用分治法解决问题共21页文档
分治法解决问题的步骤

分治法解决问题的步骤一、基础概念类题目(1 - 5题)题目1:简述分治法解决问题的基本步骤。
解析:分治法解决问题主要有三个步骤:1. 分解(Divide):将原问题分解为若干个规模较小、相互独立且与原问题形式相同的子问题。
例如,对于排序问题,可将一个大的数组分成两个较小的子数组。
2. 求解(Conquer):递归地求解这些子问题。
如果子问题规模足够小,则直接求解(通常是一些简单的基础情况)。
对于小到只有一个元素的子数组,它本身就是有序的。
3. 合并(Combine):将各个子问题的解合并为原问题的解。
在排序中,将两个已排序的子数组合并成一个大的有序数组。
题目2:在分治法中,分解原问题时需要遵循哪些原则?解析:1. 子问题规模更小:分解后的子问题规模要比原问题小,这样才能逐步简化问题。
例如在归并排序中,不断将数组对半分,子数组的长度不断减小。
2. 子问题相互独立:子问题之间应该尽量没有相互依赖关系。
以矩阵乘法的分治算法为例,划分后的子矩阵乘法之间相互独立进行计算。
3. 子问题与原问题形式相同:方便递归求解。
如二分查找中,每次查找的子区间仍然是一个有序区间,和原始的有序区间查找问题形式相同。
题目3:分治法中的“求解”步骤,如果子问题规模小到什么程度可以直接求解?解析:当子问题规模小到可以用简单的、直接的方法(如常量时间或线性时间复杂度的方法)解决时,就可以直接求解。
例如,在求数组中的最大最小值问题中,当子数组只有一个元素时,这个元素既是最大值也是最小值,可以直接得出结果。
题目4:分治法的“合并”步骤有什么重要性?解析:1. 构建完整解:它将各个子问题的解组合起来形成原问题的解。
例如在归并排序中,单独的两个子数组排序好后,只有通过合并操作才能得到整个数组的有序排列。
2. 保证算法正确性:如果合并步骤不正确,即使子问题求解正确,也无法得到原问题的正确答案。
例如在分治算法计算斐波那契数列时,合并不同子问题的结果来得到正确的斐波那契数是很关键的。
如何应用分治算法求解问题

如何应用分治算法求解问题分治算法,英文名为Divide and Conquer Algorithm,是一种高效的算法设计策略,在计算机科学中有着广泛的应用。
该算法将一个大问题分解成多个小问题,各自独立地解决,再将结果合并起来得到最终结果。
在本文中,我们将阐述如何应用分治算法求解问题,并通过几个实例来具体说明该算法的应用。
一、分治算法的原理分治算法的核心思想是将一个大问题分解成若干个小问题来解决,然后将这些小问题的解组合起来生成大问题的解。
其具体步骤如下:1. 分解:将原问题划分成若干个规模较小的子问题。
2. 解决:递归地解决每个子问题。
如果子问题足够小,则直接求解。
3. 合并:将所有子问题的解合并成原问题的解。
分治算法的主要优点在于它可以有效地缩小问题规模,从而缩短整个算法的执行时间。
另外,该算法天然适用于并行计算,因为每个子问题都是独立求解的。
二、分治算法的应用分治算法在各种领域都有广泛应用,包括数学、自然科学、计算机科学等。
以计算机科学领域为例,分治算法常常用于解决以下类型的问题:1. 排序问题2. 查找问题3. 字符串匹配问题4. 最大子序列和问题5. 矩阵乘法问题6. 图形问题下面我们将一一讲解这些问题的分治算法实现。
1. 排序问题排序问题是在一组数据中将其按指定规律进行排列的问题。
在计算机科学中,排序算法是十分重要的一类算法。
其中,分治算法由于其高效性和可并行性被广泛应用。
常用的分治排序算法包括归并排序和快速排序。
归并排序的基本思想是将待排序元素以中心点为界分成两个序列,对每个序列进行排序,然后将两个序列合并成一个有序序列;而快速排序则利用了分割的思想,通过每次选取一个元素作为“轴点”,将数组分成小于轴点和大于轴点的两部分,对这两部分分别进行快速排序。
2. 查找问题查找问题是在一组数据中寻找某个元素的问题。
分治算法在查找问题中的应用主要体现在二分查找中。
在二分查找中,我们首先将已排序的数组分成两半,在其中一半中查找目标值。
分治法解决集合划分问题

T(n/4)
T(n/4)
将求出的小规模的问题的解合并为一个更 大规模的问题的解,自底向上逐步求出原 来问题的解。
T(n)
T(n/2)
T(n/2)
T(n/4)
T(n/4)
T(n/4)
T(n/4)
将求出的小规模的问题的解合并为一个更 大规模的问题的解,自底向上逐步求出原 来问题的解。
T(n)
T(n/2)
2、 分治法就是为解决大规模问题而提出的 将要求解的大规模的问题分解为k个较 小规模的问题,对这k个子问题分别求解。
T(n)
T(n/2)
T(n/2)
如果子问题的规模仍然不够小,则再划分 为k个子问题,如此递归的进行下去,直到 问题规模足够小,很容易求出其解为止。
T(n)
T(n/2)
T(n/4)
T(n/4)
③ 3个子集的集合:{{1},{2},{3}} f(m,n)=? 显然 f(3,1)=1; f(3,2)=3; f(3,3)=1;
如果要求f(4,2)该怎么办呢? A.往①里添一个元素{4},得到{{1,2,3}, {4}} B.往②里的任意一个子集添一个4,得到 {{1,2,4},{3}},{{1,2},{3,4}}, {{1,3,4},{2}},{{1,3},{2,4}}, {{2,3,4},{1}},{{2,3},{1,4}} ∴f(4,2)=f(3,1)+2*f(3,2)=1+2*3=7
递归举例 0 n=0
边界条件
n!=
n (n-1)! n > 0
递归方程
边界条件与递归方程是递归函数的二 个要素,递归函数只有具备了这两个 要素,才能在有限次计算后得出结果。
4、要解决的问题 给定正整数m和n,计算出m 个元素的集合 {1,2,., m}可以划分为多少个不同的由n 个 非空子集组成的集合。
分治法

顾铁成
1
引例:称硬币
如果给你一个装有16枚硬币的袋子,其中有一
枚是假的,并且其重与真硬币不同。你能不能 用最少的比较次数,找出这个假币?
为了帮助你完成这个任务,将提供一台可用来 比较两组硬币重量的仪器,利用这台仪器,可
以知道两组硬币的重量是否相同。
2
引例:称硬币
常规的解决方法是先将这些硬币分成两
15
当 k = 1 时,各种可能的残缺棋盘
16
三格板的四个不同方向
17
【输入】
第一行输入棋盘 的总行数,第二 行输入残缺棋盘 的格子坐标。
【样例输入】 4
4 1
【样例输出】 2 2 3 3 2 1 1 3 4 4 1 5
【输出】
覆盖的矩阵图。
0 4 5 5
18
问题分析
很明显,当K=0时,是不需要三格板的,而当
24
【样例输入】 5 3 23 8 91 56 4 【样例输出】 1
25
问题分析
对于一组混乱无序的数来说,要找到第k
小的元素,通常要经过两个步骤才能实 现:
第一步:将所有的数进行排序; 第二步:确定第k个位置上的数。
26
问题分析
传统的排序算法(插入排序、选择排序
、冒泡排序等)大家都已经很熟悉了, 但已学过的排序方法无论从速度上பைடு நூலகம்还 是从稳定性方面,都不是最佳的。
将7作为一个参照数;
将这个数组中比7大的数放在7的左边; 比7大的数放在7的右边;
这样,我们就可以得到第一次数组的调整:
[ 4 2 6 6 1 ] 7 [ 10 22 9 8 ]
29
用分治法解决问题

分治法所能解决的问题具有以下几个特征: 分治法所能解决的问题具有以下几个特征:
1.该问题的规模缩小到一定的程度就可以容易地解决; 1.该问题的规模缩小到一定的程度就可以容易地解决; 该问题的规模缩小到一定的程度就可以容易地解决 2.该问题可以分解为若干个规模较小且基本相同的子问 2.该问题可以分解为若干个规模较小且基本相同的子问 题。 3.利用该问题分解出的子问题的解可以合并为该问题的 3.利用该问题分解出的子问题的解可以合并为该问题的 解;
分治策略解决问题
问题1 问题1:找出伪币
一个装有1 6枚硬币的袋子 一个装有1 6枚硬币的袋子,1 6枚硬币中有一个 枚硬币的袋子, 6枚硬币中有一个 是伪造的, 是伪造的,并且那个伪造的硬币比真的硬币要轻 一些。你的任务是找出这枚伪造的硬币。 一些。你的任务是找出这枚伪造的硬币。 为了帮助你完成这一任务, 为了帮助你完成这一任务,将提供一台可用来比 较两组硬币重量的仪器,比如天平。 较两组硬币重量的仪器,比如天平。利用这台仪 可以知道两组硬币的重量是否相同。 器,可以知道两组硬币的重量是否相同。
找金块的示例图
方法2 方法2:
n≤2,识别出最重和最轻的金块,一次比较就足够 ≤2,识别出最重和最轻的金块, 了。 n>2,第一步,把这袋金块平分成两个小袋A和B。 第一步,把这袋金块平分成两个小袋A 第二步,分别找出在A 中最重和最轻的金块。 第二步,分别找出在A和B中最重和最轻的金块。设 A中最重和最轻的金块分别为HA 与LA,以此类推, 中最重和最轻的金块分别为HA LA,以此类推, B中最重和最轻的金块分别为HB 和LB。第三步, 中最重和最轻的金块分别为HB LB。第三步, 通过比较HA HB,可以找到所有金块中最重的; 通过比较HA 和HB,可以找到所有金块中最重的; 通过比较LA LB,可以找到所有金块中最轻的。 通过比较LA 和LB,可以找到所有金块中最轻的。 在第二步中, 则递归地应用分而治之方法。 在第二步中,若n>2,则递归地应用分而治之方法。
分治法

三、应用举例 例1、快速排序 、 [分析 设N个元素 分析] 个元素A[1..N],要求按非递减排序。 分析 个元素 ,要求按非递减排序。 选择某一个元素X(一般取中间那个,初始时设i=1,j=N,则X=a[(i+j) div 2]),从 ),从 选择某一个元素 (一般取中间那个,初始时设 则 ( ), 两头(A[i]、A[j])开始逐个与 比较,找到左边比它大的那个元素 开始逐个与X比较 两头 、 开始逐个与 比较,找到左边比它大的那个元素A[i]和右边比它小的那 和右边比它小的那 个元素A[j],则交换 一举两得,然后inc(i)、dec(j)再继续进行,直到 。 再继续进行, 个元素 ,则交换A[i]与A[j] ,一举两得,然后 与 、 再继续进行 直到i>j。 则这一趟结束,效果是X一定排在了它应该在的位置上了 一定排在了它应该在的位置上了。 则这一趟结束,效果是 一定排在了它应该在的位置上了。
方法2 二分法,假如把16硬币的例子看成一个大的问 方法2:二分法,假如把16硬币的例子看成一个大的问 16 第一步,把这一问题分成两个小问题。随机选择8 题。第一步,把这一问题分成两个小问题。随机选择8 个硬币作为第一组称为A 剩下的8 个硬币作为第一组称为A组,剩下的8个硬币作为第二组 称为B组。第二步,判断伪币在A组还是在B组中,如果 称为B 第二步,判断伪币在A组还是在B组中, 组中,则再把A组中的8个硬币随机分成2 每组4 在A组中,则再把A组中的8个硬币随机分成2组,每组4 个再去比较, 个再去比较,……,这样4次一定能找出伪币。 ,这样4次一定能找出伪币。 方法3:三分法,把16个硬币分成3组(A组5个、B组5个、 个硬币分成3 方法3 三分法, 16个硬币分成 ),称一次判断出伪币在 称一次判断出伪币在A 哪一组中, C组6个),称一次判断出伪币在A、B、C哪一组中,假 如在C组中,则再把C组中的6个分成3 如在C组中,则再把C组中的6个分成3组(2个、2个、2 ),称一次判断出在哪一组 然后再称1 称一次判断出在哪一组, 个),称一次判断出在哪一组,然后再称1次就能找出 伪币,这样最多称3次便能找出。 伪币,这样最多称3次便能找出。
总结分治法

总结分治法引言分治法(Divide and Conquer)是一种很重要的算法设计策略,常用于解决那些可以被划分为更小规模的子问题的问题。
该算法将问题划分为多个独立且相似的子问题,逐个解决子问题,最终将所有子问题的解合并得到原问题的解。
分治法在计算机科学领域有着广泛的应用,尤其在排序、搜索和优化问题中被广泛使用。
分治法的基本思想分治法的基本思想是将一个大问题划分为多个规模较小、相互独立且同原问题结构相似的子问题。
然后,对这些子问题进行求解,并将子问题的解合并,即可得到原问题的解。
分治法通常包括三个步骤:1.分解(Divide):将原问题划分为多个规模较小、相互独立的子问题。
2.解决(Conquer):递归地求解子问题,如果子问题规模足够小,则直接求解。
3.合并(Combine):将子问题的解合并成原问题的解。
分治法适用于满足以下条件的问题:1.原问题可以划分为规模较小的子问题。
2.子问题的结构和原问题一样,只是规模较小。
3.子问题的解容易合并成原问题的解。
分治法的应用排序算法经典的排序算法中,归并排序和快速排序就是基于分治法的思想。
这两种算法都将排序问题划分为多个较小的子问题,并递归地解决这些子问题,最后通过合并或交换操作将子问题的解合并成原问题的解。
以归并排序为例,其基本思想是将一个无序序列划分为两个规模相同(或接近)的子问题,分别对两个子问题排序,最后将两个有序的子序列合并成一个有序序列。
搜索算法分治法在搜索算法中也有着广泛的应用。
例如,在快速查找算法中,通过将问题划分为多个子问题,可以利用分治法快速定位目标元素。
另外,二分查找也是分治法的一种特殊形式,其每次将问题的规模减半,直到找到目标元素或确定目标元素不存在。
优化问题在优化问题中,分治法可以用来寻找最优解。
例如,在最大子数组问题中,可以将问题划分为多个规模较小的子问题,分别求解每个子问题的最大子数组和,然后再将这些最大子数组和合并得到原问题的最大子数组和。
分治法有哪些经典用途

分治法有哪些经典用途分治法是一种常见的算法思想,它的核心思想就是将一个问题分解成多个子问题,然后解决各个子问题,最后将各个子问题的结果合并,从而得到原问题的解决方案。
分治法一般可以分为三个步骤:分解问题、解决子问题、合并子问题结果。
分治法可以用来解决许多经典问题,下面将介绍一些常见的应用。
1. 排序排序可以说是计算机程序中最常见的问题之一,而分治法则是其中的一种经典算法思想。
经典的归并排序算法就是一种基于分治法的排序算法。
该算法将数组分解成两个子数组,分别进行递归排序,最后将两个子数组合并成一个有序数组。
2. 最大子序列和问题最大子序列和问题是一个在数组中寻找一个连续子序列,使得该子序列中的元素和最大的问题。
该问题可以使用分治法来解决。
将数组分成两半,分别计算左半边、右半边以及横跨两个子数组的最大子序列和。
最后将这些结果合并,找出最大的子序列和。
3. 二分搜索二分搜索是一种常见的查找算法,它可以在有序数组中快速查找指定元素。
该算法也是一个基于分治法的算法。
将数组分成两半后查看中间元素,如果中间元素等于指定元素,则查找结束。
如果中间元素大于指定元素,则在左边的子数组中查找。
如果中间元素小于指定元素,则在右边的子数组中查找。
4. 逆序对问题逆序对问题是一个在数组中寻找所有逆序对个数的问题。
逆序对指的是在一个数组中,如果i<j且a[i]>a[j],则称(a[i], a[j])是一个逆序对。
这个问题可以利用分治法来解决,将数组分成两个子数组,分别计算左半边、右半边以及跨越两个子数组的逆序对数。
最后将这些结果合并,得到所有逆序对的个数。
5. 矩阵乘法矩阵乘法是一个重要的数学问题,也是在计算机领域中广泛应用的问题之一。
分治法可以用来加快矩阵乘法的计算。
将两个矩阵分成四个子矩阵后,可以利用递归方式对每个子矩阵进行矩阵乘法计算,最后将结果合并得到最终的乘积矩阵。
6. 凸包问题凸包问题是计算机几何学中的一个经典问题,它的主要目标是求出一个点集的凸包,即包含给定点集的最小凸多边形。