河南省南阳市2018-2019学年高二上学期期末考试数学(文)试题(图片版)

合集下载

2018-2019学年河南省高二上学期期末数学(文)试题(解析版)

2018-2019学年河南省高二上学期期末数学(文)试题(解析版)

2018-2019学年河南省高二上学期期末数学(文)试题一、单选题1.设命题:0p x ∀>,||=x x ,则p ⌝为 A .0x ∀>,||x x ≠ B .00x ∃≤,00||x x =C .0x ∀≤,||=x xD .00x ∃>,00||x x ≠【答案】D【解析】根据全称命题的否定是特称命题进行判断 . 【详解】命题是全称命题, 则命题的否定是特称命题, 则000:0,P x x x ⌝∃>≠, 故选D . 【点睛】本题主要考查含有全称量词的命题的否定, 比较基础 . 2.已知抛物线的准线方程x 12=,则抛物线的标准方程为( ) A .x 2=2y B .x 2=﹣2yC .y 2=xD .y 2=﹣2x【答案】D【解析】由抛物线的准线方程求得p ,进一步得到抛物线方程. 【详解】解:Q 抛物线的准线方程12x =, 可知抛物线为焦点在x 轴上,且开口向左的抛物线, 且122p =,则1p =. ∴抛物线方程为22y x =-.故选:D . 【点睛】本题考查了抛物线的简单性质,考查了抛物线方程的求法,是基础题.3.若等比数列{}n a 的前n 项和为n S ,3620a a +=,则63S S =( ) A .1-B .1C .2-D .2【解析】由363a a q =,代入3620a a +=,可以求出32q =-,然后利用等比数列的前n 项和公式,可以得到663311S q S q -=-,进而可以求出答案。

【详解】设等比数列{}n a 的公比为q ,则33363332220a a a a q a q +=+=+=(), 因为30a ≠,所以320q +=,故32q =-,则()()6166333111141111211a q S q q S q a q q----====--+--. 故选A. 【点睛】本题考查了等比数列的性质及前n 项和公式,属于基础题。

河南省南阳市2018-2019年高二上学期期末考试数学(理)试题(解析版)

河南省南阳市2018-2019年高二上学期期末考试数学(理)试题(解析版)

河南省南阳市2018-2019年高二上学期期末考试数学(理)试题(解析版) 1 / 13河南省南阳市2018-2019学年高二上学期期末考试数学(理)试题一、选择题(本大题共12小题,共60.0分)1. 已知命题p : ,总有 ,则¬ 为A. ,使得B. ,使得C. ,使得D. ,使得 【答案】B【解析】解:因为全称命题的否定是特称命题,所以,命题p : ,总有 ,则¬ 为: ,使得 . 故选:B .直接利用全称命题的否定是特称命题写出结果即可.本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.2. “ ”是“方程的曲线是椭圆”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分条件又不必要条件【答案】B【解析】解:若方程的曲线是椭圆, 则 ,即 ,即且 , 即“ ”是“方程的曲线是椭圆”的必要不充分条件, 故选:B .根据椭圆的方程以及充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,根据椭圆方程的定义求出m 的等价条件是解决本题的关键.3. 已知空间四边形OABC ,其对角线OB 、AC ,M 、N 分别是边OA 、CB 的中点,点G 在线段MN 上,且使 ,用向量,表示向量 是 A.B.C.D.【答案】C【解析】解:故选:C .根据所给的图形和一组基底,从起点O 出发,把不是基底中的向量,用是基底的向量来表示,就可以得到结论.本题考查向量的基本定理及其意义,解题时注意方法,即从要表示的向量的起点出发,沿着空间图形的棱走到终点,若出现不是基底中的向量的情况,再重复这个过程.4.已知实数x,y满足不等式组,则函数的最大值为A. 2B. 4C. 5D. 6【答案】D【解析】:解:作出可行域如下图,得,当直线过点C时,z最大,由得,即,所以z的最大值为6.故选:D.作出不等式组对应的平面区域,得,利用数形结合即可的得到结论.本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键5.椭圆的离心率是,则的最小值为A. B. 1 C. D. 2【答案】A【解析】解:由题意可得,即则当且仅当即时取等号的最小值为故选:A.河南省南阳市2018-2019年高二上学期期末考试数学(理)试题(解析版) 3 / 13由题意可得,,代入,利用基本不等式可求最小值本题主要考查了椭圆的性质的应用及利用基本不等式求解最值的应用,属于知识的简单综合6. 如图,直三棱柱 , ,且 ,则直线 与直线所成角的余弦值为A. B. C.D.【答案】A【解析】解:如图所示,建立空间直角坐标系.不妨取 ,则 . 0, , 0, , 2, , 2, .2, , 2, .. 故选:A .通过建立空间直角坐标系 利用向量夹角公式即可得出.本题考查了通过建立空间直角坐标系利用向量夹角公式求异面直线的夹角,属于基础题.7. 点 在圆 上运动,则点 的轨迹是A. 焦点在y 轴上的椭圆B. 焦点在x 轴上的椭圆C. 焦点在y 轴上的双曲线D. 焦点在x 轴上的双曲线 【答案】B【解析】解: 点 在圆 上, ,,点 是椭圆上的点. 故选:B .根据变形,得出结论.本题考查了轨迹方程求解,椭圆的性质,属于基础题.8. 若两个正实数x ,y 满足,且不等式有解,则实数m 的取值范围 A. B. ∞ ∞ C.D. ∞∞【答案】B【解析】解:不等式有解,,,,且,,当且仅当,即,时取“”,,故,即,解得或,实数m的取值范围是∞∞.故选:B.将不等式有解,转化为求,利用“1”的代换的思想进行构造,运用基本不等式求解最值,最后解出关于m的一元二次不等式的解集即可得到答案.本题考查了基本不等式在最值中的应用,不等式的有解问题在应用基本不等式求最值时要注意“一正、二定、三相等”的判断运用基本不等式解题的关键是寻找和为定值或者是积为定值,难点在于如何合理正确的构造出定值对于不等式的有解问题一般选用参变量分离法、最值法、数形结合法求解属于中档题.9.直线与抛物线交于A、B两点,若,则弦AB的中点到直线的距离等于A. B. 2 C. D. 4【答案】C【解析】解:直线可化为,故可知直线恒过定点抛物线的焦点坐标为,准线方程为,直线AB为过焦点的直线的中点到准线的距离弦AB的中点到直线的距离等于故选:C.根据抛物线的方程求得抛物线的焦点坐标与准线方程,确定直线AB为过焦点的直线,根据抛物线的定义求得AB的中点到准线的距离,即可求得结论.本题主要考查了抛物线的简单性质涉及抛物线的焦点弦的问题常需用抛物线的定义来解决.10.已知数列的首项,,则河南省南阳市2018-2019年高二上学期期末考试数学(理)试题(解析版)A. 99B. 101C. 399D. 401【答案】C【解析】解:数列的首项,,则:,整理得:,所以:,即:常数,所以数列是以为首项,1为公差的等差数列.则:,整理得:首项符合通项,则:,所以:.故选:C.直接利用关系式的变换和定义求出数列的通项公式,进一步求出数列的项.本题考查的知识要点:数列的通项公式的求法及应用,主要考查学生的运算能力和转化能力,属于基础题型.11.给出以下命题,其中真命题的个数是若“¬或q”是假命题,则“p且¬”是真命题命题“若,则或”为真命题已知空间任意一点O和不共线的三点A,B,C,若,则P,A,B,C四点共面;直线与双曲线交于A,B两点,若,则这样的直线有3条;A. 1B. 2C. 3D. 4【答案】C【解析】解:对于 ,若“¬或q”是假命题,则它的否定是“p且¬”,它是真命题, 正确;对于 ,命题“若,则或”,它的逆否命题是“若且,则”,且为真命题,原命题也是真命题, 正确;对于 ,由,且,,A,B,C四点共面, 正确;对于 ,由双曲线方程知,,即直线l:过双曲线的右焦点;又双曲线的两个顶点之间的距离是,且,当直线与双曲线左右两支各有一个交点时,即时,满足的直线有2条,当直线与实轴垂直时,即时,得,即,则,此时通径长为5,若,则此时直线AB的斜率不存在,不满足条件;综上可知有2条直线满足, 错误.综上所述,正确的命题序号是 ,有3个.故选:C.根据命题与它的否定真假性相反,即可判断正误;根据原命题与它的逆否命题真假性相同,判断即可;5 / 13根据空间向量的共面定理,判断正误即可;由双曲线和直线的位置关系,判断结论是否正确.本题主要考查命题的真假判断,涉及的知识点较多,综合性较强,是中档题.12.F是双曲线C:的右焦点,过点F向C的一条渐近线引垂线,垂足为A,交另一条渐近线于点若,则C的离心率是A. B. 2 C. D.【答案】C【解析】解:由题意得右焦点,设一渐近线OA的方程为,则另一渐近线OB的方程为,设,,,,,,,,.由可得,斜率之积等于,即,,.故选:C.设一渐近线OA的方程为,设,,由,求得点A 的坐标,再由,斜率之积等于,求出,代入进行运算.本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得点A的坐标是解题的关键.二、填空题(本大题共4小题,共20.0分)13.已知数列2008,2009,1,,若这个数列从第二项起,每一项都等于它的前后两项之和,则这个数列的前2019项之和______.【答案】4018【解析】解:数列从第二项起,每一项都等于它的前后两项之和,可得2008,2009,1,,,,2008,2009,1,,即有数列的最小正周期为6,可得一个周期的和为0,由,可得.故答案为:4018.河南省南阳市2018-2019年高二上学期期末考试数学(理)试题(解析版)由题意写出数列的前几项,可得数列的最小正周期为6,求得一个周期的和,计算可得所求和.本题考查数列的求和,注意运用数列的周期,考查运算能力,属于基础题.14.在正三棱柱中,若,点D是的中点,求点到平面的距离______.【答案】【解析】解:以A为原点,在平面ABC中过A作AC的垂线为x轴,AC为y轴,为z轴,建立空间直角坐标系,0,,0,,2,,4,,0,,2,,4,,设平面的法向量y,,则,取,得,点到平面的距离:.故答案为:.以A为原点,在平面ABC中过A作AC的垂线为x轴,AC为y轴,为z轴,建立空间直角坐标系,利用向量法能求出点到平面的距离.本题考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.15.已知空间三点2,,5,,3,,则以AB,AC为邻边的平行四边形的面积为______.【答案】【解析】解:3,,1,.,,...以AB,AC为邻边的平行四边形的面积.故答案为:.3,,1,可得,,可得可得以AB,AC为邻边的平行四边形的面积.本题考查了向量数量积运算性质、向量夹角公式、平行四边形面积计算公式,考查了推理能力与计算能力,属于中档题.7 / 1316.已知点P在离心率为的双曲线上,,为双曲线的两个焦点,且,则的内切圆的半径与外接圆的半径的比值为______【答案】【解析】解:设P为双曲线的右支上一点,,,,由双曲线的定义可得,由即,可得,可得,则,由直角三角形可得外接圆的半径为,内切圆的半径设为r,可得,即有,由,可得,则,可得,则则的内切圆的半径与外接圆的半径的比值为.故答案为:.设P为双曲线的右支上一点,,,,运用双曲线的定义和直角三角形的外接圆的外心为斜边的中点,运用等积法求得内切圆的半径,结合离心率公式,化简即可得到所求比值.本题考查双曲线的定义和性质,以及三角形的外接圆和内切圆的半径,考查等积法求内切圆的半径,以及化简整理的运算能力,属于中档题.三、解答题(本大题共6小题,共70.0分)17.已知命题p:方程表示圆;命题q:双曲线的离心率,若命题“”为假命题,“”为真命题,求实数m的取值范围.【答案】解:若命题p:方程表示圆为真命题,则,解得.若命题q:双曲线的离心率,为真命题,则,解得.命题“”为假命题,“”为真命题,与q必然一真一假.或,或或,河南省南阳市2018-2019年高二上学期期末考试数学(理)试题(解析版) 9 / 13解得 或 .综上可得:实数m 的取值范围是 .【解析】若命题p :方程 表示圆为真命题,则 ,解得m 范围 若命题q :双曲线的离心率,为真命题,则,解得 由于命题“ ”为假命题,“ ”为真命题,可得p 与q 必然一真一假 即可得出.本题考查了双曲线与圆的标准方程及其性质、简易逻辑的判定,考查了推理能力与计算能力,属于基础题.18. 如图,四棱锥 底面为正方形,已知 平面ABCD , ,点M 为线段PA 上任意一点 不含端点 ,点N 在线段BD 上,且 . 求证:直线 平面PCD ; 若M 为线段PA 中点,求直线PB 与平面AMN 所成的角的余弦值.【答案】 证明:延长AN ,交CD 于点G ,由相似知,可得: , 平面PCD , 平面PCD , 则直线 平面PCD ;解:由于 ,以DA ,DC ,DP 为x ,y ,z 轴建立空间直角坐标系,设 0, ,则 1, , 1, , 0, ,,则 1,,平面AMN 的法向量为, 则向量 与 的夹角为 ,则, 则PB 与平面AMN 夹角的余弦值为. 【解析】 延长AN ,交CD 于点G ,由相似知,推出 ,然后证明直线 平面PCD ;以DA ,DC ,DP 为x ,y ,z 轴建立空间直角坐标系,设 0, ,求出相关点的坐标, 1, ,平面AMN 的法向量,利用向量的数量积求解PB 与平面AMN 夹角的余弦值.本题考查直线与平面平行的判定定理的应用,直线与平面所成角的求法,考查计算能力以及空间想象能力.19.在锐角中,角A,B,C所对的边分别为a,b,已知.证明:;若的面积,且的周长为10,D为BC的中点,求线段AD 的长.【答案】证明:锐角中,角A,B,C所对的边分别为a,b,c,已知.利用正弦定理:,则:,所以:,由于:,则:,即:.的面积,则:,解得:,,,,,【解析】直接利用三角函数关系式的恒等变换和正弦定理求出结果.利用余弦定理和三角形的面积公式求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦定理和余弦定理的应用,三角形面积公式的应用.20.直三棱柱中,,E,F分别是,BC的中点,,D为棱上的点.证明:;证明:;是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为?若存在,说明点D的位置,若不存在,说明理由.【答案】证明:,,,又,,面.又面,,以A为原点建立如图所示的空间直角坐标系,则有,河南省南阳市2018-2019年高二上学期期末考试数学(理)试题(解析版)设且,即y,,0,,则0,,,,,所以;结论:存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为,理由如下:由题可知面ABC的法向量,设面DEF的法向量为,则,,,即,令,则.平面DEF与平面ABC所成锐二面角的余弦值为,,即,解得或舍,所以当D为中点时满足要求.【解析】根据线面垂直的性质定理证明面即可.建立空间坐标系,求出直线对应的向量,利用向量垂直的关系进行证明.求出平面的法向量,利用向量法进行求解即可.本题考查的知识点是空间直线的垂直的判断以及空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键考查学生的运算和推理能力.21.已知数列的前n项和为,,且,为等比数列,,.求和的通项公式;设,,数列的前n项和为,若对均满足,求整数m的最大值.【答案】解:,且,当时,,即为,即有,上式对也成立,11 / 13则,;为公比设为q的等比数列,,.可得,,则,即,,;,前n项和为,,即,可得递增,则的最小值为,可得,即,则m的最大值为1345.【解析】运用数列的递推式和恒等式,化简可得,;再由等比数列的通项公式,解方程可得公比,即可得到所求通项公式;求得,由裂项相消求和,可得,再由数列的单调性可得最小值和不等式恒成立思想,可得m的最大值.本题考查等比数列的通项公式的运用,数列的递推式和恒等式的运用,以及数列的单调性的运用:求恒成立问题,考查化简运算能力,属于中档题.22.已知椭圆:的左、右焦点分别为,,点也为抛物线:的焦点.若M,N为椭圆上两点,且线段MN的中点为,求直线MN的斜率;若过椭圆的右焦点作两条互相垂直的直线分别交椭圆于A,B和C,D,设线段AB,CD的长分别为m,n,证明是定值.【答案】解:抛物线:的焦点,则,,椭圆的标准方程:,设,,则,两式相减得:,由MN的中点为,则,,直线MN的斜率,直线MN的斜率为;由椭圆的右焦点,当直线AB的斜率不存在或为0时,,当直线AB的斜率存在且不为0,设直线AB的方程为,设,,联立,消去y化简整理得:河南省南阳市2018-2019年高二上学期期末考试数学(理)试题(解析版),,,,则,同理可得:,,综上可知:是定值.【解析】根据抛物线的性质,求得c,即可求得b的值,利用“点差法”即可求得直线MN的斜率;分类讨论,当直线AB的斜率存在时,设直线AB的方程,代入椭圆方程,利用韦达定理及弦长公式即可求得m的值,同理即可求得n的值,即可求得是定值.本题考查椭圆的标准方程及性质,直线与椭圆的位置关系,考查韦达定理,弦长公式的应用,考查转化思想,属于中档题.13 / 13。

南阳市二中2018-2019学年高二上学期数学期末模拟试卷含解析

南阳市二中2018-2019学年高二上学期数学期末模拟试卷含解析

C.第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定
D.第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定
10.若函数 y=f(x)是 y=3x 的反函数,则 f(3)的值是(

A.0 B.1 C. D.3
11.若方程 C:x2+ =1(a 是常数)则下列结论正确的是(
第 1 页,共 15 页
的图象不在直线 y kx 的下方,则实数 k 的取值范围( )


A. (,1) B. (,1] C. (, e2 ) D. (, e2 ]
【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能
∴焦点坐标为(0,2). 故选:D. 【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键. 6. 【答案】C 【解析】解:易证所得三棱锥为正四面体,它的棱长为 1,
故外接球半径为 ,外接球的体积为

故选 C.
【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题. 7. 【答案】C
g '(x0 ) 0 ,当 x [0, x0 ) 时, g '(x) 0 ,从而 g(x) 在 x [0, x0 ) 上单调递减,从而 g(x) g(0) 0 ,与题 意不合,综上所述: k 的取值范围为 (,1] ,故选 B.
9. 【答案】C 【解析】解:∵某市两次数学测试的成绩 ξ1 和 ξ2 分别服从正态分布 ξ1:N1(90,86)和 ξ2:N2(93,79), ∴μ1=90,▱1=86,μ2=93,▱2=79, ∴第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定, 故选:C. 【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础. 10.【答案】B 【解析】解:∵指数函数的反函数是对数函数, ∴函数 y=3x 的反函数为 y=f(x)=log3x, 所以 f(9)=log33=1. 故选:B. 【点评】本题给出 f(x)是函数 y=3x(x∈R)的反函数,求 f(3)的值,着重考查了反函数的定义及其性质, 属于基础题. 11.【答案】 B

南阳市一中2018-2019学年高二上学期数学期末模拟试卷含解析

南阳市一中2018-2019学年高二上学期数学期末模拟试卷含解析

a b c 2 R ,余弦定理 a 2 b 2 c 2 2bc cos A , 实现边与角的互相转化. sin A sin B sin C 11.【答案】 D
【解析】
考 点:直线方程 12.【答案】B 【解析】解:∵圆 C:x2+y2﹣4x﹣2y+1=0,即(x﹣2)2+(y﹣1)2 =4, 表示以 C(2,1)为圆心、半径等于 2 的圆. 由题意可得,直线 l:x+ay﹣1=0 经过圆 C 的圆心(2,1), 故有 2+a﹣1=0,∴a=﹣1,点 A(﹣4,﹣1). ∵AC= ∴切线的长|AB|= 故选:B. 【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属 于基础题. 13.【答案】B = =2 =6. ,CB=R=2,
第 9 页,共 16 页
【解析】
考 点:正弦定理及二倍角公式. 【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式, 如 sin 理
2
cos 2 1, cos 2 cos 2 sin 2 ,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定
) C.(﹣2,0)∪(2,+∞) D.(﹣2,0)∪(0,
] ]
2. 设函数 f′(x)是奇函数 f(x)(x∈R)的导函数,f(﹣2)=0,当 x>0 时,xf′(x)﹣f(x)<0,则使得 f (x)>0 成立的 x 的取值范围是( 2) 3. 已知 i 是虚数单位,则复数 A.﹣ 4. 已知函数 + i B.﹣ + i 等于( ) A.(﹣∞,﹣2)∪(0,2) B.(﹣∞,﹣2)∪(2,+∞)

南阳市三中2018-2019学年高二上学期数学期末模拟试卷含解析

南阳市三中2018-2019学年高二上学期数学期末模拟试卷含解析

南阳市三中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.+(a﹣4)0有意义,则a的取值范围是()A.a≥2B.2≤a<4或a>4C.a≠2D.a≠42.若命题“p∧q”为假,且“¬q”为假,则()A.“p∨q”为假B.p假C.p真D.不能判断q的真假3.已知函数f(x)=log2(x2+1)的值域为{0,1,2},则满足这样条件的函数的个数为()A.8B.5C.9D.274.已知点A(﹣2,0),点M(x,y)为平面区域上的一个动点,则|AM|的最小值是()A.5B.3C.2D.5.函数f(x)=sinωx(ω>0)在恰有11个零点,则ω的取值范围()A.C.D.时,函数f(x)的最大值与最小值的和为()A.a+3B.6C.2D.3﹣a6.已知向量=(1,2),=(x,﹣4),若∥,则x=() A.4 B.﹣4 C.2 D.﹣27.执行如图所示的程序框图,如果输入的t=10,则输出的i=()A .4B .5C .6D .78. 已知集合,则A0或B0或3C1或D1或39. 设D 为△ABC 所在平面内一点,,则()A .B .C .D .10.复数是虚数单位)的虚部为( )i iiz (21+=A .B .C .D .1-i -i 22【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.11.某程序框图如图所示,则该程序运行后输出的S 的值为()A .1B .C .D .12.已知函数f (x )=2x ﹣2,则函数y=|f (x )|的图象可能是()A .B .C .D .二、填空题13.【常熟中学2018届高三10月阶段性抽测(一)】函数的单调递减区间为__________.()21ln 2f x x x =-14.一组数据2,x ,4,6,10的平均值是5,则此组数据的标准差是 . 15.如图,在棱长为的正方体中,点分别是棱的中点,是侧1111D ABC A B C D -,E F 1,BC CC P面内一点,若平行于平面,则线段长度的取值范围是_________.11BCC B 1AP AEF 1A P16.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系中,直线与函数xOy l 和均相切(其中为常数),切点分别为和()()2220f x x a x =+>()()3220g x x a x =+>a ()11,A x y ,则的值为__________.()22,B x y 12x x +17.如图所示是y=f (x )的导函数的图象,有下列四个命题:①f (x )在(﹣3,1)上是增函数;②x=﹣1是f (x )的极小值点;③f (x )在(2,4)上是减函数,在(﹣1,2)上是增函数;④x=2是f (x )的极小值点.其中真命题为 (填写所有真命题的序号).18.已知为常数,若,则_________.,a b ()()224+3a 1024f x x x f x b x x =++=++,5a b -=三、解答题19.(本小题满分12分)已知等差数列{}满足:(),,该数列的n a n n a a >+1*∈N n 11=a 前三项分别加上1,1,3后成等比数列,且.1log 22-=+n n b a (1)求数列{},{}的通项公式;n a n b (2)求数列{}的前项和.n n b a ⋅n T20.如图,在五面体ABCDEF中,四边形ABCD是边长为4的正方形,EF∥AD,平面ADEF⊥平面ABCD,且BC=2EF,AE=AF,点G是EF的中点.(Ⅰ)证明:AG⊥平面ABCD;(Ⅱ)若直线BF与平面ACE所成角的正弦值为,求AG的长.21.(本小题满分10分)已知函数f(x)=|x-a|+|x+b|,(a≥0,b≥0).(1)求f(x)的最小值,并求取最小值时x的范围;(2)若f(x)的最小值为2,求证:f(x)≥+.a b22.已知数列{a n}满足a1=3,a n+1=a n+p•3n(n∈N*,p为常数),a1,a2+6,a3成等差数列.(1)求p的值及数列{a n}的通项公式;(2)设数列{b n}满足b n=,证明b n≤.23.(本小题满分12分)已知平面向量,,.(1,)a x = (23,)b x x =+-()x R ∈(1)若,求;//a b ||a b -(2)若与夹角为锐角,求的取值范围.24.(本小题满分12分)已知向量,,(cos sin ,sin )m x m x x w w w =-a (cos sin ,2cos )x x n x w w w =--b 设函数的图象关于点对称,且.()()2n f x x R =×+Îa b (,1)12p(1,2)w Î(I )若,求函数的最小值;1m =)(x f (II )若对一切实数恒成立,求的单调递增区间.()(4f x f p£)(x f y =【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.南阳市三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:∵+(a﹣4)0有意义,∴,解得2≤a<4或a>4.故选:B.2.【答案】B【解析】解:∵命题“p∧q”为假,且“¬q”为假,∴q为真,p为假;则p∨q为真,故选B.【点评】本题考查了复合命题的真假性的判断,属于基础题.3.【答案】C【解析】解:令log2(x2+1)=0,得x=0,令log2(x2+1)=1,得x2+1=2,x=±1,令log2(x2+1)=2,得x2+1=4,x=.则满足值域为{0,1,2}的定义域有:{0,﹣1,﹣},{0,﹣1,},{0,1,﹣},{0,1,},{0,﹣1,1,﹣},{0,﹣1,1,},{0,﹣1,﹣,},{0,1,﹣,},{0,﹣1,1,﹣,}.则满足这样条件的函数的个数为9.故选:C.【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题.4.【答案】D【解析】解:不等式组表示的平面区域如图,结合图象可知|AM|的最小值为点A到直线2x+y﹣2=0的距离,即|AM|min=.故选:D.【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义. 5.【答案】A【解析】A.C.D.恰有11个零点,可得5π≤ω•<6π,求得10≤ω<12,故选:A.6.【答案】D【解析】:解:∵∥,∴﹣4﹣2x=0,解得x=﹣2.故选:D.7.【答案】【解析】解析:选B.程序运行次序为第一次t=5,i=2;第二次t=16,i=3;第三次t=8,i=4;第四次t=4,i=5,故输出的i=5.8.【答案】B【解析】,,故或,解得或或,又根据集合元素的互异性,所以或。

河南省南阳市2018-2019学年高二数学上学期期末考试试题 理(扫描版)

河南省南阳市2018-2019学年高二数学上学期期末考试试题 理(扫描版)

河南省南阳市2018-2019学年高二数学上学期期末考试试题理(扫描版)高二理科期末参考答案一.选择题CBADB ABABC CD二.填空题13. 4018 14. 2 15. 56 16.1315- 三.解答题17.解:若命题p :方程表示圆为真命题, 则,解得. ……………………3分 若命题q :双曲线的离心率,为真命题, 则,解得. ……………………6分命题“”为假命题,“”为真命题,与q 必然一真一假.,或, 解得或空集Φ综上可得:实数m 的取值范围是. ……………………10分 18.解(1)延长AN ,交CD 于点G ,由相似知,,2,DN PM BD BD PA NDBN NG AN ====又 PG MN MPAM ND BN NG AN //,即所以== PCD MN PCD PG PCD MN 平面所以直线平面平面又//,,⊂⊄……………6分(2)由于DA DC DP ⊥⊥,以,,DA DC DP 为,,x y z 轴建立空间直角坐标系,设()1,0,0A ,则()1,1,0B , ()0,1,0C , ()0,0,1P , 11,0,22M ⎛⎫ ⎪⎝⎭, 11,,022N ⎛⎫ ⎪⎝⎭则()1,1,1PB =-,平面AMN 的法向量为()1,1,1m =,设向量PB 与m 的夹角为θ,则1cos 3θ=, 设PB 与平面AMN 夹角为322sin cos ,==θαα则则PB 与平面AMN . ……………………12分 19.(1)证明:(12cos )2cos cos b C a C c A +=+,sin (12cos )2sin cos cos sin B C A C A C ∴+=+,sin()2sin cos 2sin cos cos sin A C B C A C A C ∴++=+,2sin cos sin cos B C A C ∴=, 又02C π<<,2sin sin B A ∴=,即2a b =. ……………………6分 (2)解:12sin 2S b b C =⨯⨯⨯4sin 2,4C b a =∴==. 又10,4a b c c ++=∴=.1cos 4C ∴=,AD ==……………………12分 20.解:(1)证明:因为1111,//AE A B A B AB ⊥,所以AE AB ⊥,又因为11,AA AB AA AE A ⊥=,所以AB ⊥面11A ACC ,又因为AC ⊂面11A ACC ,所以AB AC ⊥, ……………………2分以A 为原点建立如图所示的空间直角坐标系A xyz -,则有11111(0,0,0),(0,1,),(,,0),(0,0,1),(1,0,1)222A E F AB ………………3分 设111(,,),D x y z A D A B λ=且(0,1)λ∈,即(,,1)(1,0,0)x y z λ-=,则 (,0,1)D λ,所以11(,,1)22DF λ=--, 因为1(0,1,)2AE =,所以11DF AE 022⋅=-=,所以DF AE ⊥ …………6分(2)结论:存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为14 ……………………7分 理由如下: 由题可知面ABC 的法向量(0,0,1)n =设面DEF 的法向量为(,,)n x y z =,则n EF 0n DF 0⎧⋅=⎪⎨⋅=⎪⎩ 因为11111(,,),(,,1)22222FE DF λ=-=--, 所以111022211()022x y z x y z λ⎧-++=⎪⎪⎨⎪-+-=⎪⎩,即32(1)122(1)x z y z λλλ⎧=⎪-⎪⎨+⎪=⎪-⎩, 令2(1)z λ=-,则(3,12,2(1))n λλ=+- ……………………10分 因为平面DEF 与平面ABC 所成锐二面角的余弦值为14,所以m n 14cos m,n 14m n ⋅==,=, 解得12λ=或74λ=(舍),所以当D 为11A B 中点时满足要求…………12分 21.解:当2n ≥时,有1n n n a S S -=-=12133n n n n a a -++- 整理得11(2)1n n a n n a n -+=≥-.故32411231n n n a a a a a a a a a a -=⨯⨯⨯⨯⨯3456711123451n n +=⨯⨯⨯⨯⨯⨯⨯- (1)(2)2n n n +=≥ 经检验1n =时也成立, 所以{}n a 的通项公式为(1)2n n n a +=. 设等比数列{}n b 的公比为q .由134542,116b a b a =-==+=,可得38q = ,所以2q = ,故2n n b = 所以{}n b 的通项公式为2n n b =. ……………………………………5分(Ⅱ)因为1211222(1)(2)21n n n n n n n b n c a n n n n ++++⋅⋅===-++++ 3243542122222222()()()()32435421n n n T n n ++=-+-+-++-++ 2222n n T n +=-+ …………………………………………8分 因为211(1)20(2)(3)n n n n n T T C n n ++++-==>++ 所以1n n T T +>,即n T 单调递增 故min 12()3n T T == ……………………………………………………………10分 322019<m 即134634038=<m ,所以整数m 的最大值为1345. ……………………12分 22.解:因为抛物线22:8C y x =的焦点为(2,0),所以284b -=,故2b =. 所以椭圆222:184x y C +=. (1)设1122(,),(,)M x y N x y ,则221122221,841,84x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得1212()()8x x x x +-+1212()()04y y y y +-=, 又MN 的中点为(1,1),所以12122,2x x y y +=+=. 所以21211 2y y x x -=--. 显然,点(1,1)在椭圆内部,所以直线MN 的斜率为1 2-.……………5分 (2)椭圆右焦点2(2,0) F .当直线AB 的斜率不存在或者为0时, 11 m n +=8=.……………………………7分 当直线AB 的斜率存在且不为0时,设直线AB 的方程为(2)y k x =-,设1122(,),(,)A x y B x y ,联立方程得22(2),28,y k x x y =-⎧⎨+=⎩消去y 并化简得222(12)8k x k x +-2880k +-=, 因为222(8)4(12)k k ∆=--+22(88)32(1)0k k -=+>, 所以2122812k x x k +=+,21228(1)12k x x k-=+.所以m =22)12k k +=+同理可得22)2k n k +=+.所以11 m n +=2222122()118k k k k +++=++为定值.…………………12分。

南阳市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

南阳市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

南阳市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 平面α与平面β平行的条件可以是( )A .α内有无穷多条直线与β平行B .直线a ∥α,a ∥βC .直线a ⊂α,直线b ⊂β,且a ∥β,b ∥αD .α内的任何直线都与β平行2. 棱长为的正方体的8个顶点都在球的表面上,则球的表面积为( )2O O A .B .C .D .π4π6π8π103. 下列命题正确的是()A .已知实数,则“”是“”的必要不充分条件,a b a b >22a b >B .“存在,使得”的否定是“对任意,均有”0x R ∈2010x -<x R ∈210x ->C .函数的零点在区间内131()()2xf x x =-11(,)32D .设是两条直线,是空间中两个平面,若,则,m n ,αβ,m n αβ⊂⊂m n ⊥αβ⊥4.+(a ﹣4)0有意义,则a 的取值范围是()A .a ≥2B .2≤a <4或a >4C .a ≠2D .a ≠45. 已知f (x ),g (x )都是R 上的奇函数,f (x )>0的解集为(a 2,b ),g (x )>0的解集为(,),且a 2<,则f (x )g (x )>0的解集为( )A .(﹣,﹣a 2)∪(a 2,)B .(﹣,a 2)∪(﹣a 2,)C .(﹣,﹣a 2)∪(a 2,b )D .(﹣b ,﹣a 2)∪(a 2,)6. 函数y=Asin (ωx+φ)(ω>0,|φ|<,x ∈R )的部分图象如图所示,则函数表达式()A .y=﹣4sin (x ﹣)B .y=4sin (x ﹣)C .y=﹣4sin (x+)D .y=4sin (x+)7.已知命题p:“∀∈[1,e],a>lnx”,命题q:“∃x∈R,x2﹣4x+a=0””若“p∧q”是真命题,则实数a的取值范围是()A.(1,4]B.(0,1]C.[﹣1,1]D.(4,+∞)8.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,M为线段A1B上的动点,则下列结论正确的有()①三棱锥M﹣DCC1的体积为定值②DC1⊥D1M③∠AMD1的最大值为90°④AM+MD1的最小值为2.A.①②B.①②③C.③④D.②③④9.设集合S=|x|x<﹣1或x>5},T={x|a<x<a+8},且S∪T=R,则实数a的取值范围是()A.﹣3<a<﹣1B.﹣3≤a≤﹣1C.a≤﹣3或a≥﹣1D.a<﹣3或a>﹣110.(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切实数x恒成立,则实数m的取值范围是()A.(1,+∞)B.(﹣∞,﹣1)C.D.11.已知集合A,B,C中,A⊆B,A⊆C,若B={0,1,2,3},C={0,2,4},则A的子集最多有()A.2个B.4个C.6个D.8个12.下列各组表示同一函数的是()A.y=与y=()2B.y=lgx2与y=2lgxC.y=1+与y=1+D.y=x2﹣1(x∈R)与y=x2﹣1(x∈N)所示的框图,输入,则输出的数等于14.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,在90组数对(x i ,y i )(1≤i ≤90,i ∈N *)中,经统计有25组数对满足,则以此估计的π值为 . 15.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF 的重心到准线距离为 . 16.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________.17.设满足条件,若有最小值,则的取值范围为.,x y ,1,x y a x y +≥⎧⎨-≤-⎩z ax y =-a 18.(sinx+1)dx 的值为 .三、解答题19.某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(Ⅰ)求分数在[50,60)的频率及全班人数;(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.20.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立C 2cos ρθ=平面直角坐标系,直线的参数方程是(为参数).243x ty t =-+⎧⎨=⎩(1)写出曲线的参数方程,直线的普通方程;C (2)求曲线上任意一点到直线的距离的最大值.C21.某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,n∈N)的函数解析式f(n);(Ⅱ)该商场记录了去年夏天(共10周)空调器需求量n(单位:台),整理得表:周需求量n1819202122频数12331以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润(单位:元),求X的分布列及数学期望.22.已知函数f(x)=|x﹣5|+|x﹣3|.(Ⅰ)求函数f(x)的最小值m;(Ⅱ)若正实数a,b足+=,求证:+≥m.23.设f(x)=ax2﹣(a+1)x+1(1)解关于x的不等式f(x)>0;(2)若对任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范围.24.如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.南阳市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】D【解析】解:当α内有无穷多条直线与β平行时,a 与β可能平行,也可能相交,故不选A .当直线a ∥α,a ∥β时,a 与β可能平行,也可能相交,故不选 B .当直线a ⊂α,直线b ⊂β,且a ∥β 时,直线a 和直线 b 可能平行,也可能是异面直线,故不选 C . 当α内的任何直线都与β 平行时,由两个平面平行的定义可得,这两个平面平行,故选 D .【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况. 2. 【答案】B 【解析】考点:球与几何体3. 【答案】C 【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断的真假),,p q q p ⇒⇒最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.4. 【答案】B 【解析】解:∵+(a ﹣4)0有意义,∴,解得2≤a <4或a >4.故选:B.5.【答案】A【解析】解:∵f(x),g(x)都是R上的奇函数,f(x)>0的解集为(a2,b),g(x)>0的解集为(,),且a2<,∴f(x)<0的解集为(﹣b,﹣a2),g(x)<0的解集为(﹣,﹣),则不等式f(x)g(x)>0等价为或,即a2<x<或﹣<x<﹣a2,故不等式的解集为(﹣,﹣a2)∪(a2,),故选:A.【点评】本题主要考查不等式的求解,根据函数奇偶性的对称性的性质求出f(x)<0和g(x)<0的解集是解决本题的关键.6.【答案】D【解析】解:由函数的解析式可得A=4,==6+2,可得ω=.再根据sin[(﹣2)×+φ]=0,可得(﹣2)×+φ=kπ,k∈z,再结合|φ|<,∴φ=,∴y=4sin(x+),故选:D.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,属于基础题.7.【答案】A【解析】解:若命题p:“∀∈[1,e],a>lnx,为真命题,则a>lne=1,若命题q:“∃x∈R,x2﹣4x+a=0”为真命题,则△=16﹣4a≥0,解得a≤4,若命题“p∧q”为真命题,则p,q都是真命题,则,解得:1<a≤4.故实数a的取值范围为(1,4].故选:A.【点评】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键.8.【答案】A【解析】解:①∵A1B∥平面DCC1D1,∴线段A1B上的点M到平面DCC1D1的距离都为1,又△DCC1的面积为定值,因此三棱锥M﹣DCC1的体积V==为定值,故①正确.②∵A1D1⊥DC1,A1B⊥DC1,∴DC1⊥面A1BCD1,D1P⊂面A1BCD1,∴DC1⊥D1P,故②正确.③当0<A1P<时,在△AD1M中,利用余弦定理可得∠APD1为钝角,∴故③不正确;④将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,在△D1A1A中,∠D1A1A=135°,利用余弦定理解三角形得AD1==<2,故④不正确.因此只有①②正确.故选:A.9.【答案】A【解析】解:∵S=|x|x<﹣1或x>5},T={x|a<x<a+8},且S∪T=R,∴,解得:﹣3<a<﹣1.故选:A.10.【答案】C【解析】解:不等式(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立,即(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立若m+1=0,显然不成立若m+1≠0,则解得a.故选C.【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.11.【答案】B【解析】解:因为B={0,1,2,3},C={0,2,4},且A⊆B,A⊆C;∴A⊆B∩C={0,2}∴集合A可能为{0,2},即最多有2个元素,故最多有4个子集.故选:B.12.【答案】C【解析】解:A.y=|x|,定义域为R,y=()2=x,定义域为{x|x≥0},定义域不同,不能表示同一函数.B.y=lgx2,的定义域为{x|x≠0},y=2lgx的定义域为{x|x>0},所以两个函数的定义域不同,所以不能表示同一函数.C.两个函数的定义域都为{x|x≠0},对应法则相同,能表示同一函数.D.两个函数的定义域不同,不能表示同一函数.故选:C.【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.二、填空题13.【答案】【解析】由框图的算法功能可知,输出的数为三个数的方差,则。

南阳市高中2018-2019学年高二上学期数学期末模拟试卷含解析

南阳市高中2018-2019学年高二上学期数学期末模拟试卷含解析

南阳市高中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若变量x y ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数32z x y =-的最小值为( )A .-5B .-4 C.-2 D .3 2. 奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为( )A .()11-,B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,3. 已知函数22()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1 和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .20152B .20153C .201523 D .2015224. 在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( ) A .7049 B .7052 C .14098 D .141015. △ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c,设向量,,若,则角B 的大小为( ) A. B.C.D.6. 复数i iiz (21+=是虚数单位)的虚部为( ) A .1- B .i - C .i 2 D .2【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力. 7. 数列{}n a 中,11a =,对所有的2n ≥,都有2123n a a a a n =,则35a a +等于( )A .259 B .2516 C .6116 D .31158. 已知数列{a n }是等比数列前n 项和是S n ,若a 2=2,a 3=﹣4,则S 5等于( ) A .8B .﹣8C .11D .﹣119. 设命题p :函数y=sin (2x+)的图象向左平移个单位长度得到的曲线关于y 轴对称;命题q :函数y=|2x ﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是( ) A .p 为假B .¬q 为真C .p ∨q 为真D .p ∧q 为假10.若实数x ,y 满足不等式组则2x+4y 的最小值是( )A .6B .﹣6C .4D .211.已知,y 满足不等式430,35250,1,x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩则目标函数2z x y =+的最大值为( )A .3B .132C .12D .1512.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )A. B .(4+π) C. D.二、填空题13.在△ABC 中,点D 在边AB 上,CD ⊥BC ,AC=5,CD=5,BD=2AD ,则AD 的长为 .14.设函数f (x )=,则f (f (﹣2))的值为 .15. 设函数()xf x e =,()lng x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <;②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-;③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <.其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.16.如图,一船以每小时20km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°方向,行驶4小时后,船到达C 处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为 km .17.如图,E ,F 分别为正方形ABCD 的边BC ,CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .18.如图,在棱长为的正方体1111D ABC A B C D -中,点,E F 分别是棱1,BC CC 的中点,P 是侧 面11BCC B 内一点,若1AP 平行于平面AEF ,则线段1A P 长度的取值范围是_________.三、解答题19.(本小题满分12分)在多面体ABCDEFG 中,四边形ABCD 与CDEF 均为正方形,CF ⊥平面ABCD ,BG ⊥平面ABCD ,且24AB BG BH ==. (1)求证:平面AGH ⊥平面EFG ;(2)求二面角D FG E --的大小的余弦值.20.已知函数()21ln ,2f x x ax x a R =-+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明1212x x +≥.21.若f (x )是定义在(0,+∞)上的增函数,且对一切x ,y >0,满足f ()=f (x )﹣f (y ) (1)求f (1)的值,(2)若f (6)=1,解不等式f (x+3)﹣f ()<2.22.(本小题满分10分)选修4-1:几何证明选讲如图,直线PA 与圆O 相切于点A ,PBC 是过点O 的割线,CPE APE ∠=∠,点H 是线段ED 的中 点.(1)证明:D F E A 、、、四点共圆; (2)证明:PC PB PF ⋅=2.23.(本小题满分13分)椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,直线:1l x my =-经过点1F 与椭圆C 交于点M ,点M 在x 轴的上方.当0m =时,1||2MF =.(Ⅰ)求椭圆C 的方程;(Ⅱ)若点N 是椭圆C 上位于x 轴上方的一点, 12//MF NF ,且12123MF F NF F S S ∆∆=,求直线l 的方程.24.【无锡市2018届高三上期中基础性检测】在一块杂草地上有一条小路AB,现在小路的一边围出一个三角形(如图)区域,在三角形ABC 内种植花卉.已知AB 长为1千米,设角,C θ=AC 边长为BC 边长的()1a a >倍,三角形ABC 的面积为S (千米2). 试用θ和a 表示S ;(2)若恰好当60θ=时,S 取得最大值,求a 的值.南阳市高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】B 【解析】试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系31y 22x z =+,直线系在可行域内的两个临界点分别为)2,0(A 和)0,1(C ,当直线过A 点时,32224z x y =-=-⨯=-,当直线过C 点时,32313z x y =-=⨯=,即的取值范围为]3,4[-,所以Z 的最小值为4-.故本题正确答案为B.考点:线性规划约束条件中关于最值的计算. 2. 【答案】B 【解析】试题分析:由()()()()()212102102x x x f x f x f x f x --<⇒⇒-<--,即整式21x -的值与函数()f x 的值符号相反,当0x >时,210x ->;当0x <时,210x -<,结合图象即得()()11-∞-+∞,,.考点:1、函数的单调性;2、函数的奇偶性;3、不等式. 3. 【答案】C 【解析】试题分析:因为函数22()32f x x ax a =+-,()0f x ≤对任意的[]1,1x ∈-都成立,所以()()1010f f -≤⎧⎪⎨≤⎪⎩,解得3a ≥或1a ≤-,又因为(0,3]a ∈,所以3a =,在和两数间插入122015,...a a a 共2015个数,使之与,构成等比数列,T 122015...a a a =,201521...T a a a =,两式相乘,根据等比数列的性质得()()2015201521201513T a a ==⨯,T =201523,故选C.考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用. 4. 【答案】B【解析】解:∵a n+1a n +2=2a n+1+2a n (n ∈N +),∴(a n+1﹣2)(a n ﹣2)=2,当n ≥2时,(a n ﹣2)(a n ﹣1﹣2)=2,∴,可得a n+1=a n ﹣1,因此数列{a n }是周期为2的周期数列. a 1=3,∴3a 2+2=2a 2+2×3,解得a 2=4, ∴S 2015=1007(3+4)+3=7052.【点评】本题考查了数列的周期性,考查了计算能力,属于中档题.5. 【答案】B【解析】解:若,则(a+b )(sinB ﹣sinA )﹣sinC (a+c )=0,由正弦定理可得:(a+b )(b ﹣a )﹣c (a+c )=0,化为a 2+c 2﹣b 2=﹣ac ,∴cosB==﹣,∵B ∈(0,π),∴B=,故选:B .【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题.6. 【答案】A 【解析】()12(i)122(i)i i z i i i +-+===--,所以虚部为-1,故选A. 7. 【答案】C 【解析】试题分析:由2123n a a a a n =,则21231(1)n a a a a n -=-,两式作商,可得22(1)n n a n =-,所以22352235612416a a +=+=,故选C .考点:数列的通项公式.8.【答案】D【解析】解:设{a n}是等比数列的公比为q,因为a2=2,a3=﹣4,所以q===﹣2,所以a1=﹣1,根据S5==﹣11.故选:D.【点评】本题主要考查学生运用等比数列的前n项的求和公式的能力,本题较易,属于基础题.9.【答案】C【解析】解:函数y=sin(2x+)的图象向左平移个单位长度得到y=sin(2x+)的图象,当x=0时,y=sin=,不是最值,故函数图象不关于y轴对称,故命题p为假命题;函数y=|2x﹣1|在[﹣1,0]上是减函数,在[0,+∞)上是增函数.故命题q为假命题;则¬q为真命题;p∨q为假命题;p∧q为假命题,故只有C判断错误,故选:C10.【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点C时,直线y=﹣x+的截距最小,此时z最小,由,解得,即C(3,﹣3),此时z=2x+4y=2×3+4×(﹣3)=6﹣12=﹣6.故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键.11.【答案】C考点:线性规划问题.【易错点睛】线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题的基础.(2)目标函数的意义,有的可以用直线在y轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示.(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定.12.【答案】D【解析】解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是=,∴几何体的体积是=,故选D.【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察.二、填空题13.【答案】5.【解析】解:如图所示:延长BC,过A做AE⊥BC,垂足为E,∵CD⊥BC,∴CD∥AE,∵CD=5,BD=2AD,∴,解得AE=,在RT△ACE,CE===,由得BC=2CE=5,在RT△BCD中,BD===10,则AD=5,故答案为:5.【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题.14.【答案】﹣4.【解析】解:∵函数f(x)=,∴f(﹣2)=4﹣2=,f(f(﹣2))=f()==﹣4.故答案为:﹣4.15.【答案】①②④【解析】16.【答案】【解析】解:根据题意,可得出∠B=75°﹣30°=45°,在△ABC中,根据正弦定理得:BC==海里,则这时船与灯塔的距离为海里.故答案为.17.【答案】.【解析】解:由题意图形折叠为三棱锥,底面为△EFC,高为AC,所以三棱柱的体积:××1×1×2=,故答案为:.【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力.18.【答案】32,5⎡⎤⎢⎥⎣⎦,【解析】考点:点、线、面的距离问题.【方法点晴】本题主要考查了点、线、面的距离问题,其中解答中涉及到直线与平面平行的判定与性质,三角形的判定以及直角三角形的勾股定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,同时考查了学生空间想象能力的训练,试题有一定的难度,属于中档试题.三、解答题19.【答案】【解析】【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,意在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.∵GH∈平面AGH,∴平面AGH⊥平面EFG.……………………………5分20.【答案】(1)当0a ≤时,函数单调递增区间为()0,+∞,无递减区间,当0a >时,函数单调递增区间为10,a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)证明见解析. 【解析】试题解析:(2)当2a =-时,()2ln ,0f x x x x x =++>,由()()12120f x f x x x ++=可得22121122ln 0x x x x x x ++++=,即()()212121212ln x x x x x x x x +++=-,令()12,ln t x x t t t ϕ==-,则()111t t t tϕ-'=-=,则()t ϕ在区间()0,1上单调递减,在区间()1,+∞上单调递增,所以()()11t ϕϕ≥=,所以()()212121x x x x +++≥,又120x x +>,故1212x x +≥, 由120,0x x >>可知120x x +>.1考点:函数导数与不等式.【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 21.【答案】【解析】解:(1)在f ()=f (x )﹣f (y )中, 令x=y=1,则有f (1)=f (1)﹣f (1), ∴f (1)=0;(2)∵f (6)=1,∴2=1+1=f (6)+f (6),∴不等式f (x+3)﹣f ()<2等价为不等式f (x+3)﹣f ()<f (6)+f (6), ∴f (3x+9)﹣f (6)<f (6),即f ()<f (6),∵f (x )是(0,+∞)上的增函数,∴,解得﹣3<x <9,即不等式的解集为(﹣3,9).22.【答案】(1)证明见解析;(2)证明见解析. 【解析】1111]试题解析:解:(1)∵PA 是切线,AB 是弦,∴C BAP ∠=∠,CPE APD ∠=∠, ∴CPE C APD BAP ∠+∠=∠+∠,∵CPE C AED APD BAP ADE ∠+∠=∠∠+∠=∠, ∴AED ADE ∠=∠,即ADE ∆是等腰三角形又点H 是线段ED 的中点,∴ AH 是线段ED 垂直平分线,即ED AH ⊥又由CPE APE ∠=∠可知PH 是线段AF 的垂直平分线,∴AF 与ED 互相垂直且平分, ∴四边形AEFD 是正方形,则D F E A 、、、四点共圆. (5分) (2由割线定理得PC PB PA ⋅=2,由(1)知PH 是线段AF 的垂直平分线,∴PF PA =,从而PC PB PF ⋅=2(10分)考点:与圆有关的比例线段. 23.【答案】【解析】解:(Ⅰ)由直线:1l x my =-经过点1F 得1c =,当0m =时,直线l 与x轴垂直,21||b MF a ==,由212c b a=⎧⎪⎨=⎪⎩解得1a b ⎧=⎪⎨=⎪⎩C 的方程为2212x y +=. (4分) (Ⅱ)设1122(,),(,)M x y N x y ,120,0y y >>,由12//MF NF 知12121122||3||MF F NF F S MF y S NF y ∆∆===.联立方程22112x my x y =-⎧⎪⎨+=⎪⎩,消去x 得22(2)210m y my +--=,解得y =∴1y =,同样可求得2y =, (11分) 由123y y =得123y y =3=,解得1m =, 直线l 的方程为10x y -+=. (13分) 24.【答案】(1)21sin 212cos a S a a θθ=⋅+- (2)2a =+【解析】试题解析:(1)设边BC x =,则AC ax =, 在三角形ABC 中,由余弦定理得:22212cos x ax ax θ=+-,所以22112cos x a a θ=+-,所以211sin 2212cos a S ax x sin a a θθθ=⋅⋅=⋅+-,(2)因为()()222cos 12cos 2sin sin 1212cos a a a a a S a a θθθθθ+--⋅=+-'⋅, ()()2222cos 121212cos a a aa a θθ+-=⋅+-, 令0S '=,得022cos ,1aaθ=+ 且当0θθ<时,022cos 1aa θ>+,0S '>,当0θθ>时,022cos 1aaθ<+,0S '<, 所以当0θθ=时,面积S 最大,此时0060θ=,所以22112a a =+,解得2a =± 因为1a >,则2a =+点睛:解三角形的实际应用,首先转化为几何思想,将图形对应到三角形,找到已知条件,本题中对应知道一个角,一条边,及其余两边的比例关系,利用余弦定理得到函数方程;面积最值的处理过程中,若函数比较复杂,则借助导数去求解最值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年秋期期末高二文科试题答案
一、选择题:
1--6 ACBBDC 7--12 CABAAC
二、填空题:
13. 14.(开区间也对)
15. 16.
三.解答题
17、解:(1)∵asinB=bcosA.
∴由正弦定理可得:sinAsinB=sinBcosA,
又∵sinB≠0,∴可得:tanA=,∴A=.--------------------------------------------5分(2)∵A=,△ABC的面积为=bcsinA=bc,
∴解得:bc=4,
∴由余弦定理可得:a==≥==2,当且仅当b=c=2时等号成立.综上,边a的取值范围为[2,+∞).--------------------------10分
18.解:若为真,令,问题转化为求函数的最小值,
,令,解得,
函数在上单调递增,在上单调递减,
故,故.------------------4分
若为真,则,或.-----------------5分
(1)若为假命题,则均为假命题,实数的取值范围为.--------8分
(2)若为真命题,为假命题,则一真一假.
若真假,则实数满足,即;
若假真,则实数满足,即.----------------11分
综上所述,实数的取值范围为.--------------------------12分
19.解:(1)当时,,所以,
当时,,
所以,
所以数列是以为首项,以2为公比的等比数列.
所以,---------------------------------5分
(2)由(1)知,,
所以,
所以(1)
(2)---------------------7分
(1)-(2)得:
所以.--------------------------------------------------12分
20、(Ⅰ)解:设抛物线C:y2=2px(p>0),点A(2,y0),则有,
∵,∴,∴p=2,
所以抛物线C的方程为y2=4x;--------------------4分
(Ⅱ)方法一:证明:当直线l斜率不存在时,此时l:x=4,
解得A(4,4),B(4,﹣4),满足,∴OA⊥OB;
当直线l斜率存在时,设l:y=k(x﹣4),
联立方程,
设A(x1,y1),B(x2,y2),则,------------------7分
则•=x1x2+y1y2=(1+k2)x1x2﹣4k2(x1+x2)+16k2
=16(1+k2)﹣32k2﹣16+16k2=0,即有OA⊥OB.
综上,OA⊥OB成立.---------------------12分
方法二:证明:设点为点P,由已知可知A点为,当A点为时,直线AP的方程为:。

联立方程解得B点为。

-----------8分
则: ----------------------------10分
所以:
同理可得:当A点为时,
综上所述: --------------------------------12分
21.解:(1)定义域为,.-------------1分
①当时,,为上的增函数,所以函数无极值.----2分
②当时,令,解得.
当,,在上单调递减;
当,,在上单调递增.--------------------------------4分
故在处取得极小值,且极小值为,无极小值.
综上,当时,函数无极值;
当时,有极小值为,无极大值.-------------------------------6分(2)当时,,
直线:与曲线没有公共点,等价于关于的方程
在上没有实数解,即关于的方程在上没有实数解,
即在上没有实数解.----------------------------8分
令,则有.令,解得,
当变化时,,的变化情况如下表:
且当时,;时,的最大值为;当时,,从而的取值范围为.--------------------------------------10分
所以当时,方程无实数解,解得的取值范围是
.----12分
22.解:(1)椭圆C:+=1(a>b>0)的焦点在x轴上,离心率为e==,a=2c,
椭圆C的四个顶点围成的四边形的面积为4,即2ab=4,
由a2=b2+c2,解得:a=2,b=,
∴椭圆的标准方程为:;------------------------------------------------4分(2)证明:当直线l⊥x轴时,,△OPQ的面积S=•丨x1丨•丨2y1丨=,
解得:丨x1丨=,丨y1丨=,故x12+x22=4---------------------------------------6分当直线l的斜率存在时,设直线l的方程为y=kx+m,m≠0,
,整理得:(3+4k2)x2+8k m x+4m2﹣12=0,
△=(8k m)2﹣4(3+4k2)•(4m2﹣12)=48(3+4k2﹣m2)>0,即3+4k2>m2,
由韦达定理可知,,------------------------------------8分
∴丨PQ丨=•
点O到直线l的距离为,则△OPQ的面积
即:
整理得:3+4k2=2m2,满足△>0,----------------------------10分
∴x12+x22=(x1+x2)2﹣2x1•x2
综上可知:均为定值.---------------------12分。

相关文档
最新文档