含参数的二元一次方程组

合集下载

含参数的二元一次方程组

含参数的二元一次方程组

专题:含参的二元一次方程组分析:用两个不含参数的二元一次方程重组,求解得参数。

4x y 5 mx ny 3的解和 的解相同,求3x 2y 1 mx ny 1、解的性质例 3 :已知关于 x,y 二元一次方程组一、同解问题 例 1:已知关于 x,y 二元一次方程组 x y 1 4x ay的解是二元一次方程3 x y 3的解,求 a 的值。

变式 1:已知方程组2x 3y 3x 5y的解适合 x28 ,求 m 的值 .变式 2:已知二元一次方程组4x y 5的解和mx ny 33x 2y mx ny11 的解相同,m,n 的值。

例 2 :已知二元一次方程组m,n 的值。

4x 3y 7 的解 x,y 的值互为相反数,求 k 的值。

kx (k 1)y 3变式4:若方程组3x y k 1的解x,y满足0 x y 1,求k 的取值范围。

x 3y 3分析:观察方程组和所求式子的结构共性,把二元一次方程组中的参数作整体化处理三、错解问题例4:甲乙两人同时解关于x, y的方程组ax y 3,甲看错了b ,求得的解为2x by 1 的解为x 1,你能求出原题中的a,b 的值吗?y3分析:将解代入没看错的方程看错了方程②中的b,得到方程组的解为x y 54.试计算a2017 ( 110b)2018的值.变式3:已知方程组y 2k3y 1 5k的解x 与y 的和是负数,求k 的取值范围。

变式5:甲、乙两人共同解方程组ax4x5yby152①②,由于甲看错了方程①中的a,得到方程组的解为31;乙1,乙看错了a,求得例5 :已知3x 7y z 3,求x y4 x 10y z 4z的值。

变式6:已知3x 4y z2x y 8z0,其中xyz2 2 20 ,求x y z的值。

xy yz 2 zx专题:解三元一次方程x yzx yz例 2 :解 2 34变式 3: 3 4 2x y z 182x 3y z 162x y z 183x y 2z 3 例 4:2x y 3z 11x y z 12例 1 :解xy2 y 2z 4xz1x 2y 9变式 1:y z 32z x 47变式 2:若 x y 2y z342z x 51,求 x, y,z例 3:y z 26 y1变式 4 :x y 2z 2x y z 3x z 03x y 2z 3变式 5:2x y 3z 11 x y z 12。

二元一次方程10道题带过程

二元一次方程10道题带过程

二元一次方程10道题带过程【原创版3篇】篇1 目录1.引言:二元一次方程的概述2.二元一次方程的求解方法3.例题一:解一个简单的二元一次方程组4.例题二:解一个含有分数的二元一次方程组5.例题三:解一个含有绝对值的二元一次方程组6.例题四:解一个含有平方项的二元一次方程组7.例题五:解一个含有两个未知数的二次项的二元一次方程组8.例题六:解一个含有参数的二元一次方程组9.例题七:解一个含有矩阵的二元一次方程组10.例题八:解一个含有行列式的二元一次方程组11.例题九:解一个含有高次项的二元一次方程组12.例题十:解一个含有多个方程的二元一次方程组13.结论:二元一次方程的求解技巧和注意事项篇1正文二元一次方程是由两个含有两个未知数的一次方程组成的方程组,是代数学中的基本内容之一。

在解决实际问题中,我们常常会遇到需要解决二元一次方程的问题。

本文将通过十个例子,详细讲解如何解决二元一次方程。

首先,我们需要了解二元一次方程的求解方法。

一般地,我们可以通过以下步骤求解:1.列出方程组;2.消元,将方程组化为一个一元一次方程;3.解出一个未知数;4.将已知数代入原方程,解出另一个未知数。

下面,我们将通过十个具体的例子,详细讲解如何运用以上方法解决二元一次方程。

例题一:解一个简单的二元一次方程组。

方程组:x + y = 6, x - y = 2。

解:通过消元法,我们可以将方程组化为一个一元一次方程:2x = 8,解得 x = 4,代入原方程解得 y = 2。

例题二:解一个含有分数的二元一次方程组。

方程组:x + y = 6, x - y = 1/2。

解:通过消元法,我们可以将方程组化为一个一元一次方程:2x = 15/2,解得 x = 15/4,代入原方程解得 y = 11/4。

例题三:解一个含有绝对值的二元一次方程组。

方程组:x + y = 6, |x - y| = 2。

解:通过消元法,我们可以将方程组化为一个一元一次方程:x - y = 2 或 x - y = -2,解得两组解:x = 4, y = 2 或 x = 2, y = 4。

(易错题精选)初中数学方程与不等式之二元一次方程组难题汇编含答案

(易错题精选)初中数学方程与不等式之二元一次方程组难题汇编含答案
因为y为负数
所以9-m<0
解得m>9
故选:A.
点睛:此题主要考查了非负数的应用,关键是根据平方数和绝对值的非负性构造二元一次方程组.
2.二元一次方程 的正整数解有()
A.1组B.2组C.3组D.4组
【答案】A
【解析】
【分析】
通过将方程变形,得到以 的代数式,利用倍数逻辑关系,枚举法可得.
【详解】
∵由 可得, , 是正整数.
16.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是( )
A.106cmB.110cmC.114cmD.116cm
【答案】A
【解析】
【分析】
通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上3个纸杯叠放在一起高出单独一个纸杯的高度等于9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于14.根据这两个等量关系,可列出方程组,再求解.
x-y=-1.
故选A.
【点睛】
本题考查了二元一次方程的解法,利用整体思想可以是本题解决过程变得简单.
12.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,若每人出8钱,则多了3钱;若每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为()
A. B. C. D.
【答案】A
【解析】
【分析】
设有x人,物品价值y钱,根据题意相等关系:①8×人数﹣3=物品价值,②7×人数+4=物品价值,可列方程组.

参数和系数

参数和系数

参数和系数
参数和系数是数学中常见的概念。

在方程、函数、多项式等数学问题中,参数和系数都是至关重要的元素。

参数指的是在某个数学问题中,可以调节的变量。

例如,在一元二次方程 y=ax^2+bx+c 中,a、b、c 就是参数,它们的值可以根据
具体情况进行调整。

在函数 y=f(x) 中,如果 f(x) 含有一个参数 k,那么改变 k 的值,函数的图像也会发生相应的变化。

系数则是数学中的一种常数,它出现在某个式子中,并且不随某个变量的变化而变化。

例如,在二元一次方程组中,x+y=3 和 2x+3y=7,其中的系数分别是 1、1、3 和 7。

在多项式
f(x)=ax^n+bx^{n-1}+...+c 中,a、b、...、c 都是系数。

在数学中,参数和系数的概念十分类似,但是它们在实际应用中有着不同的作用。

参数常常表示某个问题的未知量,其值可以根据问题的具体情况进行调整,从而得到最优解;系数则是问题中的已知量,它们的值可以被确定下来,从而帮助我们求解问题。

总之,参数和系数是数学中不可或缺的概念,它们的理解和运用是我们学习数学的必修课程。

- 1 -。

二元一次方程组计算题100道含过程

二元一次方程组计算题100道含过程

二元一次方程组计算题100道含过程
1. 题目
解下列二元一次方程组:
1.2x + y = 6 3x - y = 4
2.-x + y = 5 2x + 3y = 8

2. 解答
问题1
1.将第一个方程变形为:2x = 6 - y,然后列出方程组为: 2x = 6 - y 3x - y = 4
2.将第一个方程中的2x代入第二个方程,得出:(6 - y) + 3x - y = 4,化简后为: -2y + 3x = -2
3.将上述方程整理为标准形式:3x - 2y = -2
4.解方程组: 2x + y = 6 3x - 2y = -2
可以通过消元法或代入法进行解答。


问题2
1.将第一个方程变形为:-x = 5 - y,然后列出方程组为: -x = 5 - y 2x + 3y = 8
2.将第一个方程中的-x代入第二个方程,得出:(5 - y) + 2x + 3y = 8,化简后为: 2x + 2y = 3
3.将上述方程整理为标准形式:2x + 2y = 3
4.解方程组: -x + y = 5 2x + 2y = 3
可以通过消元法或代入法进行解答。


以此类推,解答剩下的97道题目。

结论
通过解答以上100道二元一次方程组计算题,我们可以得到每道题的解。

在解答过程中,使用了消元法和代入法两种常见的解方程的方法。

这些题目的目的是帮助我们熟悉解二元一次方程组的过程,并加深对方程组解法的理解。

注意:以上解答过程仅以两种常见的解法作为示例,实际解答时可以根据问题的具体情况选择合适的解法。

人教版初中数学中考复习 一轮复习-一次方程及其解法(含参)(2)

人教版初中数学中考复习 一轮复习-一次方程及其解法(含参)(2)

x y 3的解,求a的值。
考点二:二元一次方程含参问题
已知方程组2mxx5nyy246, 与n3xx m5 yy
8 ,
36
有相同的解,求m,
n的值。
考点二:二元一次方程含参问题
类型二:解的性质
1.如果关于x、y的二元一次方程组2ax3x
2y 5 (a 2) y
的x与y的值相等, 4
那么a
D.无法判断
追问:m的值是多少?
考点三:二元一次方程与一次函数
2.在二元一次方程组
2x 3y 1 0 6x my 3 0
中,当m=
无数组解。
追问:请你讨论该方程解的情况。
时,这个方程有
考点三:二元一次方程与一次函数
3.已知方程组
2x ky 4
x
2
y
0
有正数解,则k的取值范围是

考点三:二元一次方程与一次函数
练习1.
已知xy
21是二元一次方程组mmxx nnyy
7的解,则m 1
n
考点二:二元一次方程含参问题
练习2.
已知xy
25和
x 1 是方程ax y 10
by
15的两个解,则a
考点二:二元一次方程含参问题
类型二:方程同解
1.已知关于x、y的二元一次方程组4xxayy
1 的解也是二元一次方程 3
x2 y 1
考点一:二元一次方程(组)及其解法
例2. 用代入法解方程组2xxyy1106
① ②
解:由①得x=10-y ③ 把③代入②,得2(10-y)+y=16 y=4 把y=4代入③,得x=6
所以这个方程的解为 xy
6 4

高三参数方程知识点

高三参数方程知识点高三学生在学习数学的过程中,会接触到各种不同的知识点和概念。

其中,参数方程是高三数学学习中的一个重要内容。

本文将详细介绍高三参数方程的相关知识点,帮助同学们更好地理解和掌握该知识。

一、参数方程的概念参数方程是指以一个或多个参数表示的函数关系,其中参数的取值范围可以是任意的。

一般来说,参数方程可以将曲线或曲面上的点表示为参数的函数。

二、参数方程的表示方法1. 一元一次方程组参数方程最简单的形式是一元一次方程组。

例如,对于平面上的曲线,可以用两个一元一次方程来表示。

常见的一元一次方程组形式为:x = f(t)y = g(t)其中,x和y是曲线上的点的坐标,t是参数。

2. 二元一次方程组在三维空间中,参数方程可以用二元一次方程组表示。

形式为:x = f(u, v)y = g(u, v)z = h(u, v)其中,x、y和z是曲面上的点的坐标,u和v是参数。

三、参数方程的应用参数方程在几何图形的描述和计算中具有广泛的应用。

以下是几个常见的应用场景:1. 曲线的参数方程参数方程可以描述各种曲线,如直线、圆、椭圆、抛物线和双曲线等。

通过参数方程,我们可以很方便地计算曲线上的点的坐标,进而绘制曲线。

2. 曲线的长度和曲率参数方程在计算曲线的长度和曲率时非常有用。

通过确定参数的取值范围,并计算相邻点的距离,我们可以求得曲线的长度。

此外,通过求导数和二阶导数,我们还可以计算曲线的曲率和曲率半径等重要指标。

3. 曲面的参数方程参数方程可以用于描述各种曲面,如球面、圆柱、圆锥和双曲面等。

通过参数方程,我们可以计算曲面上的点的坐标,进而绘制出复杂的三维图形。

四、参数方程的特点和优势参数方程具有一些独特的特点和优势,使其在数学领域得到广泛应用:1. 灵活性:参数方程中的参数可以取任意实数值,因此可以描述各种不同的几何图形。

2. 简洁性:用参数方程表示几何图形时,通常可以用更简洁的形式表示,较少出现复杂的运算和方程。

人教版含参数的二元一次方程组的解法

其中x与y的差为7,求k的值.
例2:
{ 关于x、y的方程组
4x+y=5 3x-2y=1
的解和
{ mx+ny=3 mx-ny=1
的解相同,求m、n.
变式:
{ 3x-5y=16 nx+my=-8
{ 2x+5y=-6 mx-ny=-4
例3:
{ 甲、乙两人同时解方程组
mx+ny=1 mx-ny=5

x+2y=3

其中x+by=2 cx-7y=8 时,
{ 本应解出 x=3 y=-2
,由于看错了系数c,从而
{ 得到解
x=-2 y=2
,试求a+b+c.
专题训练
含参数的二元一次方程组的解 法
参数:在方程中除了未知数以外的其他字母
新课导入
{ 关于x、y的方程组
x=m y=3m+2
其中x+y=10,求m的值.
例1:
{ 关于x、y的方程组
2x+3y=3m x+2y=3

其中x+y=2,求m的值.
练习:
{ x+2y=k
关于x、y的方程组 3x+5y=k-1
由于
{x=3
甲看错了方程①中的m,得到的解是, y=2
{x=2
乙看错了方程②的n,得到的解是 y=1 ,
试求正确m、n的值。
小结:通过本节课你有什么收获?
作业:
{ 1 关于x、y的方程组
x+2y=4k 2x+y=2k+1

其中x-y=13,求k的值.
{ 2 关于x、y的方组
2mx-y=4m +3

方程与不等式之二元一次方程组全集汇编及解析

方程与不等式之二元一次方程组全集汇编及解析一、选择题1 .二元一次方程3x+y = 7的正整数解有( )组.A . 0B . 1C . 2【答案】 C 【解析】【分析】 分别令 x=1 、2进行计算即可得 【详解】 解:方程 3x+y=7, 变形得 :y=7-3x , 当 x=1 时,y=4;当 x=2 时,y=1,则方程的正整数解有二组 故本题答案应为: C【点睛】 本题考查了二元一次方程的解,给出一个未知数的值求出另一个未知数的值即可2.某家具生产厂生产某种配套桌椅 (一张桌子,两把椅子 ),已知每块板材可制作桌子 1张或椅子 4把,现计划用 120 块这种板材生产一批桌椅 (不考虑板材的损耗,恰好配套 ),设用 x 块板材做椅子,用 y 块板材做桌子,则下列方程组正确的是()【分析】根据“用 120 块这种板材生产一批桌椅 ”,即可列出一个二元一次方程,根据 “每块板材可做 桌子 1 张或椅子4 把,使得恰好配套,一张桌子两把椅子 ”,列出另一个二元一次方程,即 可得到答案.【详解】解:设用x 块板材做椅子,用y 块板材做桌子, •••用120块这种板材生产一批桌椅,••• x+y=120 ①,生产了 y 张桌子, 4x 把椅子, •••使得恰好配套,1张桌子2把椅子, • 4x=2y ② , ① 和② 联立得:D .无数x A.2xy 120 4yx B.2y 4x120x C .4x答案】 解析】y 1202yCxD .x120 4yx y 120 4x 2y故选: C. 【点睛】本题考查了由实际问题抽象出二元一次方程组,正确找出等量关系,列出二元一次方程组 是解题的关键.3.若(x+y — 1) 2+|x — y+5| = 0,则 x =( )A .— 2B . 2C . 1【答案】 A【解析】 【分析】 由已知等式,利用非负数的性质列出方程组,求出方程组的解得到 【详解】解得: 故选: 【点睛】 本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两 个数均为零得出方程组是解决此题的的关键 .4.某人购买甲种树苗 12棵,乙种树苗 15棵,共付款 450元,已知甲种树苗比乙种树苗 每棵便宜 3 元,设甲种树苗每棵x 元,乙种树苗每棵 y 元.由题意可列方程组()【解析】 【分析】根据 购买甲种树苗12棵,乙种树苗15棵,共付款450元”可列方程12x+15y = 450;由甲 种树苗比乙种树苗每棵便宜 3元”可列方程y -x = 3,据此可得.【详解】设甲种树苗每棵x 元,乙种树苗每棵 y 元.解:••• x+y — 1) 2+|x — y+5| = 0,D .— 1x 即可 .A.12x 15y 450 A.x y 312x 15y 450 B.y x 312x 15y 450C .y 3 x【答案】 B 12x 15y 450D .x3y,口土亠 「、计/n 12x 15y 450 由题意可列万程组y x 3故选:B . 【点睛】本题主要考查了由实际问题抽象出二元一次方程组,解题关键是要读懂题目的意思,根据 题目给出的条件,找出合适的等量关系,列出方程组.5. 下列方程组中,是二元一次方程组的是【答案】 【解析】 【分析】根据二元一次方程组的定义进行判断即可. 2,属于二元二次方程组,故本选项错误; B 、 该方程组中含有 3个未知数,属于三元一次方程组,故本选项错误;C 、 该方程组中未知数的最高次数是 2,属于二元二次方程组,故本选项错误;D 、 该方程组符合二元一次方程组的定义,故本选项正确;故选D . 【点睛】本题考查了二元一次方程组的定义,组成二元一次方程组的两个方程应共含有两个未知 数,且未知数的项最高次数都应是一次的整式方程.3x 2y =4① 2x y =2②‘①②得:x-y=2,1则原式=2-2= —.x A . y1 13 2x3x y 5B .2y z 6C. r y 1 5 2xy 1-2 D .2 y 2x 4【详解】解:A 、该方程组中未知数的最高次数是6.已知方程组3x 2y 4,则2x -2y =()1A.-4【答案】A1B.-2C. 2D . 44 故选A.【解析】 【分析】值. 【详解】解:2x+3y-z = 0 ①,x-2y+z = 0 ②, ①+②,得3x+y=0,X 1解得,一— y 3故选D .【点睛】 本题主要考查解三元一次方程组,解答本题的关键是明确题意,【解析】 【分析】 再将其相减即可得解.【详解】 解:•••X m 5① y 3 m ② 由①得, x m 5由②得,y m 3••• x ym 5故选:C【点睛】本题考查了解含参数的二元一次方程组、 解决本题的关键.7.如果 2x 3y z 0,且 x 2y x 0,那么一的值为(yA . 1 【答案】D B- 1c-3将题目中的两个方程相加,即可求得3x+y=0的值,根据 x 与y 的关系代入即可求出求出所求式子的值.5,可得到mx 与y 的关系式是()A . x y【答案】CB . xC. x yD . x y先解方程组求得以及代数求值的知识点,熟练掌握相关知识点是/.( a+b)( a-b) = (-1+4) x(-1-4) =-15.故选:B . 【点睛】本题考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题关键.10.为丰富同学们的课余活动,某校计划成立足球和篮球课外兴趣小组,现需购买篮球和 足球若干个,已知购买篮球的数量比足球的数量少1个,篮球的单价为 60元,足球的单价为30元,一共花了 480元,问篮球和足球各买了多少个?设购买篮球 x 个,购买足球y个, 可列方 程组()X y 1X y 1A .60X 30y 480B .60X 30y 480X y 1X y 1C. 30X 60y 480D .30X 60y 480【答案】B 【解析】 【分析】根据购买篮球的数量比足球的数量少1个,篮球的单价为共花了 480元”找到等量关系列出方程即可. 【详解】设购买篮球X 个,购买足球y 个,根据题意可列方程组:X y 160X 30y 480 , 故选:B .9. 若6"I 是关于X 、y 的方程组ax + by =2hx + rty =7的解,则(a+b)(a - b)的值为()B .— 15 A . 15 【答案】B 【解析】 【分析】 把方程组的解代入方程组可得到关于 (a+b )( a-b )的值. 【详解】 解:••• {:二!是关于X 、y 的方程组C. 16 D .— 16 a 、b 的方程组,解方程组可求 a , b ,再代入可求ax + by = 2 砧丽 bx ■^ay = 7的解,60元,足球的单价为 30元,9 7【点睛】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是能够找到题目中的等 量关系,难度不大.11.用5个大小相同的小长方形拼成了如图所示的大长方形,若大长方形的周长是 每个小长方形的周长是()【解析】 【分析】【点睛】本题主要考查二元一次方程组的应用,读懂题意列出方程组是解题的关键.【答案】A 【解析】 【分析】根,即可. 【详解】6X 5y 7m 2 且 x+y=9,3x y 728,则C. 13D . 16设小长方形的长为 方形的周长. X,宽为 y ,根据题意列出方程组,解方程组求出 x,y 的值,进而可求小长【详解】 设小长方形的长为X,宽为 y ,根据题意有 X 2y (3y X X)228解得•••小长方形的周长为(4 2) 故选:A . 12,12.在方程组A . 76x 3x 5y 7m y 72的解中,y 的和等于9,则7m 2的算术平方根为B .D . J 7根据条件得到二元一次方程组X y 3x y,求出X , y 的值,进而求出7m 2的算术平方【答案】A【详解】3xy 9 x 4,解得:,y 7 y 52 = 6x 5y =6X 4+5X 5=49 2的算术平方根为:7.故选A . 【点睛】本题主要考查二元一次方程组的解的意义,掌握解二元一次方程组的方法,是解题的关 键.13.方程5x + 2y =— 9与下列方程构成的方程组的解为yA . X + 2y = 1 C. 5x + 4y =— 3【答案】D 【解析】B . 3x + 2y =— 8 D . 3x — 4y =— 8试题分析:将x 与y 的值代入各项检验即可得到结果.解:方程5x+2y=- 9与下列方程构成的方程组的解为賃二-2的是 3x — 4y=— 8.故选D .点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知 数的值.14.《九章算术》中记载:今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何? ”其大意是:今有甲、乙两人各带了若干钱 •如果甲得到乙所有钱的一半,那么甲共有钱|50;如果乙得到甲所有钱的三分之二, 甲、乙两人各带了多少钱?设甲带钱为 yXy “ f yx + - = 502x = 50 + -2 A .B .2yC.引 y\ ■D. 2Xy + y = 50y = 50 H - I 3【解析】 【分析】设甲需带钱X ,乙带钱2- = 5Q ,据此列方程组可得. 3 y ,根据题意可得,甲的钱 +乙的钱的一半=50, 乙的钱+甲所有钱的乙带钱为/,根据题意,當【答案】A 那么乙也共有 50|.问 可列方程组为()y - 北+矿502x— + y =故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知 数,找出合适的等量关系,列出方程组.15.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的 信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是(y【分析】通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上 高出单独一个纸杯的高度等于 9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于 14.根据这两个等量关系,可列出方程组,再求解. 【详解】解:设每两个纸杯叠放在一起比单独的一个纸杯增高2x y 9X 1 则,解得7x y 14y 7则 99x+y = 99 X 1+7= 106即把100个纸杯整齐的叠放在一起时的高度约是 106cm .故选:A . 【点睛】本题以实物图形为题目主干,图形形象直观,直接反映了物体的数量关系,这是近年来比 较流行的一种命题形式,主要考查信息的收集、处理能力.本题易错点是误把 9cm 当作3个纸杯的高度,把14cm 当作8个纸杯的高度.116. 一辆汽车从 A 地驶往B 地,前-路段为普通公路,其余路段为咼速公路,已知汽车在3普通公路上行驶的速度为 60km/h ,在高速公路上行驶的速度为100km/h ,汽车从A 地到B解:设甲需带钱X ,乙带钱y ,根据题意, 得: A . 106cm【答案】A 【解析】B . 110cm C. 114cm D . 116cm3个纸杯叠放在一起xcm ,单独一个纸杯的高度为 ycm ,B地一共行驶了2.2h .设普通公路长、高速公路长分别为xkm、ykm,则可列方程组为【答案】c 【解析】 【分析】2x y 60 盍 2.2故答案为:C . 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组 是解题的关键.m 3,的解满足x > y > 0,则m 的取值范围是().5m【答案】A【解析】 【分析】2m 1•/x > y > 0,2m 1 m 2解之得m > 2. 故选A.【点睛】x 2y A .x y cc ———2.2B .x602y 100 2.2 2xC.x60盍2.2D .2xx 10060 2-2设普通公路长、高速公路长分别为xkm 、ykm , 1-,结合汽车从A3的二元一次方程组,此题得解.由普通公路占总路程的地到B 地一共行驶了 2.2h ,即可得出关于 x , y 【详解】设普通公路长、高速公路长分别为 xkm 、ykm ,依题意,得:17.若关于X , y 的方程组x y2x yA . m >2B . m >— 3C.— 3< m < 2 D . m <3 或 m > 2先解方程组用含 【详解】m 的代数式表示出 X 、y 的值,再根据x >y >0列不等式组求解即可.x y m2x y 5m3,得本题考查了二元一次方程组及一元一次不等式组的应用,用含 值是解答本题的关键.18.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了 分钟,假设小颖上坡路的平均速度是【答案】 【解析】 【分析】【详解】•••她去学校共用了 16分钟,【分析】m 的代数式表示出x 、y 的 163千米/小时,下坡路的平均速度是 5千米/小时,若设小颖上坡用了 xmin ,下坡用了 y min ,根据题意可列方程组(3x A .x 5y 1200 y 16 3——x605 —y 60 16 1.23x C.x5y 1.2 y 163一xD605—y 60 161200 根据路程=时间乘以速度得到方程3一 x60—y 1.2,再根据总时间是16分钟即可列出方60 ••• x+y=16,•••小颖家离学校1200 米,3 一x 605 60y1.2,3 一x •- 60 x y5 —y 60 161.2 故选:B. 【点睛】此题考查二 元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解 题中容易出现错误的地方.19.如果方程组 by ax y的解与方程组5bx 的解相同,贝y a+b 的值为()ay 2A . - 1【答案】B【解析】 B .C.D . 0bx ay =2 ,得到一个关于by ax = 5整理即可得出 a+b 的值.16cm ,②小长方形的1个长1个宽 4cm ,进而可得到关于 x 、y 的两个方程,可求 得解,从而可得到小长方形的面积. 【详解】设小长方形的长为 X ,宽为y ,如图可知,x 3y x y 解得:x = 4把代入方程组 尸3右两边分别相加,a ,b 的方程组,将方程组的两个方程左x = 4、, 把代入方程组尸3 bx ay =2 by ax =5得:4b 3a =2②,3b 4a =5②①+②,得:7 (a+b ) 则 a+b=1. 故选B . 【点睛】此题主要考查了二元一次方程组的解的定义:一般地, 解,叫做二元一次方程组的解.理解定义是关键.=7,兀一次方程组的两个方程的公共20.如图,在长方形 ABCD 中,放入六个形状、大小相同的小长方形 若AB16cm , EF 4cm ,则一个小长方形的面积为 (3 (即空白的长方形),A . 16cm 2【答案】B 【解析】 【分析】B . 21cm 2C. 24cm 2D . 32 cm 2设长方形的长和宽为未数,根据图示可得两个量关系:①小长方形的1个长3个宽164E所以小长方形的面积 3 7 21 cm2故选B.【点睛】本题考查了二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.。

二元一次方程组含参问题教学设计

二元一次方程组含参问题教学设计今天我要和你聊的是关于二元一次方程组含参问题的教学设计。

这是一个非常重要的数学概念,也是中学阶段数学教学中的重点之一。

通过深入的理解和掌握,学生可以更好地应用这一概念解决实际问题,培养自己的逻辑思维能力和解决问题的能力。

在本篇文章中,我将从深度和广度两个方面对二元一次方程组含参问题的教学进行全面评估,并据此撰写一篇有价值的文章,帮助读者更好地理解和掌握这一概念。

一、理论基础在进行教学设计之前,首先要对二元一次方程组含参问题的理论基础有一个清晰的认识。

二元一次方程组含参问题是指方程组中的系数或常数是未知数的函数的问题。

在初中数学中,一般是用代数方法来解决这类题目。

学生需要掌握代数方法的基本原理和运用技巧,包括解方程、消元、代入等。

还需要了解二元一次方程组的图像解释和几何意义,从而更好地理解和应用这一概念。

二、教学目标针对二元一次方程组含参问题,我们的教学目标应该是帮助学生:1. 理解含参常数的概念,掌握含参一次方程的解法;2. 掌握解二元一次方程组的方法,并能熟练运用代数方法解决含参问题;3. 了解二元一次方程组的图像解释和几何意义;4. 培养学生的逻辑思维能力和解决问题的能力。

三、教学内容在教学过程中,我们应该注重以下几个方面的内容:1. 含参常数的概念:通过具体的例子,引导学生理解含参常数的概念,明确含参常数与未知数的关系,为后续解题打下基础;2. 含参一次方程的解法:结合实际问题,引导学生掌握含参一次方程的解法,重点培养学生的应用能力;3. 解二元一次方程组的方法:通过实例详细讲解解二元一次方程组的方法,并且通过实际问题的应用,培养学生解决实际问题的能力;4. 图像解释和几何意义:引导学生理解二元一次方程组的图像解释和几何意义,加深对这一概念的理解。

四、教学方法在教学过程中,我们可以采用多种教学方法,包括:1. 讲授法:通过讲解基本原理和解题方法,帮助学生理解和掌握知识点;2. 实例分析法:通过具体的例子,引导学生熟练应用知识,培养解决实际问题的能力;3. 合作学习法:组织学生进行小组讨论和合作学习,促进学生之间的交流和合作,提高学习效果;4. 案例教学法:以真实案例为背景,引导学生深入理解知识点,加强对知识点的实际运用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含参数的二元一次方程组
1.在等式y kx b =+中,当6x =时,2y =;当3x =时,3y =.求当3x =-时,y 的值.
2.已知关于x 、y 的方程组37x y ax b y -=⎧⎨+=⎩和28
x by a x y +=⎧⎨+=⎩的解相同,求a 、b 的值.
3.若关于x ,y 的二元一次方程组38x y mx ny +=⎧⎨+=⎩与方程组14x y mx ny -=⎧⎨-=⎩
有相同的解. (1)求这个相同的解;
(2)求m n -的值.
4.已知关于x ,y 的方程组431(1)3x y mx m y -=⎧⎨+-=⎩
的解满足43x y +=,求m 的值.
5.已知关于x,y的二元一次方程组
32820
26
x y m
x y m
+=+


+=



的解满足x y
=,求m的值.
6.已知关于x,y的二元一次方程组
53
3221
x y n
x y n
+=


-=+

的解适合方程6
x y
+=,求n的值.
7.若方程组
4
32
ax by
x y
+=


-=

与方程组
21
2
x y
ax by
+=


-=-

有相同的解,求a,b的值.
8.关于x,y的方程组
2
231
x y m
x y m
+=


+=+

满足5
x y
+=,求m的值.
9.解方程组:33522 435
m n m n m n
++++
==
-

10.甲、乙两人同时解方程组
5
213
mx y
x ny
+=


-=



甲解题看错了①中的m,解得
7
2
2
x
y

=


⎪=-

,乙解题时看错②中的
n,解得
3
7
x
y
=


=-

,试求原方程组的解.。

相关文档
最新文档