含参数的二元一次方程组
含参数的二元一次方程组

专题:含参的二元一次方程组分析:用两个不含参数的二元一次方程重组,求解得参数。
4x y 5 mx ny 3的解和 的解相同,求3x 2y 1 mx ny 1、解的性质例 3 :已知关于 x,y 二元一次方程组一、同解问题 例 1:已知关于 x,y 二元一次方程组 x y 1 4x ay的解是二元一次方程3 x y 3的解,求 a 的值。
变式 1:已知方程组2x 3y 3x 5y的解适合 x28 ,求 m 的值 .变式 2:已知二元一次方程组4x y 5的解和mx ny 33x 2y mx ny11 的解相同,m,n 的值。
例 2 :已知二元一次方程组m,n 的值。
4x 3y 7 的解 x,y 的值互为相反数,求 k 的值。
kx (k 1)y 3变式4:若方程组3x y k 1的解x,y满足0 x y 1,求k 的取值范围。
x 3y 3分析:观察方程组和所求式子的结构共性,把二元一次方程组中的参数作整体化处理三、错解问题例4:甲乙两人同时解关于x, y的方程组ax y 3,甲看错了b ,求得的解为2x by 1 的解为x 1,你能求出原题中的a,b 的值吗?y3分析:将解代入没看错的方程看错了方程②中的b,得到方程组的解为x y 54.试计算a2017 ( 110b)2018的值.变式3:已知方程组y 2k3y 1 5k的解x 与y 的和是负数,求k 的取值范围。
变式5:甲、乙两人共同解方程组ax4x5yby152①②,由于甲看错了方程①中的a,得到方程组的解为31;乙1,乙看错了a,求得例5 :已知3x 7y z 3,求x y4 x 10y z 4z的值。
变式6:已知3x 4y z2x y 8z0,其中xyz2 2 20 ,求x y z的值。
xy yz 2 zx专题:解三元一次方程x yzx yz例 2 :解 2 34变式 3: 3 4 2x y z 182x 3y z 162x y z 183x y 2z 3 例 4:2x y 3z 11x y z 12例 1 :解xy2 y 2z 4xz1x 2y 9变式 1:y z 32z x 47变式 2:若 x y 2y z342z x 51,求 x, y,z例 3:y z 26 y1变式 4 :x y 2z 2x y z 3x z 03x y 2z 3变式 5:2x y 3z 11 x y z 12。
二元一次方程10道题带过程

二元一次方程10道题带过程【原创版3篇】篇1 目录1.引言:二元一次方程的概述2.二元一次方程的求解方法3.例题一:解一个简单的二元一次方程组4.例题二:解一个含有分数的二元一次方程组5.例题三:解一个含有绝对值的二元一次方程组6.例题四:解一个含有平方项的二元一次方程组7.例题五:解一个含有两个未知数的二次项的二元一次方程组8.例题六:解一个含有参数的二元一次方程组9.例题七:解一个含有矩阵的二元一次方程组10.例题八:解一个含有行列式的二元一次方程组11.例题九:解一个含有高次项的二元一次方程组12.例题十:解一个含有多个方程的二元一次方程组13.结论:二元一次方程的求解技巧和注意事项篇1正文二元一次方程是由两个含有两个未知数的一次方程组成的方程组,是代数学中的基本内容之一。
在解决实际问题中,我们常常会遇到需要解决二元一次方程的问题。
本文将通过十个例子,详细讲解如何解决二元一次方程。
首先,我们需要了解二元一次方程的求解方法。
一般地,我们可以通过以下步骤求解:1.列出方程组;2.消元,将方程组化为一个一元一次方程;3.解出一个未知数;4.将已知数代入原方程,解出另一个未知数。
下面,我们将通过十个具体的例子,详细讲解如何运用以上方法解决二元一次方程。
例题一:解一个简单的二元一次方程组。
方程组:x + y = 6, x - y = 2。
解:通过消元法,我们可以将方程组化为一个一元一次方程:2x = 8,解得 x = 4,代入原方程解得 y = 2。
例题二:解一个含有分数的二元一次方程组。
方程组:x + y = 6, x - y = 1/2。
解:通过消元法,我们可以将方程组化为一个一元一次方程:2x = 15/2,解得 x = 15/4,代入原方程解得 y = 11/4。
例题三:解一个含有绝对值的二元一次方程组。
方程组:x + y = 6, |x - y| = 2。
解:通过消元法,我们可以将方程组化为一个一元一次方程:x - y = 2 或 x - y = -2,解得两组解:x = 4, y = 2 或 x = 2, y = 4。
(易错题精选)初中数学方程与不等式之二元一次方程组难题汇编含答案

所以9-m<0
解得m>9
故选:A.
点睛:此题主要考查了非负数的应用,关键是根据平方数和绝对值的非负性构造二元一次方程组.
2.二元一次方程 的正整数解有()
A.1组B.2组C.3组D.4组
【答案】A
【解析】
【分析】
通过将方程变形,得到以 的代数式,利用倍数逻辑关系,枚举法可得.
【详解】
∵由 可得, , 是正整数.
16.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是( )
A.106cmB.110cmC.114cmD.116cm
【答案】A
【解析】
【分析】
通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上3个纸杯叠放在一起高出单独一个纸杯的高度等于9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于14.根据这两个等量关系,可列出方程组,再求解.
x-y=-1.
故选A.
【点睛】
本题考查了二元一次方程的解法,利用整体思想可以是本题解决过程变得简单.
12.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,若每人出8钱,则多了3钱;若每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为()
A. B. C. D.
【答案】A
【解析】
【分析】
设有x人,物品价值y钱,根据题意相等关系:①8×人数﹣3=物品价值,②7×人数+4=物品价值,可列方程组.
参数和系数

参数和系数
参数和系数是数学中常见的概念。
在方程、函数、多项式等数学问题中,参数和系数都是至关重要的元素。
参数指的是在某个数学问题中,可以调节的变量。
例如,在一元二次方程 y=ax^2+bx+c 中,a、b、c 就是参数,它们的值可以根据
具体情况进行调整。
在函数 y=f(x) 中,如果 f(x) 含有一个参数 k,那么改变 k 的值,函数的图像也会发生相应的变化。
系数则是数学中的一种常数,它出现在某个式子中,并且不随某个变量的变化而变化。
例如,在二元一次方程组中,x+y=3 和 2x+3y=7,其中的系数分别是 1、1、3 和 7。
在多项式
f(x)=ax^n+bx^{n-1}+...+c 中,a、b、...、c 都是系数。
在数学中,参数和系数的概念十分类似,但是它们在实际应用中有着不同的作用。
参数常常表示某个问题的未知量,其值可以根据问题的具体情况进行调整,从而得到最优解;系数则是问题中的已知量,它们的值可以被确定下来,从而帮助我们求解问题。
总之,参数和系数是数学中不可或缺的概念,它们的理解和运用是我们学习数学的必修课程。
- 1 -。
二元一次方程组计算题100道含过程

二元一次方程组计算题100道含过程
1. 题目
解下列二元一次方程组:
1.2x + y = 6 3x - y = 4
2.-x + y = 5 2x + 3y = 8
…
2. 解答
问题1
1.将第一个方程变形为:2x = 6 - y,然后列出方程组为: 2x = 6 - y 3x - y = 4
2.将第一个方程中的2x代入第二个方程,得出:(6 - y) + 3x - y = 4,化简后为: -2y + 3x = -2
3.将上述方程整理为标准形式:3x - 2y = -2
4.解方程组: 2x + y = 6 3x - 2y = -2
可以通过消元法或代入法进行解答。
…
问题2
1.将第一个方程变形为:-x = 5 - y,然后列出方程组为: -x = 5 - y 2x + 3y = 8
2.将第一个方程中的-x代入第二个方程,得出:(5 - y) + 2x + 3y = 8,化简后为: 2x + 2y = 3
3.将上述方程整理为标准形式:2x + 2y = 3
4.解方程组: -x + y = 5 2x + 2y = 3
可以通过消元法或代入法进行解答。
…
以此类推,解答剩下的97道题目。
结论
通过解答以上100道二元一次方程组计算题,我们可以得到每道题的解。
在解答过程中,使用了消元法和代入法两种常见的解方程的方法。
这些题目的目的是帮助我们熟悉解二元一次方程组的过程,并加深对方程组解法的理解。
注意:以上解答过程仅以两种常见的解法作为示例,实际解答时可以根据问题的具体情况选择合适的解法。
人教版初中数学中考复习 一轮复习-一次方程及其解法(含参)(2)

x y 3的解,求a的值。
考点二:二元一次方程含参问题
已知方程组2mxx5nyy246, 与n3xx m5 yy
8 ,
36
有相同的解,求m,
n的值。
考点二:二元一次方程含参问题
类型二:解的性质
1.如果关于x、y的二元一次方程组2ax3x
2y 5 (a 2) y
的x与y的值相等, 4
那么a
D.无法判断
追问:m的值是多少?
考点三:二元一次方程与一次函数
2.在二元一次方程组
2x 3y 1 0 6x my 3 0
中,当m=
无数组解。
追问:请你讨论该方程解的情况。
时,这个方程有
考点三:二元一次方程与一次函数
3.已知方程组
2x ky 4
x
2
y
0
有正数解,则k的取值范围是
。
考点三:二元一次方程与一次函数
练习1.
已知xy
21是二元一次方程组mmxx nnyy
7的解,则m 1
n
考点二:二元一次方程含参问题
练习2.
已知xy
25和
x 1 是方程ax y 10
by
15的两个解,则a
考点二:二元一次方程含参问题
类型二:方程同解
1.已知关于x、y的二元一次方程组4xxayy
1 的解也是二元一次方程 3
x2 y 1
考点一:二元一次方程(组)及其解法
例2. 用代入法解方程组2xxyy1106
① ②
解:由①得x=10-y ③ 把③代入②,得2(10-y)+y=16 y=4 把y=4代入③,得x=6
所以这个方程的解为 xy
6 4
高三参数方程知识点

高三参数方程知识点高三学生在学习数学的过程中,会接触到各种不同的知识点和概念。
其中,参数方程是高三数学学习中的一个重要内容。
本文将详细介绍高三参数方程的相关知识点,帮助同学们更好地理解和掌握该知识。
一、参数方程的概念参数方程是指以一个或多个参数表示的函数关系,其中参数的取值范围可以是任意的。
一般来说,参数方程可以将曲线或曲面上的点表示为参数的函数。
二、参数方程的表示方法1. 一元一次方程组参数方程最简单的形式是一元一次方程组。
例如,对于平面上的曲线,可以用两个一元一次方程来表示。
常见的一元一次方程组形式为:x = f(t)y = g(t)其中,x和y是曲线上的点的坐标,t是参数。
2. 二元一次方程组在三维空间中,参数方程可以用二元一次方程组表示。
形式为:x = f(u, v)y = g(u, v)z = h(u, v)其中,x、y和z是曲面上的点的坐标,u和v是参数。
三、参数方程的应用参数方程在几何图形的描述和计算中具有广泛的应用。
以下是几个常见的应用场景:1. 曲线的参数方程参数方程可以描述各种曲线,如直线、圆、椭圆、抛物线和双曲线等。
通过参数方程,我们可以很方便地计算曲线上的点的坐标,进而绘制曲线。
2. 曲线的长度和曲率参数方程在计算曲线的长度和曲率时非常有用。
通过确定参数的取值范围,并计算相邻点的距离,我们可以求得曲线的长度。
此外,通过求导数和二阶导数,我们还可以计算曲线的曲率和曲率半径等重要指标。
3. 曲面的参数方程参数方程可以用于描述各种曲面,如球面、圆柱、圆锥和双曲面等。
通过参数方程,我们可以计算曲面上的点的坐标,进而绘制出复杂的三维图形。
四、参数方程的特点和优势参数方程具有一些独特的特点和优势,使其在数学领域得到广泛应用:1. 灵活性:参数方程中的参数可以取任意实数值,因此可以描述各种不同的几何图形。
2. 简洁性:用参数方程表示几何图形时,通常可以用更简洁的形式表示,较少出现复杂的运算和方程。
人教版含参数的二元一次方程组的解法

例2:
{ 关于x、y的方程组
4x+y=5 3x-2y=1
的解和
{ mx+ny=3 mx-ny=1
的解相同,求m、n.
变式:
{ 3x-5y=16 nx+my=-8
{ 2x+5y=-6 mx-ny=-4
例3:
{ 甲、乙两人同时解方程组
mx+ny=1 mx-ny=5
x+2y=3
其中x+by=2 cx-7y=8 时,
{ 本应解出 x=3 y=-2
,由于看错了系数c,从而
{ 得到解
x=-2 y=2
,试求a+b+c.
专题训练
含参数的二元一次方程组的解 法
参数:在方程中除了未知数以外的其他字母
新课导入
{ 关于x、y的方程组
x=m y=3m+2
其中x+y=10,求m的值.
例1:
{ 关于x、y的方程组
2x+3y=3m x+2y=3
其中x+y=2,求m的值.
练习:
{ x+2y=k
关于x、y的方程组 3x+5y=k-1
由于
{x=3
甲看错了方程①中的m,得到的解是, y=2
{x=2
乙看错了方程②的n,得到的解是 y=1 ,
试求正确m、n的值。
小结:通过本节课你有什么收获?
作业:
{ 1 关于x、y的方程组
x+2y=4k 2x+y=2k+1
其中x-y=13,求k的值.
{ 2 关于x、y的方组
2mx-y=4m +3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含参数的二元一次方程组
1.在等式y kx b =+中,当6x =时,2y =;当3x =时,3y =.求当3x =-时,y 的值.
2.已知关于x 、y 的方程组37x y ax b y -=⎧⎨+=⎩和28
x by a x y +=⎧⎨+=⎩的解相同,求a 、b 的值.
3.若关于x ,y 的二元一次方程组38x y mx ny +=⎧⎨+=⎩与方程组14x y mx ny -=⎧⎨-=⎩
有相同的解. (1)求这个相同的解;
(2)求m n -的值.
4.已知关于x ,y 的方程组431(1)3x y mx m y -=⎧⎨+-=⎩
的解满足43x y +=,求m 的值.
5.已知关于x,y的二元一次方程组
32820
26
x y m
x y m
+=+
⎧
⎨
+=
⎩
①
②
的解满足x y
=,求m的值.
6.已知关于x,y的二元一次方程组
53
3221
x y n
x y n
+=
⎧
⎨
-=+
⎩
的解适合方程6
x y
+=,求n的值.
7.若方程组
4
32
ax by
x y
+=
⎧
⎨
-=
⎩
与方程组
21
2
x y
ax by
+=
⎧
⎨
-=-
⎩
有相同的解,求a,b的值.
8.关于x,y的方程组
2
231
x y m
x y m
+=
⎧
⎨
+=+
⎩
满足5
x y
+=,求m的值.
9.解方程组:33522 435
m n m n m n
++++
==
-
.
10.甲、乙两人同时解方程组
5
213
mx y
x ny
+=
⎧
⎨
-=
⎩
①
②
甲解题看错了①中的m,解得
7
2
2
x
y
⎧
=
⎪
⎨
⎪=-
⎩
,乙解题时看错②中的
n,解得
3
7
x
y
=
⎧
⎨
=-
⎩
,试求原方程组的解.。