017届百所重点校高三联考,11】设函数()()()211,ln 31f x x g x ax x =-+=-+,若对任意[)10,x ∈+∞,都存在2x R ∈,使得()()12f x g x =,则实数a 的最大值为 .【答案】9412.【2017河南省广东省佛山市检测】函数()211log 1axf x x x+=--为奇函数,则实数a = .【答案】1【解析】因为函数()f x 为奇函数,所以()221111log log 11ax axf x x x x x-+-=-=-+-+-,即1111x axax x++=--,所以1a =. 13.【2017辽宁省实验中学、沈阳市东北育才学校等五校联考】已知函数()f x 是在定义域R 上的偶函数,且在区间[)0,+∞单调递增,若实数a 满足()()221log (log )21f a f f a+≤,则a 的取值范围是 . 【答案】1[,2]2【解析】因为()f x 为偶函数,所以()()f x f x -=,而2221log log log 10a a+== ,221log log a a=-,所以()221log (log )f a f a = ,由已知不等式化简有()()2log 1,f a f ≤因为()f x 在[)0,+∞为增函数,所以22log 11log 1a a ⎧≤⎪⎨-≤≤⎪⎩,所以122a ≤≤.14.【2017江西九江地区联考】设()log (1)log (3)(0,1)a a f x x x a a =++->≠,且(1)2f =. (1)求a 的值及()f x 的定义域;(2)求()f x 在区间3[0,]2上的值域.【解析】(1)因为(1)2f =,所以log 42(0,1)a a a =>≠,所以2a =. 由10,30,x x +>⎧⎨->⎩得(1,3)x ∈-,所以函数()f x 的定义域为(1,3)-.(2)22222()log (1)log (3)log (1)(3)log [(1)4]f x x x x x x =++-=+-=--+,所以当(1,1]x ∈-时,()f x 是增函数;当(1,3)x ∈时,()f x 是减函数.函数()f x 在3[0,]2上的最大值是2(1)log 42f ==,函数()f x 在3[0,]2上的最小值是2315()log 24f =,所以()f x 在区间3[0,]2上的值域是215[log ,2]4. 15.【2016上海卷】已知a ∈R ,函数()f x =21log ()a x+. (1)当 1a =时,解不等式()f x >1;(2)若关于x 的方程()f x +22log ()x =0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈1[,1]2,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.【解析】(1)由21log (1)1x +>,得112x+>,解得{}|01x x <<. (2)()2221log ()log 0a x x++=有且仅有一解,等价于21()1a x x+=有且仅有一解,等价于210ax x +-=有且仅有一解. 当0a =时,1x =,符合题意; 当0a ≠时,140a ∆=+=,14a =-. 综上,0a =或14-.。
高考数学中的指数函数与对数函数题详解

高考数学中的指数函数与对数函数题详解指数函数和对数函数是高考数学中的重要内容,涉及到的题型和考点较多。
本文将对指数函数和对数函数的基本定义、性质以及解题方法进行详细解析。
一、指数函数指数函数是以指数为自变量的函数,其一般形式为y = a^x (其中a>0且a≠1)。
下面,我们来讨论指数函数的基本性质。
1. 指数函数的定义域和值域指数函数的定义域为实数集R,值域为正实数集(0, +∞)。
2. 指数函数的图像特点当指数a>1时,指数函数的图像在x轴的右侧逐渐增大,形状呈现递增趋势;当0<a<1时,指数函数的图像在x轴的右侧逐渐减小,形状呈现递减趋势。
3. 指数函数的性质(1) 指数函数在定义域内具有严格单调性,即当a>1时为严格递增函数,当0<a<1时为严格递减函数。
(2) 指数函数在定义域内具有连续性,无间断点。
(3) 指数函数在定义域内具有无界性,即当x趋向于正无穷时,函数值也趋向于正无穷。
(4) 指数函数具有经过点(0, 1)的特点。
接下来,我们通过解题的方式来进一步认识指数函数。
例题1:已知方程2^x = 4的解为x = 2,则方程e^(x-1) = 1的解为多少?解题思路:首先,根据指数函数的性质可知,2^x = 4 等价于 x = 2。
然后,代入方程e^(x-1) = 1,得到e^(2-1) = 1,即e^1 = 1,因此方程e^(x-1) = 1的解为x = 1。
二、对数函数对数函数是指以对数为自变量的函数,其一般形式为y = loga(x)(其中a>0且a≠1,x>0)。
下面,我们来探讨对数函数的基本性质。
1. 对数函数的定义域和值域对数函数的定义域为正实数集(0, +∞),值域为实数集R。
2. 对数函数的图像特点当0<a<1时,对数函数的图像在x轴的右侧逐渐减小,形状呈现递减趋势;当a>1时,对数函数的图像在x轴的右侧逐渐增大,形状呈现递增趋势。
专题37 高中数学对数函数的性质及其应用(解析版)

专题37 对数函数的性质及其应用知识点一 对数函数y =log a x (a >0,且a ≠1)的性质(1)定义域: (0,+∞). (2)值域: (-∞,+∞). (3)定点: (1,0).(4)单调性:a >1时,在(0,+∞)上是增函数;0<a <1时,在(0,+∞)上是减函数. (5)函数值变化当a >1,x >1时,y ∈ (0,+∞);0<x <1时,y ∈ (-∞,0); 当0<a <1,x >1时,y ∈ (-∞,0);0<x <1时,y ∈ (0,+∞).可简记为“底真同,对数正;底真异,对数负”,“同”指同大于1或同小于1,“异”指一个大于1一个小于1.(6)复合函数的单调性,按照“同增异减”的性质求解.知识点二 反函数的概念对数函数y =log a x (a >0,且a ≠1)与指数函数y =a x 互为反函数,它们的图象关于直线y =x 对称.对数函数y =log a x 的定义域是指数函数y =a x 的值域,而y =log a x 的值域是y =a x 的定义域.(1)并非任意一个函数y =f (x )都有反函数,只有定义域和值域满足“一一对应”的函数才有反函数. (2)一般来说,单调函数都有反函数,且单调函数的反函数与原函数有相同的单调性. (3)若一个奇函数存在反函数,则它的反函数也是奇函数. (4)求反函数的步骤: ①求出函数y =f (x )的值域; ②由y =f (x )解出x =f -1(y );③把x =f -1(y )改写成y =f -1(x ),并写出函数的定义域(即原函数的值域).题型一 比较对数值的大小1.比较下列各组值的大小:(1)log 534与log 543;(2)log 132与log 152;(3)log 23与log 54.[解析](1)法一(单调性法):对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.法二(中间值法):因为log 534<0,log 543>0,所以log 534<log 543.(2)法一(单调性法):由于log 132=1log 213,log 152=1log 215,又因对数函数y =log 2x 在(0,+∞)上是增函数,且13>15,所以0>log 213>log 215,所以1log 213<1log 215,所以log 132<log 152.法二(图象法):如图,在同一坐标系中分别画出y =log 13x 及y =log 15x 的图象,由图易知:log 132<log 152.(3)取中间值1,因为log 23>log 22=1=log 55>log 54,所以log 23>log 54. 2.比较下列各组值的大小:(1)log 230.5,log 230.6;(2)log 1.51.6,log 1.51.4;(3)log 0.57,log 0.67;(4)log 3π,log 20.8.[解析](1)因为函数y =log 23x 是减函数,且0.5<0.6,所以log 230.5>log 230.6.(2)因为函数y =log 1.5x 是增函数,且1.6>1.4,所以log 1.51.6>log 1.51.4. (3)因为0>log 70.6>log 70.5,所以1log 70.6<1log 70.5,即log 0.67<log 0.57. (4)因为log 3π>log 31=0,log 20.8<log 21=0,所以log 3π>log 20.8. 3.比较下列各组中两个值的大小:(1)log 31.9,log 32;(2)log 23,log 0.32;(3)log a π,log a 3.14(a >0,a ≠1). [解析](1)因为y =log 3x 在(0,+∞)上是增函数,所以log 31.9<log 32. (2)因为log 23>log 21=0,log 0.32<log 0.31=0,所以log 23>log 0.32.(3)当a >1时,函数y =log a x 在(0,+∞)上是增函数,则有log a π>log a 3.14; 当0<a <1时,函数y =log a x 在(0,+∞)上是减函数,则有log a π<log a 3.14. 综上所得,当a >1时,log a π>log a 3.14;当0<a <1时,log a π<log a 3.14. 4.比较下列各组数的大小(1)log 0.13与log 0.1π;(2)log 45与log 65;(3)3log 45与2log 23;(4)log a (a +2)与log a (a +3)(a >0且a ≠1). [解析] (1)∵函数y =log 0.1x 是减函数,π>3,∴log 0.13>log 0.1π.(2)法一:∵函数y =log 4x 和y =log 6x 都是增函数,∴log 45>log 44=1,log 65<log 66=1.∴log 45>log 65. 法二:画出y =log 4x 和y =log 6x 在同一坐标系中的图象如图所示,由图可知log 45>log 65.(3)∵3log 45=log 453=log 4125=log 2125log 24=12log 2125=log 2125,2log 23=log 232=log 29,又∵函数y =log 2x 是增函数,125>9,∴log 2125>log 29,即3log 45>2log 23. (4)∵a +2<a +3,故①当a >1时,log a (a +2)<log a (a +3);②当0<a <1时,log a (a +2)>log a (a +3). 5.比较下列各组中两个值的大小:(1)ln0.3,ln2;(2)log 30.2,log 40.2;(3)log 3π,log π3;(4)log a 3.1,log a 5.2(a>0,且a ≠1). [解析] (1)因为函数y =lnx 是增函数,且0.3<2,所以ln0.3<ln2.(2)解法一:因为0>log 0.23>log 0.24,所以1log 0.23<1log 0.24,即log 30.2<log 40.2.解法二:如图所示,由图可知log 40.2>log 30.2.(3)因为函数y =log 3x 是增函数,且π>3,所以log 3π>log 33=1.因为函数y =log πx 是增函数,且π>3,所以log π3<log ππ=1.所以log 3π>log π3.(4)当a>1时,函数y =log a x 在(0,+∞)上是增函数,又3.1<5.2,所以log a 3.1<log a 5.2; 当0<a<1时,函数y =log a x 在(0,+∞)上是减函数,又3.1<5.2,所以log a 3.1>log a 5.2. 6.已知实数a =log 45,b =⎝⎛⎭⎫120,c =log 30.4,则a ,b ,c 的大小关系为( )A .b<c<aB .b<a<cC .c<a<bD .c<b<a[解析]由题知,a =log 45>1,b =⎝⎛⎭⎫120=1,c =log 30.4<0,故c<b<a.[答案] D 7.下列式子中成立的是( )A .log 0.44<log 0.46B .1.013.4>1.013.5C .3.50.3<3.40.3D .log 76<log 67[解析]选D ,因为y =log 0.4x 为减函数,故log 0.44>log 0.46,故A 错;因为y =1.01x 为增函数, 所以1.013.4<1.013.5,故B 错;由幂函数的性质知,3.50.3>3.40.3,故C 错. 8.已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b[解析]∵0<a =213<20=1,b =log 213<log 21=0,c =log 1213>log 1212=1,∴c >a >b .故选D.9.如果log 12 x <log 12y <0,那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x[解析]对数函数y =log 12 x 在(0,+∞)上单调递减,则由log 12 x <log 12 y <0=log 12 1,可得1<y <x .10.设a =log 32,b =log 52,c =log 23,则( )A .a >c >bB .b >c >aC .c >b >aD .c >a >b[解析]a =log 32<log 33=1;c =log 23>log 22=1,由对数函数的性质可知log 52<log 32,∴b <a <c ,故选D. 11.设a =log 43,b =log 53,c =log 45,则( )A .a>c>bB .b>c>aC .c>b>aD .c>a>b[解析]a =log 43<log 44=1;c =log 45>log 44=1,由对数函数的性质可知log 53<log 43,∴b<a<c ,故选D. 12.若a =20.2,b =log 4(3.2),c =log 2(0.5),则( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a[解析]∵a =20.2>1>b =l o g 4(3.2)>0>c =l o g 2(0.5),∴a >b >c .故选A. 13.已知log a 13>log b 13>0,则下列关系正确的是( )A .0<b <a <1B .0<a <b <1C .1<b <aD .1<a <b[解析]由log a 13>0,log b 13>0,可知a ,b ∈(0,1),又log a 13>log b 13,作出图象如图所示,结合图象易知a >b ,∴0<b <a <1.14.设a =log 0.20.3,b =log 20.3,则( )A .a +b <ab <0B .ab <a +b <0C .a +b <0<abD .ab <0<a +b[解析]∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0.∵a +b ab =1a +1b=log 0.30.2+log 0.32=log 0.30.4,∴1=log 0.30.3>log 0.30.4>log 0.31=0, ∴0<a +b ab<1,∴ab <a +b <0.15.已知f (x )=|lg x |,且1c>a >b >1,试比较f (a ),f (b ),f (c )的大小.[解析]先作出函数y =lg x 的图象,再将图象位于x 轴下方的部分折到x 轴上方, 于是得f (x )=|lg x |图象(如图),由图象可知,f (x )在(0,1)上单调递减,在(1,+∞) 上单调递增.由1c >a >b >1得:f 1c >f (a )>f (b ),而f 1c =⎪⎪⎪⎪lg 1c =|-lg c |=|lg c |=f (c ). ∴f (c )>f (a )>f (b ).题型二 求单调区间或根据单调性求参1.函数f (x )=ln(2-x )的单调减区间为________.[解析]由2-x >0,得x <2.又函数y =2-x ,x ∈(-∞,2)为减函数, ∴函数f (x )=ln(2-x )的单调减区间为(-∞,2). 2.函数f (x )=log 2(1+2x )的单调增区间是______.[解析]易知函数f (x )的定义域为-12,+∞,又因为函数y =log 2x 和y =1+2x 都是增函数,所以f (x )的单调增区间是⎝⎛⎭⎫-12,+∞. 3.求函数y =log 12(1-x 2)的单调递增区间.[解析]要使函数有意义,则有1-x 2>0⇔x 2<1⇔-1<x <1.∴函数的定义域为(-1,1). 令t =1-x 2,x ∈(-1,1).在(-1,0)上,x 增大,t 增大,y =log 12 t 减小,即在(-1,0)上,y 随x 的增大而减小,为减函数;在[0,1)上,x 增大,t 减小,y =log 12 t 增大,即在[0,1)上,y 随x 的增大而增大,为增函数.∴y =log 12 (1-x 2)的单调递增区间为[0,1).4.求函数y =log 0.7(x 2-3x +2)的单调区间.[解析]因为x 2-3x +2>0,所以x<1或x>2.所以函数的定义域为(-∞,1)∪(2,+∞),令t =x 2-3x +2, 则y =log 0.7t ,显然y =log 0.7t 在(0,+∞)上是单调递减的,而t =x 2-3x +2在(-∞,1),(2,+∞)上分 别是单调递减和单调递增的,所以函数y =log 0.7(x 2-3x +2)的单调递增区间为(-∞,1), 单调递减区间为(2,+∞).5.求函数y =lg (x 2-2x )的单调递增区间.[解析]由已知,得x 2-2x >0,解得x >2或x <0.因为y =x 2-2x 在[1,+∞)上是增函数,在(-∞,1]上是减函数,而y =lg x 在(0,+∞)上是增函数,所以y =lg (x 2-2x )的单调递增区间为(2,+∞). 6.函数f (x )=ln(x +2)+ln(4-x )的单调递减区间是________.[解析]由⎩⎪⎨⎪⎧x +2>0,4-x >0得-2<x <4,因此函数f (x )的定义域为(-2,4).f (x )=ln(x +2)+ln(4-x )=ln(-x 2+2x +8)=ln [-(x -1)2+9], 设u =-(x -1)2+9,又y =ln u 是增函数,u =-(x -1)2+9在(1,4)上是减函数,因此f (x )的单调递减区间为(1,4). 7.函数f (x )=|log 12x |的单调递增区间是( )A.⎝⎛⎦⎤0,12 B .(0,1] C .(0,+∞)D .[1,+∞)[解析]f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).]8.已知函数f (x )=log a (3-ax )(a >0,且a ≠1).当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围. [解析]∵a >0且a ≠1,设t (x )=3-ax ,则t (x )=3-ax 为减函数,当x ∈[0,2]时,t (x )的最小值为3-2a . ∵当x ∈[0,2]时,f (x )恒有意义,即x ∈[0,2]时,3-ax >0恒成立.∴3-2a >0,∴a <32.又a >0且a ≠1,∴0<a <1或1<a <32,∴实数a 的取值范围为(0,1)∪⎝⎛⎭⎫1,32. 9.已知y =log a (2-ax )是[0,1]上的减函数,则a 的取值范围为( )A .(0,1)B .(1,2)C .(0,2)D .[2,+∞)[解析]∵f (x )=l o g a (2-ax )在[0,1]上是减函数,且y =2-ax 在[0,1]上是减函数,∴⎩⎪⎨⎪⎧ f (0)>f (1),a >1,即⎩⎪⎨⎪⎧ log a 2>log a (2-a ),a >1,∴⎩⎪⎨⎪⎧a >1,2-a >0,∴1<a <2. 10.若y =log a (ax +3)(a >0且a ≠1)在区间(-1,+∞)上是增函数,则a 的取值范围是________. [解析]因为y =log a (ax +3)(a >0且a ≠1)在区间(-1,+∞)上是增函数,所以⎩⎪⎨⎪⎧-a +3≥0,a >1,a >0且a ≠1,解得1<a ≤3.故a 的取值范围是(1,3].11.是否存在实数a ,使函数y =log a (ax 2-x )在区间[2,4]上是增函数?如果存在,求出a 的取值范围;如果不存在,请说明理由.[解析]存在.设u =g (x )=ax 2-x ,则y =log a u .假设符合条件的a 值存在.(1)当a >1时,只需g (x )在[2,4]上为增函数,故应满足⎩⎪⎨⎪⎧12a ≤2,g (2)=4a -2>0.解得a >12.∴a >1.(2)当0<a <1时,只需g (x )在[2,4]上为减函数,故应满足⎩⎪⎨⎪⎧12a ≥4,g (4)=16a -4>0.无解.综上所述,当a >1时,函数y =log a (ax 2-x )在[2,4]上是增函数. 12.设函数f (x )=log a ⎝⎛⎭⎫1-ax ,其中0<a <1. (1)证明:f (x )是(a ,+∞)上的减函数; (2)若f (x )>1,求x 的取值范围.[解析] (1)证明:任取x 1,x 2∈(a ,+∞),不妨令0<a <x 1<x 2,g (x )=1-ax ,则g (x 1)-g (x 2)=⎝⎛⎭⎫1-a x 1-⎝⎛⎭⎫1-a x 2=a (x 1-x 2)x 1x 2, ∵0<a <x 1<x 2,∴x 1-x 2<0,x 1x 2>0,∴g (x 1)-g (x 2)<0,∴g (x 1)<g (x 2),∴g (x )为增函数,又∵0<a <1,∴f (x )是(a ,+∞)上的减函数. (2)∵log a ⎝⎛⎭⎫1-a x >1,∴0<1-a x <a ,∴1-a <ax <1.又∵0<a <1,∴1-a >0, ∴a <x <a1-a,∴x 的取值范围是⎝⎛⎭⎫a ,a 1-a .题型三 求解对数不等式1.不等式log 2(2x +3)>log 2(5x -6)的解集为( )A .(-∞,3) B.⎝⎛⎭⎫-32,3 C.⎝⎛⎭⎫-32,65 D.⎝⎛⎭⎫65,3[解析]由⎩⎪⎨⎪⎧2x +3>0,5x -6>0,2x +3>5x -6,得65<x<3.[答案] D 2.若lg(2x -4)≤1,则x 的取值范围是( )A .(-∞,7]B .(2,7]C .[7,+∞)D .(2,+∞)[解析]由lg(2x -4)≤1,得0<2x -4≤10,即2<x ≤7,故选B. 3.若log a 23<1,则a 的取值范围是________.[解析] 原不等式等价于⎩⎪⎨⎪⎧ 0<a <1,23>a 或⎩⎪⎨⎪⎧a >1,23<a ,解得0<a <23或a >1,故a 的取值范围为⎝⎛⎭⎫0,23∪(1,+∞). 4.已知log a (3a -1)恒为正,求a 的取值范围. [解析]由题意知log a (3a -1)>0=log a 1.当a>1时,y =log a x 是增函数,∴⎩⎪⎨⎪⎧3a -1>1,3a -1>0,解得a>23,∴a>1;当0<a<1时,y =log a x 是减函数,∴⎩⎪⎨⎪⎧3a -1<1,3a -1>0,解得13<a<23.∴13<a<23.综上所述,a 的取值范围是⎝⎛⎭⎫13,23∪(1,+∞).5.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)[解析]若a >0,由f (a )>f (-a ),得log 2a >log 12 a =-log 2a ,即log 2a >0,则a >1;若a <0,则由f (a )>f (-a ),得log 12 (-a )>log 2(-a ),即-log 2(-a )>log 2(-a ),则log 2(-a )<0,得0<-a <1,即-1<a <0.综上所述,a 的取值范围是(-1,0)∪(1,+∞).6.已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f ⎝⎛⎭⎫12=0,则不等式f (log 4x )<0的解集是___. [解析]由题意可知,f (log 4x )<0⇔-12<log 4x <12⇔log 44-12<log 4x <log 4412⇔12<x <2.7.(1)已知log a 12>1,求a 的取值范围;(2)已知log 0.7(2x )<log 0.7(x -1),求x 的取值范围. [解析] (1)由log a 12>1得log a 12>log a a .①当a >1时,有a <12,此时无解.②当0<a <1时,有12<a ,从而12<a <1.所以a 的取值范围是⎝⎛⎭⎫12,1.(2)因为函数y =log 0.7x 在(0,+∞)上为减函数,所以由log 0.7(2x )<log 0.7(x -1)得⎩⎪⎨⎪⎧2x >0,x -1>0,2x >x -1,解得x >1.即x 的取值范围是(1,+∞).8.已知2log a (x -4)>log a (x -2),求x 的取值范围.[解析]由题意,得x >4,原不等式可变为log a (x -4)2>log a (x -2). 当a >1时,y =log ax 为定义域内的增函数,∴⎩⎪⎨⎪⎧ (x -4)2>x -2,x -4>0,x -2>0,解得x >6.当0<a <1时,y =log ax 为定义域内的减函数,∴⎩⎪⎨⎪⎧(x -4)2<x -2,x -4>0,x -2>0,解得4<x <6.综上所述,当a >1时,x 的取值范围为(6,+∞);当0<a <1时,x 的取值范围为(4,6). 9.已知函数f (x )=log a (x -1),g (x )=log a (6-2x )(a >0,且a ≠1).(1)求函数φ(x )=f (x )+g (x )的定义域; (2)试确定不等式f (x )≤g (x )中x 的取值范围.[解析] (1)由⎩⎪⎨⎪⎧x -1>0,6-2x >0,解得1<x <3,∴函数φ(x )的定义域为{x |1<x <3}.(2)不等式f (x )≤g (x ),即为log a (x -1)≤log a (6-2x ),①当a >1时,不等式等价于⎩⎪⎨⎪⎧ 1<x <3,x -1≤6-2x ,解得1<x ≤73;②当0<a <1时,不等式等价于⎩⎪⎨⎪⎧1<x <3,x -1≥6-2x ,解得73≤x <3.综上可得,当a >1时,不等式的解集为⎝⎛⎦⎤1,73;当0<a <1时,不等式的解集为⎣⎡⎭⎫73,3. 10.函数f (x )=2x -log 31+x 1-x,x ∈(0,1),求不等式f (x 2)>f ⎝⎛⎭⎫13的解集.[解析]∵y =2x 在(0,1)上为减函数,y =-log 31+x 1-x =log 31-x 1+x =log 3⎝ ⎛⎭⎪⎫-1+2x +1在(0,1)上也为减函数, ∴f (x )=2x -log 31+x 1-x在(0,1)上单调递减.∴x 2<13.∴0<x <33,∴解集为⎝⎛⎭⎫0,33.题型四 与对数函数有关的值域问题1.下列函数中,值域是[0,+∞)的是( ) A .f(x)=log 2(x -1) B .f(x)=log 2(x -1) C .f(x)=log 2(x 2+2)D .f(x)=log 2x -1[解析]A 、D 中因为真数大于0,故值域为R ,C 中因为x 2+2≥2,故f(x)≥1. 只有B 中log 2(x -1)≥0,f(x)的值域为[0,+∞).[答案] B2.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( )A.14B.12C .2D .4 [解析]当a >1时,a +log a 2+1=a ,log a 2=-1,a =12(舍去).当0<a <1时,1+a +log a 2=a ,∴log a 2=-1,a =12.3.函数f (x )=log 12(x 2+2x +3)的值域是________.[解析]f (x )=log 12(x 2+2x +3)=log 12[(x +1)2+2],因为(x +1)2+2≥2,所以log 12[(x +1)2+2]≤log 122=-1,所以函数f (x )的值域是(-∞,-1].4.函数y =log 0.4(-x 2+3x +4)的值域是________.[解析]-x 2+3x +4=-⎝⎛⎭⎫x -322+254≤254,∴有0<-x 2+3x +4≤254, ∴根据对数函数y =log 0.4x 的图象(图略)即可得到:log 0.4(-x 2+3x +4)≥log 0.4254=-2,∴原函数的值域为[-2,+∞). 5.求函数y =log 13(-x 2+4x -3)的值域.[解析]由-x 2+4x -3>0,解得1<x<3,∴函数的定义域是(1,3). 设u =-x 2+4x -3(1<x<3),则u =-(x -2)2+1.∵1<x<3,∴0<u ≤1,则y ≥0,即函数的值域是[0,+∞).6.求下列函数的值域:(1)y =log 2(x 2+4);(2)y =log 12(3+2x -x 2).[解析] (1)y =log 2(x 2+4)的定义域是R.因为x 2+4≥4,所以log 2(x 2+4)≥log 24=2. 所以y =log 2(x 2+4)的值域为[2,+∞).(2)设u =3+2x -x 2=-(x -1)2+4≤4.因为u >0,所以0<u ≤4. 又y =log 12 u 在(0,4]上为减函数,所以log 12 u ≥log 12 4=-2,所以y =log 12 (3+2x -x 2)的值域为[-2,+∞). 7.求下列函数的值域:(1)y =log 2(|x|+4);(2)f(x)=log 2(-x 2-4x +12).[解析] (1)因为|x|+4≥4,所以log 2(|x|+4)≥log 24=2,所以函数的值域为[2,+∞).(2)因为-x 2-4x +12=-(x +2)2+16≤16,所以0<-x 2-4x +12≤16,故log 2(-x 2-4x +12)≤log 216=4,函数的值域为(-∞,4].8.求函数y =(log 2x)2-4log 2x +5(1≤x ≤2)的最值.[解析]令t =log 2x ,则0≤t ≤1且y =t 2-4t +5,由二次函数的图象可知,函数y =t 2-4t +5在[0,1]上为减函数,∴2≤y ≤5.故y max =5,y min =2.9.求函数y =log 2(2x)·log 2x ⎝⎛⎭⎫12≤x ≤2的最大值和最小值. [解析]y =log 2(2x)·log 2x =(1+log 2x)·log 2x =⎝⎛⎭⎫log 2x +122-14. ∵12≤x ≤2,即-1≤log 2x ≤1,∴当log 2x =-12时,y min =-14;当log 2x =1时,y max =2. 10.函数f (x )=log 2x ·log 2(2x )的最小值为________.[解析]f (x )=log 2x ·log 2(2x )=12log 2x ·2log 2(2x )=log 2x (1+log 2x ).设t =log 2x (t ∈R),则原函数可以化为y =t (t +1)=⎝⎛⎭⎫t +122-14(t ∈R),故该函数的最小值为-14.故f (x )的最小值为-14. 11.已知2x ≤256且log 2x ≥12,求函数f (x )=log 2x 2×log 2 x2的最大值和最小值.[解析]由2x ≤256,得x ≤8,所以log 2x ≤3,即12≤log 2x ≤3.f (x )=(log 2x -1)×(log 2x -2)=(log 2x )2-3log 2x +2=⎝⎛⎭⎫log 2x -322-14. 当log 2x =32,即x =22时,f (x )min =-14,当log 2x =3,即x =23=8时,f (x )max =2.12.求函数f(x)=log 2(4x)·log 42x,x ∈⎣⎡⎦⎤12,4的值域. [解析]f(x)=log 2(4x)·log 42x =(log 2x +2)·⎣⎡⎦⎤12(1-log 2x )=-12[(log 2x)2+log 2x -2]. 设log 2x =t.∵x ∈⎣⎡⎦⎤12,4,∴t ∈[-1,2],则有y =-12(t 2+t -2),t ∈[-1,2], 因此二次函数图象的对称轴为t =-12,∴它在⎣⎡⎦⎤-1,-12上是增函数,在⎣⎡⎦⎤-12,2上是减函数, ∴当t =-12时,有最大值,且y max =98.当t =2时,有最小值,且y min =-2.∴f(x)的值域为⎣⎡⎦⎤-2,98. 13.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为________.[解析]根据图象可知,|log 3x |=0,则x =1,|log 3x |=1,则x =13或3.由图可知(b -a )min =1-13=23.14.若函数y =log 2(x 2-2)(a ≤x ≤b )的值域是[1,log 214],则a ,b 的值分别为( )A .⎩⎪⎨⎪⎧ a =-4,b =-2B .⎩⎪⎨⎪⎧a =2,b =4C .⎩⎪⎨⎪⎧a =-4,b =2D .⎩⎪⎨⎪⎧ a =-4,b =-2或⎩⎪⎨⎪⎧a =2,b =4[解析]由1≤log 2(x 2-2)≤log 214得2≤x 2-2≤14,得4≤x 2≤16,得-4≤x ≤-2或2≤x ≤4.由x 2-2>0得x <-2或x >2,故b <-2或a > 2.当a >2时,由函数y =log 2(x 2-2)(a ≤x ≤b )单调递增得2≤x ≤4,故a =2,b =4;当b <-2时,由函数y =log 2(x 2-2)(a ≤x ≤b )单调递减得-4≤x ≤-2, 故a =-4,b =-2.15.已知函数y =(log 2x -2)⎝⎛⎭⎫log 4x -12,2≤x ≤8. (1)令t =log 2x ,求y 关于t 的函数关系式,并写出t 的范围; (2)求该函数的值域.[解析] (1)y =12(t -2)(t -1)=12t 2-32t +1,又2≤x ≤8,∴1=log 22≤log 2x ≤log 28=3,即1≤t ≤3.(2)由(1)得y =12⎝⎛⎭⎫t -322-18,1≤t ≤3, 当t =32时,y min =-18;当t =3时,y max =1,∴-18≤y ≤1,即函数的值域为⎣⎡⎦⎤-18,1.16.已知函数f (3x -2)=x -1,x ∈[0,2],将函数y =f (x )的图象向右平移2个单位长度,再向上平移3个单位长度可得函数y =g (x )的图象.(1)求函数y =f (x )与y =g (x )的解析式;(2)设h (x )=[g (x )]2+g (x 2),试求函数y =h (x )的最值.[解析] (1)设t =3x -2,t ∈[-1,7],则x =log 3(t +2),于是有f (t )=log 3(t +2)-1,t ∈[-1,7]. ∴f (x )=log 3(x +2)-1,x ∈[-1,7],根据题意得g (x )=f (x -2)+3=log 3x +2,x ∈[1,9]. ∴函数y =f (x )的解析式为f (x )=log 3(x +2)-1,x ∈[-1,7], 函数y =g (x )的解析式为g (x )=log 3x +2,x ∈[1,9]. (2)∵g (x )=log 3x +2,x ∈[1,9],∴h (x )=[g (x )]2+g (x 2)=(log 3x +2)2+2+log 3x 2=(log 3x )2+6log 3x +6=(log 3x +3)2-3, ∵函数g (x )的定义域为[1,9],∴要使函数h (x )=[g (x )]2+g (x 2)有意义,必须有⎩⎪⎨⎪⎧1≤x 2≤9,1≤x ≤9,即1≤x ≤3.∴0≤log 3x ≤1,∴6≤(log 3x +3)2-3≤13.∴函数y =h (x )的最大值为13,最小值为6. 17.已知函数f (x )=lg (ax 2+2x +1).(1)若f (x )的值域为R ,求实数a 的取值范围; (2)若f (x )的定义域为R ,求实数a 的取值范围.[解析] (1)∵f (x )的值域为R ,∴要求u =ax 2+2x +1的值域包含(0,+∞). 当a <0时,显然不可能; 当a =0时,u =2x +1∈R 成立;当a >0时,若u =ax 2+2x +1的值域包含(0,+∞), 则Δ=4-4a ≥0,解得0<a ≤1. 综上可知,a 的取值范围是0≤a ≤1. (2)由已知,u =ax 2+2x +1的值恒为正,∴⎩⎪⎨⎪⎧a >0,Δ=4-4a <0,解得a 的取值范围是a >1.18.已知函数f (x )=log 2⎣⎡⎦⎤ax 2+(a -1)x +14. (1)若定义域为R ,求实数a 的取值范围; (2)若值域为R ,求实数a 的取值范围.[解析]1)要使f (x )的定义域为R ,则对任意实数x 都有t =ax 2+(a -1)x +14>0恒成立.当a =0时,不合题意;当a ≠0时,由二次函数图象可知⎩⎪⎨⎪⎧a >0,Δ=(a -1)2-a <0. 解得3-52<a <3+52.故所求a 的取值范围为⎝ ⎛⎭⎪⎫3-52,3+52. (2)要使f (x )的值域为R ,则有t =ax 2+(a -1)x +14的值域必须包含(0,+∞).当a =0时,显然成立;当a ≠0时,由二次函数图象可知,其二次函数图象必须与x 轴相交且开口向上,∴⎩⎪⎨⎪⎧a >0,Δ=(a -1)2-a ≥0,即0<a ≤3-52或a ≥3+52.故所求a 的取值范围为⎣⎢⎡⎦⎥⎤0,3-52∪⎣⎢⎡⎭⎪⎫3+52,+∞. 题型五 对数函数性质的综合应用1.函数f (x )=lg ⎝ ⎛⎭⎪⎫1x 2+1+x 是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数[解析]f (x )定义域为R ,f (-x )+f (x )=lg ⎝ ⎛⎭⎪⎫1x 2+1-x +lg ⎝ ⎛⎭⎪⎫1x 2+1+x =lg1(x 2+1)-x 2=lg 1=0, ∴f (x )为奇函数,故选A.2.设函数f (x )=ln (1+x )-ln (1-x ),则f (x )是( )A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数[解析]由题意可得,函数f (x )的定义域为(-1,1),且f (-x )=ln (1-x )-ln (1+x )=-f (x ), 故f (x )为奇函数.又f (x )=ln 1+x 1-x =ln ⎝ ⎛⎭⎪⎫21-x -1,易知y =21-x -1在(0,1)上为增函数,故f (x )在(0,1)上为增函数.故选A .3.当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A .(2,2)B .(1,2)C.⎝⎛⎭⎫22,1D.⎝⎛⎭⎫0,22 [解析]当0<x ≤12时,函数y =4x 的图象如图所示,若不等式4x <log a x 恒成立,则y =log a x 的图象恒在y =4x 的图象的上方(如图中虚线所示),∵y =log a x 的图象与y =4x 的图象交于⎝⎛⎭⎫12,2点时,a =22, 故虚线所示的y =log a x 的图象对应的底数a 应满足22<a <1,故选C.4.已知函数f (x )=ln(3+x )+ln(3-x ).(1)求函数y =f (x )的定义域; (2)判断函数y =f (x )的奇偶性.[解析](1)要使函数有意义,则⎩⎪⎨⎪⎧3+x >0,3-x >0,解得-3<x <3,故函数y =f (x )的定义域为(-3,3).(2)由(1)可知,函数y =f (x )的定义域为(-3,3),关于原点对称. 对任意x ∈(-3,3),则-x ∈(-3,3).∵f (-x )=ln(3-x )+ln(3+x )=f (x ),∴由函数奇偶性可知,函数y =f (x )为偶函数.5.设常数a >1,实数x ,y 满足log a x +2log x a +log x y =-3,若y 的最大值为2,则x 的值为________. [解析]实数x ,y 满足log a x +2log x a +log x y =-3,化为log a x +2log a x +log a ylog a x =-3.令log a x =t ,则原式化为log a y =-⎝⎛⎭⎫t +322+14. ∵a >1,∴当t =-32时,y 取得最大值2,∴log a 2=14,解得a =4,∴log 4x =-32,∴x =4-32=18.6.已知函数f (x )=log a (1-x )+log a (x +3),其中0<a <1.(1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-4,求a 的值.[解析] (1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0,x +3>0,解得-3<x <1,所以函数的定义域为(-3,1).(2)函数可化为f (x )=log a (1-x )(x +3)=log a (-x 2-2x +3)=log a [-(x +1)2+4],因为-3<x <1,所以0<-(x +1)2+4≤4. 因为0<a <1,所以log a [-(x +1)2+4]≥log a 4,即f (x )min =log a 4,由log a 4=-4,得a -4=4,所以a =4-14=22.7.已知函数f(x)=log a 1+x1-x(a>0,且a ≠1).(1)求f(x)的定义域; (2)判断函数的奇偶性;(3)求使f(x)>0的x 的取值范围.[解析](1)由1+x1-x >0,得-1<x<1,故f(x)的定义域为(-1,1).(2)∵f(-x)=log a 1-x 1+x =-log a 1+x1-x=-f(x),又由(1)知f(x)的定义域关于原点对称,∴f(x)是奇函数. (3)当a>1时,由log a 1+x 1-x >0=log a 1,得1+x1-x >1.所以0<x<1.当0<a<1时,由log a 1+x 1-x >0=log a 1,得0<1+x1-x<1,所以-1<x<0.故当a>1时,x 的取值范围是{x|0<x<1};当0<a<1时,x 的取值范围是{x|-1<x<0}. 8.已知函数f (x )=lg (2+x )+lg (2-x ).(1)求函数y =f (x )的定义域; (2)判断函数y =f (x )的奇偶性;(3)若f (m -2)<f (m ),求m 的取值范围.[解析](1)要使函数f (x )有意义,则⎩⎪⎨⎪⎧2+x >0,2-x >0,解得-2<x <2.∴函数y =f (x )的定义域为{x |-2<x <2}.(2)由(1),可知函数y =f (x )的定义域为{x |-2<x <2},关于原点对称,对任意x ∈(-2,2),有-x ∈(-2,2). ∵f (-x )=lg (2-x )+lg (2+x )=lg (2+x )+lg (2-x )=f (x ),∴函数y =f (x )为偶函数. (3)∵函数f (x )=lg (2+x )+lg (2-x )=lg (4-x 2),当0≤x <2时,函数y =f (x )为减函数,当-2<x <0时,函数y =f (x )为增函数, ∴不等式f (m -2)<f (m )等价于|m |<|m -2|,解得m <1.又⎩⎪⎨⎪⎧-2<m -2<2,-2<m <2,解得0<m <2. 综上所述,m 的取值范围是{m |0<m <1}.9.已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=log 12(x +7).(1)求f (1),f (-1); (2)求函数f (x )的表达式;(3)若f (a -1)-f (3-a )<0,求a 的取值范围. [解析](1)f (1)=log 128=-3,f (-1)=-f (1)=3.(2)因为f (x )在R 上为奇函数,所以f (0)=0,令x <0,则-x >0, 所以f (x )=-f (-x )=-log 12(-x +7),(3)当x ∈(0,+∞)时,y =log 12 (x +7),令u =x +7,则y =log 12 u .由于u =x +7是增函数,y =log 12 u 是减函数,则y =log 12 (x +7)在(0,+∞)上是减函数,又由于f (x )是奇函数且f (0)=0,所以y =f (x )是R 上的减函数.由f (a -1)<f (3-a ),得a -1>3-a ,解得a >2. 10.已知a >0且满足不等式22a +1>25a -2.(1)求实数a 的取值范围;(2)求不等式log a (3x +1)<log a (7-5x )的解集;(3)若函数y =log a (2x -1)在区间[1,3]上有最小值为-2,求实数a 的值.[解析](1)∵22a +1>25a -2,∴2a +1>5a -2,即3a <3,∴a <1,即0<a <1.∴实数a 的取值范围是(0,1). (2)由(1)得,0<a <1,∵log a (3x +1)<log a (7-5x ),∴⎩⎪⎨⎪⎧3x +1>0,7-5x >0,3x +1>7-5x ,即⎩⎪⎨⎪⎧x >-13,x <75,x >34,解得34<x <75.即不等式的解集为⎝⎛⎭⎫34,75. (3)∵0<a <1,∴函数y =log a (2x -1)在区间[1,3]上为减函数,∴当x =3时,y 有最小值为-2,即log a 5=-2,∴a -2=1a 2=5,解得a =55.11.已知函数f (x )=lga -x1+x. (1)若f (x )为奇函数,求a 的值;(2)在(1)的条件下,若f (x )在(m ,n )上的值域为(-1,+∞),求m ,n 的值. [解析] (1)∵f (x )为奇函数,∴f (x )+f (-x )=0,即lg a -x 1+x +lg a +x 1-x =0,∴(a -x )(a +x )1-x 2=1,解得a =1(a =-1舍去).(2)由(1)知f (x )=lg1-x 1+x ,则1-x1+x>0, 即⎩⎪⎨⎪⎧ 1-x >0,1+x >0或⎩⎪⎨⎪⎧1-x <0,1+x <0,解得-1<x <1,即其定义域为(-1,1). ∵x ∈(-1,1)时,t =1-x 1+x =-1+21+x为减函数,而y =lg t 在其定义域内为增函数,∴f (x )=lg 1-x 1+x 在其定义域内是减函数,则m =-1,由题意知f (n )=lg 1-n 1+n =-1,解得n =911,即m =-1,n =911.题型六 反函数的应用1.写出下列函数的反函数(用x 表示自变量,用y 表示函数): (1)y =2.5x ;(2)y =log 16x .[解析](1)函数y =2.5x 的反函数是y =log 2.5x (x >0).(2)由y =log 16 x 得x =⎝⎛⎭⎫16y ,所以函数y =log 16x 的反函数为y =⎝⎛⎭⎫16x .2.函数y =a x (a >0,且a ≠1)的反函数的图象过点(a ,a ),则a 的值为( )A .2B .12C .2或12D .3[解析]法一:函数y =a x (a >0,且a ≠1)的反函数为y =log a x (a >0,且a ≠1),故y =log a x 的图象过点(a ,a ),则a =log a a =12.法二:∵函数y =a x (a >0,且a ≠1)的反函数的图象过点(a ,a ),∴函数y =a x (a >0,且a ≠1)的图象过点(a ,a ),∴a a=a =a 12,即a =12.3.已知函数f (x )=a x -k (a >0,且a ≠1)的图象过点(1,3),其反函数的图象过点(2,0),求函数f (x )的解析式. [解析] 由于函数f (x )的反函数的图象过点(2,0),∴f (x )的图象过点(0,2),∴2=a 0-k ,即k =-1, ∴f (x )=a x +1.又f (x )的图象过点(1,3),∴3=a +1,即a =2,∴f (x )=2x +1.4.若函数y =f (x )的图象与函数y =lg (x +1)的图象关于直线x -y =0对称,则f (x )=( )A .10x -1B .1-10xC .1-10-xD .10-x -1[解析]若两函数图象关于直线y =x 对称,则两函数互为反函数,故y =lg (x +1),则x +1=10y , x =10y -1,即y =10x -1.故选A .5.已知函数y =e x 的图象与函数y =f (x )的图象关于直线y =x 对称,则( )A .f (2x )=e 2x (x ∈R)B .f (2x )=ln 2·ln x (x >0)C .f (2x )=2e x (x ∈R)D .f (2x )=ln x +ln 2(x >0)[解析]因为函数y =e x 的图象与函数f (x )的图象关于直线y =x 对称,所以f (x )是y =e x 的反函数, 即f (x )=ln x ,故f (2x )=ln 2x =ln x +ln 2(x >0),故选D .6.设函数f (x )=log 2x 的反函数为y =g (x ),且g (a )=14,则a =________.[解析]∵函数f (x )=log 2x 的反函数为y =2x ,即g (x )=2x .又∵g (a )=14,∴2a =14,∴a =-2.。
《对数函数的图像与性质》知识解读

《对数函数的图像与性质》知识解读
(1)一般地,对数函数log (0,1)a y x a a =>≠且图像与性质如下表:
(2)底数a 对函数图像的影响
①底数a 与1的大小关系决定了对数函数图像的“升降”:当a >1时,对数函数的图像“上升”;当0<a <1时,对数函数的图像“下降”.
②2函数1log log (0,1)a a y x y x a a ==>≠与且的图像关于x 轴对称.
③底数的大小决定了图像相对位置的高低:不论是a >1还是0<a <1,在第一象限内,自左向右,图像对应的对数函数的底数逐渐变大.
a .上下比较:在直线x =1的右侧,a >1时,a 越大,图像向右越靠近x 轴;0<a <1时,a 越小,图像向右越靠近x 轴.
b .左右比较:比较图像与直线y =1的交点,交点的横坐标越大,对应的对数函数的底数越大.
根据如图所示的图像,我们很容易得到上述结论.
辨析比较☆
两个单调性相同的对数函数,它们的图像在位于直线x=1右侧的部分是“底大图低”,如图所示。
(完整word版)高考数学函数专题

专题 1函数(理科 )一、考点回首1.理解函数的看法,认识映照的看法.2.认识函数的单一性的看法,掌握判断一些简单函数的单一性的方法.3.认识反函数的看法及互为反函数的函数图象间的关系,会求一些简单函数的反函数.4.理解分数指数幂的看法,掌握有理指数幂的运算性质,掌握指数函数的看法、图象和性质 .5.理解对数的看法,掌握对数的运算性质,掌握对数函数的看法、图象和性质.二、6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的本质问题经典例题分析.考点一:函数的性质与图象函数的性质是研究初等函数的基石,也是高考观察的要点内容.在复习中要肯于在对定义的深入理解上下功夫.复习函数的性质,能够从“数”和“形”两个方面,从理解函数的单一性和奇偶性的定义下手,在判断和证明函数的性质的问题中得以稳固,在求复合函数的单一区间、函数的最值及应用问题的过程中得以深入.详细要求是:1.正确理解函数单一性和奇偶性的定义,能正确判断函数的奇偶性,以及函数在某一区间的单一性,能娴熟运用定义证明函数的单一性和奇偶性.2.从数形联合的角度认识函数的单一性和奇偶性,深入对函数性质几何特点的理解和运用,归纳总结求函数最大值和最小值的常用方法.3.培育学生用运动变化的看法分析问题,提升学生用换元、转变、数形联合等数学思想方法解决问题的能力.这部分内容的要点是对函数单一性和奇偶性定义的深入理解.函数的单一性只好在函数的定义域内来议论.函数y=f( x) 在给定区间上的单一性,反应了函数在区间上函数值的变化趋向,是函数在区间上的整体性质,但不必定是函数在定义域上的整体性质.函数的单一性是对某个区间而言的,所以要遇到区间的限制.对函数奇偶性定义的理解,不可以只逗留在 f( - x) = f( x) 和 f( - x) =- f( x) 这两个等式上,要明确对定义域内随意一个 x,都有 f( -x) = f( x) ,f( - x) =- f( x) 的本质是:函数的定义域对于原点对称.这是函数具备奇偶性的必需条件.略加推行,可得函数 f( x) 的图象对于直线x=a 对称的充要条件是对定义域内的随意 x,都有 f( x+a) = f( a- x) 成立.函数的奇偶性是其相应图象的特别的对称性的反应.这部分的难点是函数的单一性和奇偶性的综合运用.依据已知条件,调换有关知识,选择适合的方法解决问题,是对学生能力的较高要求.函数的图象是函数性质的直观载体,函数的性质能够经过函数的图像直观地表现出来。
新高考数学复习考点知识与题型专题讲解21---对数函数的概念(解析版)

新高考数学复习考点知识与题型专题讲解21 对数函数的概念1.对数函数的概念函数y=log a x(a>0,且a≠1)叫做对数函数,其中是自变量,函数的定义域是_____________.温馨提示:(1)对数函数y=log a x是由指数函数y=a x反解后将x、y互换得到的.(2)无论是指数函数还是对数函数,都有其底数a>0且a≠1.2.对数函数的图象及性质注意:底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.3.当底数不同时对数函数图象的变化规律作直线y=1与所给图象相交,交点的横坐标即为对数的底数,依据在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大,可得b>a>1>d>c>0.答案:x (0,+∞)题型一 对数函数的定义域和值域 1.函数2ln 2()||x f x x x =的图象大致为( )A .B .C .D .【答案】B【解析】函数()f x 的定义域为{}|0x x ≠, 又()()()2222ln ()||ln x x x f x f x x x x---===---, 所以函数()f x 是奇函数,故排除A ,C ; 又因为11()2ln 024f =<,故排除D.故选:B题型二 对数函数的图像问题2.如果函数(0,1)x y a a a =>≠的反函数是增函数,那么函数log (1)a y x =-+的图象大致是( )A .B .C .D .【答案】C【解析】因为函数(0,1)x y a a a =>≠的反函数是增函数,可得函数x y a =为增函数,所以1a >, 所以函数log (1)a y x =-+为减函数,可排除B 、D ; 又由当0x =时,log (01)0a y =-+=,排除A. 故选:C.题型三 对数函数的单调性3.函数()12log f x x =的单调递增区间是( )A .10,2⎛⎤⎥⎝⎦B .(]1,2C .[)1,+∞D .()0,∞+【答案】C【解析】由112211222log ,01log ,01()log log ,1log ,1x x x x f x x x x x x <<⎧<<⎧⎪⎪===⎨⎨-≥⎪⎪≥⎩⎩,而对数函数12log y x=在()0,1上是减函数,2log y x =在[)1,+∞上是增函数,所以函数()f x 单调递增区间为[)1,+∞. 故选:C题型四 对数函数的最值及参数问题4.已知()()2ln 1f x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭,若[]10,3x ∀∈,[]21,2x ∃∈,使得()()12f x g x ≥,则实数m的取值范围为( )A .1,2⎛⎤-∞- ⎥⎝⎦B .1,4⎛⎤-∞ ⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .1,4⎡⎫+∞⎪⎢⎣⎭【答案】D【解析】若[]10,3x ∀∈,[]21,2x ∃∈,使得()()12f x g x ≥,则()()min min f x g x ≥.由于函数()()2ln 1f x x =+在区间[]0,3上为增函数,则()()min 00f x f ==,由于函数()12xg x m ⎛⎫=- ⎪⎝⎭在区间[]1,2上为减函数,则()()min 124g x g m ==-,所以,104m -≤,解得14m ≥.故选:D.5.在b =log 3a -1(3-2a )中,实数a 的取值范围是( ) A .1,3⎛⎫-∞ ⎪⎝⎭∪3,2⎛⎫+∞ ⎪⎝⎭B .12,33⎛⎫ ⎪⎝⎭∪23,32⎛⎫ ⎪⎝⎭C .12,33⎛⎫⎪⎝⎭D .23,32⎛⎫ ⎪⎝⎭【答案】B【解析】要使式子b =log 3a -1(3-2a )有意义, 则310,311,320,a a a ->⎧⎪-≠⎨⎪->⎩解得1233a << 或 2332a <<.故选:B .6.已知函数()log (6)a f x ax =-在(0,2)上为减函数,则a 的取值范围是( ) A .(1,3]B .(1,3)C .(0,1)D .[3,+∞) 【答案】A【解析】由函数()log (6)a f x ax =-在(0,2)上为减函数, 可得函数6t ax =-在(0,2)上大于零,且t 为减函数,1a >,故有1620a a >⎧⎨-≥⎩,解得13a故选:A .7.若函数()lg 1y ax =+的定义域为(),1-∞,则a =( ) A .1B .-1 C .2D .无法确定 【答案】B【解析】函数()lg 1y ax =+的定义域为(),1-∞,则10ax +>的解集为(),1-∞, 即0a <,且10ax +=的根11a-=,故1a =-. 故选:B.8.下列不等号连接不正确的是( ) A .0.5 0.5 log 2.2log 2.3>B .36log 4log 5> C .35log 4log 6>D .log log e e ππ> 【答案】D【解析】对于选项A :因为0.5log y x =在()0,∞+单调递减,2.2 2.3<,所以0.50.5log 2.2log 2.3>,故选项A 正确;对于选项B :33log 4log 31>=,6660log 1log 5log 61=<<=,即3log 41>,6log 51<, 所以36log 4log 5>,故选项B 正确;对于选项C :33333444log 4log 3log 3log 1log 333⎛⎫=⨯=+=+ ⎪⎝⎭,55555666log 6log 5log 5log 1log 555⎛⎫=⨯=+=+ ⎪⎝⎭,因为33546log log log 3565>>,所以3541log log 3615+>+, 故选项C 正确;对于选项D :log log 1e πππ<=,log log 1e e e π>=,所以log log e e ππ<,故选项D 不正确; 所以只有选项D 不正确, 故选:D9.函数()f x )A .[)1,+∞B .2,3⎛⎫+∞ ⎪⎝⎭C .()1,+∞D .2,13⎛⎤⎥⎝⎦【答案】D【解析】由题可得,()13320log 320x x ->⎧⎪⎨-≥⎪⎩,解得213x <≤.所以函数()f x 的定义域是2,13⎛⎤⎥⎝⎦.故选:D .12.已知0a >,且1a ≠,函数x y a =与()log a y x =-的图象只能是下图中的( )A .B .C .D .【答案】B【解析】当1a >时,函数x y a =与()log a y x =-的大致图象如图所示:当01a <<时,函数x y a =与()log a y x =-的大致图象如图所示:根据题意,所以正确的是B . 故选:B .13.下列函数表达式中,是对数函数的有( )①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ;⑤y =log x (x +2);⑥y =log 2(x +1). A .1个B .2个C .3个D .4个 【答案】B【解析】形如log a y x =(0a >且1a ≠)的函数为对数函数, 故③④为对数函数, 所以共有2个. 故选:B14.已知函数f (x )=|lg x |,若0<a <b ,且f (a )=f (b ),则a +4b 的取值范围是________. 【答案】(5,+∞)【解析】函数f (x )=|lg x |定义域为()0,∞+,图象如下:因为f (a )=f (b ),且0<a <b ,所以0<a <1<b ,且-lg a =lg b , 即1b a=,所以a +4b =a +4a ,令g (a )=a +4a ,易知对勾函数g (a )在(0,1)上为减函数,所以g (a )>g (1)=1+41=5,即a +4b 的取值范围是(5,+∞). 故答案为:(5,+∞).15.已知24log 02x +⋅≤. (1)求x 的取值的集合A ;(2)x A ∈时,求函数()1342x x f x ++=-的值域;(3)设()21,032,2,20,x x g x x x ⎧-≤≤=⎨+-≤<⎩若()y g x a =-有两个零点1x 、2x (12x x <),求1ax 的取值范围.【答案】(1){}|25A x x =-≤≤;(2)[]4,3840-;(3)[]1,0-.【解析】(1)由24log 02x +⋅≤得, ()()222log 41log 4log 90x x +-+-≤⎡⎤⎡⎤⎣⎦⎣⎦,∴()221log 4log 9x ≤+≤,∴25x -≤≤, 故{}|25A x x =-≤≤为所求.(2)当x A ∈时,()1342x x f x ++=-()()2242824214x x x =⋅-⋅=--,∵25x -≤≤,∴12324x ≤≤,∴()43840f x -≤≤,即为()f x 的值域. (3)作出函数()g x 的图象,∵()y g x a =-有两个零点1x 、2x 且12x x <, ∴120x -≤<,02a ≤<, 且()112a f x x ==+,∴()()()2111111211ax f x x x x x ==+=+-, ∵120x -≤<, ∴110ax -≤≤即1ax 的取值范围为[]1,0-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型高考数学试题解读与变式2018版考点 7 对数函数的图象与性质 【考纲要求】1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点. 3.知道对数函数是一类重要的函数模型.4.了解指数函数y =a x与对数函数y =log a x (a >0,且a ≠1)互为反函数. 【命题规律】高考对对数函数的图象与性质考查题型一般是选择题或填空题,难度中等以下,主要考查对数运算、对数函数的性质及运用、对数函数的图象性质. 【典型高考试题变式】 (一)对数运算例1. 【2017课标1】设x 、y 、z 为正数,且235xyz==,则( ) A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z << 【答案】D【名师点睛】对于连等问题,常规的方法是令该连等为同一个常数,在用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式和0与1的对数表示.【变式1】【改变例题中指数式的底数,结论变为求x yz+的值】设x 、y 、z 为正数,且248x y z ==,则x yz+= . 【答案】92【解析】令248(1)xyzk k ===>,则2log x k =,4211log log 22y k k x ===,8211log log 33z k k x ===,所以392123xx y z x +==.【变式2】【改变例题中指数式的底数,结论变为求x 、y 、z 之间的关系式】设x 、y 、z 为正数,且346xyz==,则x 、y 、z 之间的关系式为 .【答案】1112z x y-= 【解析】设346xyzt ===,由0x >知1t >,取以t 为底的对数可得log 3log 4log 61t t t x y z ===,所以1log 3tx =,1log 4t y =,1log 6t z =,所以1111log 6log 3log 2log 422t t t t z x y -=-===, 所以1112z x y-=.(二)对数函数的性质及运用例2.【2017天津,文6】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为( )A.a b c <<B.b a c <<C.c b a <<D.c a b <<【答案】C【名师点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数运算法则,()2log 5a f =,再比较0.822log 5,log 4.1,2比较大小.【变式1】【改变例题的条件】已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =12(log 3)f ,c =f (0.2-0.6),则a ,b ,c 的大小关系是( )A .c <a <bB .c <b <aC .b <c <aD .a <b <c 【答案】B【解析】因为12(log 3)f =-log 23=-log 49,所以b =12(log 3)f =f (-log 49)=f (log 49), log 47<log 49,0.2-0.6=351()5-334125322log 9=>=>,又f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数, 故f (x )在[0,+∞)上是单调递减的,所以0.6142(0,2)(log 3)(log 7)f f f -<<,即c <b <a ,故选B.【变式2】【改变例题的结论】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则(,),(),()f a f b f c 的大小关系为 .【答案】(,)()()f a f b f c >>(三)对数函数的图像性质例3.【2010全国1】已知函数()|lg |f x x =.若a b ≠且()()f a f b =,则a b +的取值范围是( )A .(1,)+∞B .[1,)+∞C .(2,)+∞D .[2,)+∞ 【答案】C【解析】函数()|lg |f x x =的图象如图所示,由图象知a ,b 一个大于1,一个小于1,不妨设1a >,01b <<. 因为()()f a f b =,所以1()|lg |lg ()lg lgf a a a f b b b ====-=,即1a b=, 所以1122a b b b b b+=+>⨯=. 【名师点睛】本题考查对数函数的图像性质.对数函数图象特点:当a >1时,对数函数的图象呈上升趋势;当0<a <1时,对数函数的图象呈下降趋势. 函数式中有绝对值符号,先用分段函数表示.【变式1】【把例题中的()|lg |f x x =改为()lg ||f x x =,结论变为比较大小】已知函数()lg ||f x x =在(0,)+∞上单调递增,则(2)f -、(1)f 、(2018)f 的大小关系为 .【答案】(1)(2)(2018)f f f <-<【解析】因为函数()lg ||f x x =在(0,)+∞上单调递增,所以1a >,(1)(2)(2018)f f f <<.又函数()lg ||f x x =为偶函数,所以(2)(2)f f =-,所以(1)(2)(2018)f f f <-<. 【变式2】【把例题中x 变为1x -,结论变为函数图象判断】函数y =lg|x -1|的图象是( )【答案】A【解析】因为lg(1),1lg |1|lg(1),1x x y x x x ->⎧=-=⎨-<⎩,当1x =时,函数无意义,故排除B 、D.又当2x =或0时,0y =,所以A 项符合题意. 【数学思想】① 数形结合思想:借助函数图象,可以研究函数的定义域、值域、单调性、奇偶性、对称性等性质;利用函数的图象,还可以判断方程f (x )=g (x )的解的个数、求不等式的解集等.② 分类讨论思想:画函数图象时,如果解析式中含参数,还要对参数进行讨论,分别画出其图象. 【温馨提示】①解决与对数有关的问题时:务必先研究函数的定义域;对数函数的单调性取决于底数a ,应注意底数的取值范围.②对公式要熟记,防止混用;③对数函数的单调性、最值与底数a 有关,解题时要按0<a<1和a>1分类讨论,否则易出错.④比较对数式的大小.①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论. 【典例试题演练】1. 【河南省豫北名校联盟2017届高三年级精英对抗赛,1】已知函数5log ,0,()2,0,x x x f x x >⎧=⎨≤⎩,则1(())25f f =( ) A .14 B .4 C .-4 D .14- 【答案】A 【解析】251111()log 2,(())(2)22525254f f f f -==-∴=-==,故选A. 2.【2017山东省烟台市期末】已知1a b >>, 01c <<,则下列不等式正确的是( )A. c c a b <B. a bc c > C. log log a b c c > D.log log c c a b >【答案】C3.【2017河南濮阳市一高检测】函数21()log (12)1f x x x =-++的定义域为( ) A .1(0,)2 B .1(,)2-∞ C .1(1,0)(0,)2-D .1(,1)(1,)2-∞--【答案】D【解析】由120x ->,10x +≠,得12x <且1x ≠-,所以函数21()log (12)1f x x x =-++的定义域为1(,1)(1,)2-∞--,故选D.4.【2018安徽合肥市调研】若函数()f x 为奇函数,当0x >时, ()2log f x x =,则1(())2f f =( )A. 2-B. 1-C. 0D. 1 【答案】C【解析】()()2211(())(log 11log 1022f f f f f ==-=-=-=,故选C. 5.【江西九江地区2017届高三七校联考,7】若函数22()log (3)f x x ax a =--在区间(,2]-∞-上是减函数,则实数a 的取值范围是( )A .(,4)-∞B .(4,4]-C .(,4)[2,)-∞+∞D .[4,4)-【答案】D【解析】由题意得230x ax a -->在区间(,2]-∞-上恒成立且22a≥-,即2(2)(2)30a a ---->且4a ≥-,解得实数a 的取值范围是[4,4)-,选D.6.【2017山东省德州市模拟】函数()()1ln 12f x x =-的定义域为( )A. 1(,)2-∞-B. 1(0,)2C. ()(),00,-∞+∞ D.()1,0(0,)2-∞【答案】D【解析】函数()()1ln 12f x x =-有意义,可得1−2x >0,且ln(1−2x )≠0,解得x <12且x ≠0,即有定义域为(−∞,0)∪(0,12). 故选D. 7.【2017吉林省梅河口五中模拟】函数()()212log 23f x x x =+-的单调增区间是( )A. (),3-∞-B. (],3-∞- C. (),1-∞- D. ()3,1--【答案】A8.已知()()ln ,0ln ,0x x x f x x x x -->⎧=⎨--+<⎩,则关于m 的不等式11()ln 22f m <-的解集为( )A .1(0,)2B .()0,2C .11(,0)(0,)22- D .()()2,00,2-【答案】C【解析】()()f x f x -=,所以()f x 为偶函数,且左增右减,注意到()12ln22f =-,故112,2m m <->,解得11(,0)(0,)22m ∈-.故选C. 9.【2017河南百校联考】已知()1154279722,(),(),log 979xxf x a b c --=-===,则()()(),,f a f b f c 的大小顺序为( )A .()()()f b f a f c <<B .()()()f c f b f a <<C .()()()f c f a f b <<D .()()()f b f c f a << 【答案】B【解析】()22x xf x -=-为单调递增函数,而11154427997()()(),log 09779a b c -==>==<,所以()()()f c f b f a <<,故选B.10.【2017福建省三明市模拟】若0a >, 0b >,且lg a 和lg b 的等差中项是1,则11a b+的最小值是 . 【答案】15【解析】因为lg lg lg 2a b ab +==,所以100ab =,所以111112?5a b a b +≥=(当且仅当a b =时等号成立).11.【湖北2017届百所重点校高三联考,11】设函数()()()211,ln 31f x x g x ax x =-+=-+,若对任意[)10,x ∈+∞,都存在2x R ∈,使得()()12f x g x =,则实数a 的最大值为 .【答案】9412.【2017河南省广东省佛山市检测】函数()211log 1axf x x x+=--为奇函数,则实数a = .【答案】1【解析】因为函数()f x 为奇函数,所以()221111log log 11ax axf x x x x x-+-=-=-+-+-,即1111x axax x++=--,所以1a =. 13.【2017辽宁省实验中学、沈阳市东北育才学校等五校联考】已知函数()f x 是在定义域R 上的偶函数,且在区间[)0,+∞单调递增,若实数a 满足()()221log (log )21f a f f a+≤,则a 的取值范围是 .【答案】1[,2]2【解析】因为()f x 为偶函数,所以()()f x f x -=,而2221log log log 10a a+== ,221log log a a=-,所以()221log (log )f a f a = ,由已知不等式化简有()()2log 1,f a f ≤因为()f x 在[)0,+∞为增函数,所以22log 11log 1a a ⎧≤⎪⎨-≤≤⎪⎩,所以122a ≤≤.14.【2017江西九江地区联考】设()log (1)log (3)(0,1)a a f x x x a a =++->≠,且(1)2f =. (1)求a 的值及()f x 的定义域; (2)求()f x 在区间3[0,]2上的值域.【解析】(1)因为(1)2f =,所以log 42(0,1)a a a =>≠,所以2a =.由10,30,x x +>⎧⎨->⎩得(1,3)x ∈-,所以函数()f x 的定义域为(1,3)-.(2)22222()log (1)log (3)log (1)(3)log [(1)4]f x x x x x x =++-=+-=--+,所以当(1,1]x ∈-时,()f x 是增函数;当(1,3)x ∈时,()f x 是减函数.函数()f x 在3[0,]2上的最大值是2(1)log 42f ==,函数()f x 在3[0,]2上的最小值是2315()log 24f =,所以()f x 在区间3[0,]2上的值域是215[log ,2]4. 15.【2016上海卷】已知a ∈R ,函数()f x =21log ()a x+. (1)当 1a =时,解不等式()f x >1;(2)若关于x 的方程()f x +22log ()x =0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈1[,1]2,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.【解析】(1)由21log (1)1x +>,得112x+>,解得{}|01x x <<.(2)()2221log ()log 0a x x++=有且仅有一解,等价于21()1a x x+=有且仅有一解,等价于210ax x +-=有且仅有一解. 当0a =时,1x =,符合题意; 当0a ≠时,140a ∆=+=,14a =-. 综上,0a =或14-.。