高中数学必修3第二章统计测试题(附答案)(精编文档).doc

合集下载

人教版高中数学必修三第二章《统计》单元检测精选(含答案解析)

人教版高中数学必修三第二章《统计》单元检测精选(含答案解析)

人教版高中数学必修三第二章《统计》单元检测精选(含答案解析)一、选择题(本大题共12小题,每小题5分,共60分)1.从某年级1 000名学生中抽取125名学生进行体重的统计分析,就这个问题来说,下列说法正确的是( ) A .1 000名学生是总体B .每个被抽查的学生是个体C .抽查的125名学生的体重是一个样本D .抽取的125名学生的体重是样本容量2.由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于-1,那么对于样本1,x 1,-x 2,x 3,-x 4,x 5的中位数可以表示为( ) A.12(1+x 2) B.12(x 2-x 1) C.12(1+x 5) D.12(x 3-x 4) 3.某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,则老年人、中年人、青年人分别应抽取的人数是( )A .7,11,19B .6,12,18C .6,13,17D .7,12,174.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图2.由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关5.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是13,那么另一组数3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数,方差分别是( )A .2,13 B .2,1C .4,23D .4,36.某学院有4个饲养房,分别养有18,54,24,48只白鼠供实验用.某项实验需抽取24只白鼠,你认为最合适的抽样方法是( ) A .在每个饲养房各抽取6只B .把所有白鼠都加上编有不同号码的颈圈,用随机抽样法确定24只C .从4个饲养房分别抽取3,9,4,8只D .先确定这4个饲养房应分别抽取3,9,4,8只,再由各饲养房自己加号码颈圈,用简单随机抽样的方法确定7.下列有关线性回归的说法,不正确的是( )A .相关关系的两个变量不一定是因果关系B .散点图能直观地反映数据的相关程度C .回归直线最能代表线性相关的两个变量之间的关系D .任一组数据都有回归直线方程8.已知施肥量与水稻产量之间的回归直线方程为y ^=4.75x +257,则施肥量x =30时,对产量y 的估计值为( )A .398.5B .399.5C .400D .400.59.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( ) A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为310.某高中在校学生2 000人,高一与高二人数相同并都比高三多1人.为了响应“阳光体育运动”号召,学校举行了“元旦”跑步和登山比赛活动.每人都参加而且只参与了其中一项比赛,其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高二参与跑步的学生中应抽取( ) A .36人 B .60人 C .24人 D .30人11.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如右图所示的茎叶图表示,则甲、乙两名运动员得分的中位数分别为( )A .19,13B .13,19C .20,18D .18,2012A .30%B .70%C .60%D .50%二、填空题(本大题共4小题,每小题5分,共20分)13.已知一个回归直线方程为y ^=1.5x +45(x i ∈{1,5,7,13,19}),则y =________. 14.若a 1,a 2,…,a 20这20个数据的平均数为x ,方差为0.21,则a 1,a 2,…,a 20,x 这21个数据的方差为________.15.从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.16.某公司有员工49人,其中30岁以上的员工有14人,没超过30岁的员工有35人,为了解员工的健康情况,用分层抽样方法抽一个容量为7的样本,其中30岁以上的员工应抽取________人.三、解答题(本大题共6小题,共70分)17.(10分)某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:(1)(2)求出y对x的回归直线方程;(3)若广告费为9万元,则销售收入约为多少万元?18.(12分)炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时,钢水的含碳量x与冶炼时间y(从炉料熔化完毕到出钢的时间)的一列数据如下表所示:(1)(2)求回归直线方程;(3)预测当钢水含碳量为160时,应冶炼多少分钟?19.(12分)甲乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.20.(12分)随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了10个家庭,得数据如下:(1)(2)若二者线性相关,求回归直线方程.21.(12分)某工厂有工人1 000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).(1)A类工人中和B类工人中各抽查多少工人?(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.表1表2异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)图1A类工人生产能力的频率分布直方图图2B类工人生产能力的频率分布直方图②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表).22.(12分)一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10(1)y与x是否具有线性相关关系?(2)如果y与x具有线性相关关系,求回归直线方程;(3)根据求出的回归直线方程,预测加工200个零件所用的时间为多少?参考答案与解析1.C [在初中学过:“在统计中,所有考察对象的全体叫做总体,其中每一个所要考察的对象叫做个体,从总体中抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量.”因此题中所指的对象应是体重,故A 、B 错误,样本容量应为125,故D 错误.]2.C [由题意把样本从小到大排序为x 1,x 3,x 5,1,-x 4,-x 2,因此得中位数为12(1+x 5).]3.B [因27∶54∶81=1∶2∶3,16×36=6,26×36=12,36×36=18.]4.C [由点的分布知x 与y 负相关,u 与v 正相关.]5.D [因为数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是13,所以x =2,15∑5i =1 (x i -2)2=13, 因此数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数为: 15∑5i =1 (3x i -2)=3×15∑5i =1x i-2=4, 方差为:15∑5i =1 (3x i -2-x )2=15∑5i =1 (3x i -6)2=9×15∑5i =1 (x i -2)2=9×13=3.] 6.D [因为这24只白鼠要从4个饲养房中抽取,因此要用分层抽样决定各个饲养房应抽取的只数,再用简单随机抽样法从各个饲养房选出所需白鼠.C 虽然用了分层抽样,但在每个层中没有考虑到个体的差异,也就是说在各个饲养房中抽取样本时,没有表明是否具有随机性,故选D.]7.D [根据两个变量具有相关关系的概念,可知A 正确,散点图能直观地描述呈相关关系的两个变量的相关程度,且回归直线最能代表它们之间的相关关系,所以B 、C 正确.只有线性相关的数据才有回归直线方程,所以D 不正确.] 8.B [成线性相关关系的两个变量可以通过回归直线方程进行预测,本题中当x =30时,y ^=4.75×30+257=399.5.]9.D [由于甲地总体均值为3,中位数为4,即中间两个数(第5、6天)人数的平均数为4,因此后面的人数可以大于7,故甲地不符合.乙地中总体均值为1,因此这10天的感染人数总和为10,又由于方差大于0,故这10天中不可能每天都是1,可以有一天大于7,故乙地不符合.丙地中中位数为2,众数为3,3出现的最多,并且可以出现8,故丙地不符合.故丁地符合.]10.A [由题意知高一、高二、高三的人数分别为667,667,666. 设a =2k ,b =3k ,c =5k ,则a +b +c =35×2 000,即k =120.∴b =3×120=360.又2 000人中抽取200人的样本,即每10人中抽取一人,则360人中应抽取36人,故选A.]11.A [分别将甲、乙两名运动员的得分从小到大排列,中间位置的分数则为中位数.] 12.B [由数据分布表可知,质量不小于120克的苹果有10+3+1=14(个),占苹果总数的1420×100%=70%.]13.58.5解析 回归直线方程为y ^=1.5x +45经过点(x , y ),由x =9,知y =58.5. 14.0.215.0.030 3解析 因5个矩形面积之和为1,即(0.005+0.010+0.020+a +0.035)×10=1, ∴0.070×10+10a =1,∴a =0.030.由于三组内学生数的频率分别为:0.3,0.2,0.1,所以三组内学生的人数分别为30,20,10.因此从[140,150]内选取的人数为1060×18=3.16.217.解 (1)作出的散点图如图所示(2)易得x =52,y =692,所以b ^ =∑4i =1x i y i -4x y ∑4i =1x 2i -4x 2=418-4×52×69230-4×⎝⎛⎭⎫522=735,a ^ =y -b ^ x =692-735×52=-2.故y 对x 的回归直线方程为y ^ =735x -2.(3)当x =9时,y ^ =735×9-2=129.4.故当广告费为9万元时,销售收入约为129.4万元.18.解 (1)以x 轴表示含碳量,y 轴表示冶炼时间,可作散点图如图所示:从图中可以看出,各点散布在一条直线附近,即它们线性相关.设所求的回归直线方程为y =b x +a ,b ^ =∑10i =1x i y i -10x y ∑10i =1x 2i -10x 2≈1.267,a ^ =y -b ^ x ≈-30.47.所求回归直线方程为 y ^=1.267x -30.47.(3)当x =160时,y ^=1.267×160+(-30.47)=172.25.即当钢水含碳量为160时,应冶炼约172.25分钟.19.解 (1)由图象可得甲、乙两人五次测试的成绩分别为 甲:10分,13分,12分,14分,16分; 乙:13分,14分,12分,12分,14分.x 甲=10+13+12+14+165=13,x 乙=13+14+12+12+145=13,s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4, s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8. (2)由s 2甲>s 2乙可知乙的成绩较稳定. 从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高. 20.解 (1)作出散点图:观察发现各个数据对应的点都在一条直线附近,所以二者呈线性相关关系.(2)x =110(0.8+1.1+1.3+1.5+1.5+1.8+2.0+2.2+2.4+2.8)=1.74,y =110(0.7+1.0+1.2+1.0+1.3+1.5+1.3+1.7+2.0+2.5)=1.42,∑10i =1x i y i =27.51,∑10i =1x 2i =33.72, b ^=∑10i =1x i y i -10x y ∑10i =1x 2i -10x 2≈0.813 6,a ^ =1.42-1.74×0.813 6≈0.004 3,∴回归方程为y ^=0.813 6x +0.004 3.21.解 (1)A 类工人中和B 类工人中分别抽查25名和75名.(2)①由4+8+x +5+3=25,得x =5,6+y +36+18=75,得y =15. 频率分布直方图如下:图1 A 类工人生产能力的频率分布直方图图2 B 类工人生产能力的频率分布直方图从直方图可以判断:B 类工人中个体间的差异程度更小.②x A =425×105+825×115+525×125+525×135+325×145=123,x B =675×115+1575×125+3675×135+1875×145=133.8,x =25100×123+75100×133.8=131.1.A 类工人生产能力的平均数,B 类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123,133.8和131.1. 22.解 (1)作出如下散点图:由图可知,y 与x 具有线性相关关系.x =55,y =91.7,∑10i =1x 2i =38 500,∑10i =1y 2i =87 777,∑10i =1x i y i =55 950, 设所求的回归直线方程为y ^ =b ^ x +a ^,则有b ^ =∑10i =1x i y i -10x y ∑10i =1x 2i -10x 2=55 950-10×55×91.738 500-10×552≈0.668,a ^ =y -b ^ x =91.7-0.668×55=54.96,因此,所求的回归直线方程为y ^ =0.668x +54.96.(3)这个回归直线方程的意义是当x 每增加1时,y 的值约增加0.668,而54.96是y 不随x 变化而变化的部分,因此,当x =200时,y 的估计值为y ^ =0.668×200+54.96=188.56≈189,因此,加工200个零件所用的时间约为189分.。

高中数学必修三第二章统计综合训练(含答案)

高中数学必修三第二章统计综合训练(含答案)

高中数学必修三统计综合训练一、单选题1.某县教育局为了解本县今年参加一次大联考的学生的成绩,从5000名参加今年大联考的学生中抽取了250名学生的成绩进行统计,在这个问题中,下列表述正确的是()A. 5000名学生是总体B. 250名学生是总体的一个样本C. 样本容量是250D. 每一名学生是个体2.某连队身高符合建国60周年国庆阅兵标准的士兵共有45人,其中18岁-19岁的士兵有15人,20岁-22岁的士兵有20人,23岁以上的士兵有10人,若该连队有9个参加阅后的名额,如果按年龄分层选派士兵,那么,该连队年龄在23岁以上的士兵参加阅兵的人数为()A. 5B. 4C. 3D. 23.下列结论正确的是()①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.A. ①②B. ①②③C. ①②④D. ①②③④4.在频率分布直方图中,小长方形的面积是()A. 频率/样本容量B. 组距×频率C. 频率D. 样本数据5.在如图所示的“茎叶图”表示的数据中,众数和中位数分别是()A. 23与26B. 31与26C. 24与30D. 26与306.将参加夏令营的600名学生编号为:001,002,…,600. 采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )A. 26, 16, 8,B. 25,17,8C. 25,16,9D. 24,17,97.某学校为了调查高三年级的200名文科学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行调查;第二种由教务处对该年级的文科学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查,则这两种抽样的方法依次为()A. 分层抽样,简单随机抽样B. 简单随机抽样,分层抽样C. 分层抽样,系统抽样D. 简单随机抽样,系统抽样8.一批灯泡400只,其中20 W、40 W、60 W的数目之比为4∶3∶1,现用分层抽样的方法产生一个容量为40的样本,三种灯泡依次抽取的个数为()A. 20 ,10 , 10B. 15 , 20 , 5C. 20, 5, 15D. 20, 15, 59.(2014•湖南)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽A. P1=P2<P3B. P2=P3<P1C. P1=P3<P2D. P1=P2=P310.下列四个图象中,两个变量具有正相关关系的是()A. B. C. D.11.左图是某高三学生进入高中三年来的数学考试成绩的茎叶图,图中第1次到14次的考试成绩依次记为A1,A2,A3,A4右图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图。

高中数学必修3统计测试题及其答案

高中数学必修3统计测试题及其答案

高中数学必修 3 第二章(统计)检测题班级姓名得分一、选择题:(此题共 10 小题,每题 3 分,共 30 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.某单位有老年人28 人,中年人 54 人,青年人 81 人.为了检查他们的身体状况,需从他们中抽取一个容量为36 的样本,最适合抽取样本的方法是( D ).A .简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除一人,而后分层抽样2.10 名工人某天生产同一部件,生产的件数是15,17,14, 10,15, 17,17,16,14,12.设其均匀数为a,中位数为 b,众数为 c,则有 ( D).A .a>b>c B. b>c>a C. c>a>b D.c>b>a3.以下说法错误的选项是 ( B ).A.在统计里,把所需观察对象的全体叫作整体B.一组数据的均匀数必定大于这组数据中的每个数据C.均匀数、众数与中位数从不一样的角度描绘了一组数据的集中趋向D.一组数据的方差越大,说明这组数据的颠簸越大4.以下说法中,正确的选项是 ( C ).A .数据 5,4,4,3,5,2 的众数是 4B.一组数据的标准差是这组数据的方差的平方C.数据 2,3,4,5 的标准差是数据 4,6,8,10 的标准差的一半D.频次散布直方图中各小长方形的面积等于相应各组的频数5.从甲、乙两班分别随意抽出10 名学生进行英语口语测试,其测试成绩的方差分别2 2 .,则.为 S1 , 2A )= 13.2 S =26 26(A .甲班 10 名学生的成绩比乙班10 名学生的成绩齐整B.乙班 10 名学生的成绩比甲班10 名学生的成绩齐整C.甲、乙两班 10 名学生的成绩同样齐整D.不可以比较甲、乙两班10 名学生成绩的齐整程度6.以下说法正确的选项是 ( C ).A.依据样本预计整体,其偏差与所选择的样本容量没关B.方差和标准差拥有同样的单位2 2 2 2 是错的D.假如容量同样的两个样本的方差知足12 ,那么推得整体也知足S1 2S <S <S 7.某同学使用计算器求 30 个数据的均匀数时,错将此中一个数据 105 输人为 15,那么由此求出的均匀数与实质均匀数的差是( B ).A.3.5 B.-3 C. 3 D. -0.58.在一次数学测试中,某小组14 名学生疏别与全班的均匀分85 分的差是: 2,3,-3,-5, 12,12,8,2,-1,4,-10,-2, 5, 5,那么这个小组的均匀分是(B)分.A .97.2 B. 87.29 C. 92.32 D.82.869.某题的得分状况以下:此中众数是 ( C ).得分 /分0 1 2 3 4百分率 /(%) 37.0 8.6 6.0 28.2 20.2A .37.0%B. 20.2%C.0 分D.4 分10.假如一组数中每个数减去同一个非零常数,则这一组数的( 10 ).A .均匀数不变,方差不变B.均匀数改变,方差改变C.均匀数不变,方差改变D.均匀数改变,方差不变11.为检查参加运动会的 1 000 名运动员的年纪状况,从中抽查了 100 名运动员的年纪,就这个问题来说,以下说法正确的选项是A . 1 000 名运动员是整体C.抽取的 100 名运动员是样本( A)B.每个运动员是个体D.样本容量是 10012.为了检查某产品的销售状况,销售部门从部下的92 家销售连锁店中抽取30 家认识情况.若用系统抽样法,则抽样间隔和随机剔除的个体数分别为( A )A.3,2B.2,3C.2,30D.30,213.某城区有农民、工人、知识分子家庭合计 2 000 家,此中农民家庭 1 800 户,工人家庭100 户.现要从中抽取容量为40 的样本,检查家庭收入状况,则在整个抽样过程中,能够用到以下抽样方法(D)①简单随机抽样;②系统抽样;③分层抽样.A .②③ B.①③ C.③ D.①②③ 14.以下说法不正确的选项是 ( A )A.频次散布直方图中每个小矩形的高就是该组的频次B.频次散布直方图中各个小矩形的面积之和等于 1C.频次散布直方图中各个小矩形的宽同样大D.频次散布直方图能直观地表示样本数据的散布状况15.容量为 20 的样本数据,分组后的频数以下表:分组[10,20) [20,30) [30,40) [40,50) [50,60) [60,70)频数 2 3 4 5 4 2则样本数据落在区间 [10,40)的频次为 ( B )A . 0.35 B.0.45 C.0.55 D.0.6516.已知 10 名工人生产同一部件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为 a,中位数为 b,众数为 c,则有 ( D )A . a>b>c B.a>c>b C.c>a>b D.c>b>a17. 已知一个样本中的数据为1,2,3,4,5,则该样本的标准差为(B )A . 1 B. 2 C. 3 D.218.如图是 2012 年某校举行的元旦诗歌朗读竞赛中,七位评委为某位选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的均匀数和方差分别为(C)A . 84,4.84B .84,1.6C.85,1.6D.85,0.419.某中学有高中生 3500 人,初中生 1500 人.为认识学生的学习状况,用分层抽样的方法从该校学生中抽取一个容量为 n 的样本,已知从高中生中抽取 70 人,则 n 为( A) A.100B .150C .200D .25020.样本容量为100 的频次散布直方图以下图.依据样本的频次散布直方图预计样本数据落在 [6, 10)内的频数为 a,样本数据落在 [2,10)内的频次为 b,则 a, b 分别是 ( A )A .32,0.4 B.8,0.1C. 32,0.1 D.8,0.4二、填空题:(此题共 4 小题,每题 3 分,共 12 分)21.一个企业共有 240 名职工,下设一些部门,要采纳分层抽样方法从全体职工中抽取一个容量为20的样本.已知某部门有 60名职工,那么从这一部门抽取的职工人数是5。

高中数学必修3第二章:统计测试题及其答案

高中数学必修3第二章:统计测试题及其答案

高中数学必修3第二章(统计)检测题班级姓名得分一、选择题:(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是( D ).A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除一人,然后分层抽样2.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有( D ).A.a>b>c B.b>c>a C.c>a>b D.c>b>a3.下列说法错误的是( B ).A.在统计里,把所需考察对象的全体叫作总体B.一组数据的平均数一定大于这组数据中的每个数据C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D.一组数据的方差越大,说明这组数据的波动越大4.下列说法中,正确的是( C ).A.数据5,4,4,3,5,2的众数是4B.一组数据的标准差是这组数据的方差的平方C.数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半D.频率分布直方图中各小长方形的面积等于相应各组的频数5.从甲、乙两班分别任意抽出10名学生进行英语口语测验,其测验成绩的方差分别为S12= 13.2,S22=26.26,则( A ).A.甲班10名学生的成绩比乙班10名学生的成绩整齐B.乙班10名学生的成绩比甲班10名学生的成绩整齐C.甲、乙两班10名学生的成绩一样整齐D.不能比较甲、乙两班10名学生成绩的整齐程度6.下列说法正确的是( C ).A.根据样本估计总体,其误差与所选择的样本容量无关B.方差和标准差具有相同的单位C.从总体中可以抽取不同的几个样本D.如果容量相同的两个样本的方差满足S12<S22,那么推得总体也满足S12<S22是错的7.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输人为15,那么由此求出的平均数与实际平均数的差是( B ).A.3.5 B.-3 C.3 D.-0.58.在一次数学测验中,某小组14名学生分别与全班的平均分85分的差是:2,3,-3,-5,12,12,8,2,-1,4,-10,-2,5,5,那么这个小组的平均分是(B )分.A.97.2 B.87.29 C.92.32 D.82.869A.37.0%10.如果一组数中每个数减去同一个非零常数,则这一组数的( 10 ).A.平均数不变,方差不变B.平均数改变,方差改变C.平均数不变,方差改变D.平均数改变,方差不变11. 为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是(A)A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是10012.为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况.若用系统抽样法,则抽样间隔和随机剔除的个体数分别为(A)A.3,2 B.2,3 C.2,30 D.30,213.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到下列抽样方法(D)①简单随机抽样;②系统抽样;③分层抽样.A.②③B.①③C.③D.①②③14.下列说法不正确的是(A)A.频率分布直方图中每个小矩形的高就是该组的频率B.频率分布直方图中各个小矩形的面积之和等于1C.频率分布直方图中各个小矩形的宽一样大D.频率分布直方图能直观地表明样本数据的分布情况15A.0.35 B.0.45 C.0.55 D.0.6516.已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a,中位数为b,众数为c,则有(D)A.a>b>c B.a>c>b C.c>a>b D.c>b>a17. 已知一个样本中的数据为1,2,3,4,5,则该样本的标准差为(B)A.1 B. 2 C. 3 D.218. 如图是2012年某校举行的元旦诗歌朗诵比赛中,七位评委为某位选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为(C)A.84,4.84 B.84,1.6 C.85,1.6 D.85,0.419.某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为(A)A.100 B.150 C.200 D.25020.样本容量为100的频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在[6,10)内的频数为a,样本数据落在[2,10)内的频率为b,则a,b分别是(A)A.32,0.4 B.8,0.1C.32,0.1 D.8,0.4二、填空题:(本题共4小题,每小题3分,共12分)21.一个公司共有240名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为20的样本.已知某部门有60名员工,那么从这一部门抽取的员工人数是 5 。

必修三第二章统计单元测试题及答案

必修三第二章统计单元测试题及答案

必修三统计试题一、选择题(每小题 5分,共60分) 1①某学校高二年级共有526人,为了调查学生每天用于休息的时间,决定抽取10%勺学生进行调查;②一次数学月考中,某班有 10人在100分以上,32人在90〜100分,12人低 于90分,现从中抽取9人了解有关情况;③运动会工作人员为参加 4 X 100 m 接力赛的6 支队伍安排跑道•就这三件事,恰当的抽样方法分别为( )A. 分层抽样、分层抽样、简单随机抽样B. 系统抽样、系统抽样、简单随机抽样C. 分层抽样、简单随机抽样、简单随机抽样D. 系统抽样、分层抽样、简单随机抽样2.某单位有840名职工,现采用系统抽样方法抽取 42人做问卷调查,将840人按1,2,…, 840随机编号,则抽取的 42人中,编号落入区间 481,720的人数为( )A . 11B . 12C . 13D . 143从2007名学生中选取50名参加全国数学联赛,若采用下面的方法选取:先用简单随机抽 样从2007人中剔除7人,剩下的2000人再按系统抽样的方法抽取,则每人入选的可能性()4.某大学数学系共有学生 5 000人,其中一、二、三、四年级的人数比为 4 : 3 : 2 : 1,要用分层抽样的方法从数学系所有学生中抽取一个容量为 200的样本,则应抽取三年级的学生人数为()A.80B.40C.605•下列数字特征一定是数据组中数据的是( )_ 26. 某公司10位员工的月工资(单位:元)为X 1.X 2.X 3.X 4,其均值和方差分别为 x 和s ,若从下 月起每位员工的月工资增加 100元,则这10位员工下月工资的均值和方差分别为( )7.—组数据中的每一个数据都乘以 2,再减去80,得到一组新数据,若求得新的数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( )B . 48.8,4.4C . 81.2,44.4D . 78.8,75.6 8.如图所示的茎叶图记录了甲、 乙两组各5名工人某日的产量数据(单位:件).若这两组数据y 与X 之间的回归直线方程是()A. = x + 1.9B. = 1.04x + 1.910 .将容量为n 的样本中的数据分成 6组,若第一组至第六组的频率之比为2 :3 :4 : 6 :A •不全相等B .均不相等C .都相等,且为 1 40D .都相等,且为502007D.20 A .众数B .中位数C .标准差D .平均数A.X.s 2 100B. X + 100.S 2 1002C.X.s 2D.X+100.S 2A . 40.6,1.1 的中位数相等,且平均值也相等,则X 和y 的值分别为().A.3 和 5B.5 和 5C.3 和 7D.5 和 7甲组567B(2,3.8), C(3,5.2), D(4,6),C. = 0.95x + 1.04D. = 1.05x — 0.94 : 1,且前三组数据的频数之和等于27,则n的值为()16. 为了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率 分布直方图(如图),已知图中从左到右的前 3个小组的频率之比为 1 : 2 : 3,其中第2小组A . 50B . 60C . 70D . 8011.关于统计数据的分析,有以下几个结论:①一组数不可能有两个众数;②将一组数据中的每个数据都减去同一个数后,方差没有变化;③调查剧院中观众观看感受时, 从50排(每排人数相同)中任意抽取一排的人进行调查, 属于分层抽样;④一组数据的方差- ,定是 正结论错误的个数为()12..为了了解某校高三学生的视力情况,随机抽查了该校100名高三学生的视力情况,得到的数据频率分布直方图如图所示 •由于不慎将部分数据丢失,仅知道后五组频数和为 62,最大频率为0.32,设视力在4.6到4.8之间的学生人数为a,则a 的值为(A.64B.54C.48D.27、填空题(每小题5分,共20 分) 13. 已知样本 9,10,11,x, 14. 若 a 1, a 2,21个数据的方差为15. 从某小区抽取 y 的平均数是10,标准差是 2,则xy _____a 20这20个数据的平均数为 x ,方差为0.21,则a 1, a 2,…,a 20, x 这100户居民进行月用电量调查,发现其用电量都在 率分布直方图如图所示.(1) 直方图中x 的值为一 (2)在这些用户中,用电量落在区间100,250的频数为12,则报考飞行员的总人数是三、解答题(共70 分)17. (10分)对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下;).50至350度之间,频甲 60 80 70 90 70 乙8060708075问:甲、乙谁的平均成绩最好?谁的各门功课发展较平衡?18. (12分)在每年的春节后,某市政府都会发动公务员参与到植树绿化活动中去.林业管理部门在植树前,为了保证树苗的质量,都会在植树前对树苗进行检测•现从 甲、乙两种树苗中各抽测了 10株树苗,量出它们的高度如下 (单位:厘米甲:37, 21, 31, 20, 29, 19, 32, 23, 25, 33; 乙:10, 30, 47, 27, 46, 14, 26, 10, 44, 46.(1) 画出两组数据的茎叶图,并根据茎叶图对甲、乙两种树苗的高度作比较,写出两个统计结论; (2)设抽测的10株甲种树苗高度平均值为,将这10株树苗的高度依次输入,按程序框(如图)进行运算,问输出的 S 大小 为多少?并说明S 的统计学意义.19.(:使用年限x 2 3 4 5 6 维修费用y 2. 23. 85. 56. 57. 0(1)画出散点图;(2)求支出的维修费用 与使用年限的回归方程;(3)估计使用年限为10年时,维修费用是多少),苟曰I20. 某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩(均为整数)分成六段40,50 , 50,60…90,100后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;21. 某校高二某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏, 其可见部分如图 C26所示•据此解答如下问题:(1) 计算频率分布直方图中[80, 90)间的矩形的高; (2) 根据茎叶图和频率分布直方图估计这次测试的平均分.22•某地统计局就该地居民的月收入调查了 10 000人,并根据所得数据画了样本的频率分布 直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在 [1 000,1 500)) • (1)求居民月收入在[2000,2500)的频率; ⑵根据频率分布直方图算出样本数据的中位数; ⑶在月收入为[2500,3000),[3000,3500),[3500,4000]的三组居民中,采用分层抽样方法抽出 人作进一步分析,则月收入在 [3000,3 500)的这段应抽多少人?答案1-5 D B D B A 6-10 D A A B B 11-12 C B 13. 96_ 14. 0.215. 0.00447016. 48____5 68623356897 1 2234 5678S 89 5 890517.解:X 甲=_(60 80 70 90 70) 74, (2分) X 乙 1 -(80 560 70 80 75) 73, (4 分)2 (142 62 42 162 42) 104, (6 分)52A 132 32 72 22) 56 (8 分)QX 甲 X 乙 ®2邑2甲的平均成绩较好,乙的各门功课发展较平衡18.解:⑴茎叶图:ip乙9 1 0 4 05 3 9 0 12 7 63 217牛n47 6 4 6统计结论:(答案不唯一,任意两个即可 ) ① 甲种树苗的平均高度小于乙种树苗的平均高度; ② 甲种树苗比乙种树苗长得整齐;③ 甲种树苗的中位数为 27,乙种树苗的中位数为 28.5 ;④ 甲种树苗的高度基本上是对称的, 而且大多数集中在平均数附近, 布比较分散.(2) = 27, S = 35, S 表示10株甲种树苗高度的方差.S 越小,表示长得越整齐, S 值越大,表示长得越参差不齐.19. 解:(1)散点图如图:10 分)乙种树苗的高度分(2) X2.23.8 5.5 6.575X i Y ii 12 2.23 3.84 5.55 6o567 112.3.(4分)形框知,m = 0.008X 10,得到m = 25,所以频率分布直方图中[80, 90)间的矩形的高为 X⑵设这次测试的平均分为 ,贝U = 55X 0.08 + 65X 0.28 + 75X 0.4+ 85X 0.16 + 95 X0.08= 73.8,所以,根据茎叶图和频率分布直方图估计这次测试的平均分为73.8分.22. (1) 0.0005 500=0.25(2)设中位数为x500 0.0002 500 0.0004 (x 2000) 500 0.5X i y i 5xyi 1 52 Xi-25x112.3 5 4 590 5 42123a y bx 5 1.23 4 0.08.所求的线性回归方程为? 1.23x(3) 维修费用=12.38 (15分) 20. (1)由频率分布直方图可知第 1、2、3、5、6小组的频率分别为:0.1、0.15、0.15、0.25、0.05,所以第4小组的频率为:1-0.1-0.15-0.15-0.25-0.05=0.3 ..•.在频率分布直方图中第 4小组的对应的矩0 30.08. (12 分)(2) 考试的及格率即 60分及以上的频率•••及格率为 0.15+0.3+0.25+0.05=0.75 又由频率分布直方图有平均分为:0.1 45 0.15 55 0.15 65 0.3 75 0.25 85 0.05 95 7121. (1)设该班的数学测试成绩统计的人数为m ,则由茎叶图及频率分布直方图第一个矩110 0.016.解得x 2400中位数的估计值为2400(3)收入在[2500,3000)的人数为500 0.0005 10000=2500 收入在[3000,3500)的人数为500 0.0003 10000=1500 收入在[3500,4000]的人数为500 0.0001 10000=500 分层抽样,在月收入在[3000,3500)这段应抽取的人数为:150090 302500 1500 500。

(完整)必修三第二章统计单元测试题及答案,推荐文档

(完整)必修三第二章统计单元测试题及答案,推荐文档

必修三统计试题一、选择题(每小题5分,共60分)1.①某学校高二年级共有 526 人,为了调查学生每天用于休息的时间,决定抽取 10%的学生进行调查;②一次数学月考中,某班有 10 人在 100 分以上,32 人在 90~100 分,12 人低于 90 分,现从中抽取 9 人了解有关情况;③运动会工作人员为参加4×100 m 接力赛的6 支队伍安排跑道.就这三件事,恰当的抽样方法分别为( )A.分层抽样、分层抽样、简单随机抽样B.系统抽样、系统抽样、简单随机抽样C.分层抽样、简单随机抽样、简单随机抽样D.系统抽样、分层抽样、简单随机抽样2.某单位有840 名职工,现采用系统抽样方法抽取42 人做问卷调查,将840 人按1,2,…,840 随机编号,则抽取的42 人中,编号落入区间[481, 720]的人数为()A.11 B.12 C.13 D.143 从2007 名学生中选取50 名参加全国数学联赛,若采用下面的方法选取:先用简单随机抽样从2007 人中剔除7 人,剩下的2000 人再按系统抽样的方法抽取,则每人入选的可能性( )1 A.不全相等B.均不相等C.都相等,且为4050 D.都相等,且为20074.某大学数学系共有学生5 000 人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从数学系所有学生中抽取一个容量为200 的样本,则应抽取三年级的学生人数为()A.80B.40C.60D.205.下列数字特征一定是数据组中数据的是( )A.众数B.中位数C.标准差D.平均数6.某公司10 位员工的月工资(单位:元)为x 1, x2 , x3, x4,其均值和方差分别为x 和s2 ,若从下月起每位员工的月工资增加100 元,则这10 位员工下月工资的均值和方差分别为()A. x ,s2 +100B. x +100,s2 +1002C. x ,s2D. x +100, s27.一组数据中的每一个数据都乘以2,再减去80,得到一组新数据,若求得新的数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( )A.40.6,1.1 B.48.8,4.4 C.81.2,44.4 D.78.8,75.68.如图所示的茎叶图记录了甲、乙两组各5 名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( ).A.3 和5B.5 和5C.3 和7D.5 和79.如果在一次实验中,测得(x,y)的四组数值分别是A(1,3),B(2,3.8),C(3,5.2),D(4,6),.2 则 y 与 x 之间的回归直线方程是( )A. =x +1.9B. =1.04x +1.9C. =0.95x +1.04D. =1.05x -0.910. 将容量为 n 的样本中的数据分成 6 组,若第一组至第六组的频率之比为2∶3∶4∶6∶4 ∶1,且前三组数据的频数之和等于 27,则 n 的值为( ) A .50 B .60 C .70 D .80 11. 关于统计数据的分析,有以下几个结论:①一组数不可能有两个众数;②将一组数据中的每个数据都减去同一个数后,方差没有变化;③调查剧院中观众观看感受时,从 50 排(每排人数相同)中任意抽取一排的人进行调查, 属于分层抽样;④一组数据的方差一定是正数. 结论错误的个数为( )A .1B .2C .3D .412. .为了了解某校高三学生的视力情况,随机抽查了该校 100 名高三学生的视力情况,得到的数据频率分布直方图如图所示.由于不慎将部分数据丢失,仅知道后五组频数和为 62,最大频率为 0.32,设视力在 4.6 到 4.8 之间的学生人数为 a ,则 a 的值为().A.64B.54C.48D.27二、填空题 (每小题 5 分,共 20 分)13. 已知样本9,10,11, x , y 的平均数是10 ,标准差是,则 xy =.14. 若 a 1,a 2,…,a 20 这 20 个数据的平均数为x ,方差为 0.21,则 a 1,a 2,…,a 20,x 这21 个数据的方差为 .15. 从某小区抽取100 户居民进行月用电量调查,发现其用电量都在50 至350 度之间,频率分布直方图如图所示.(1) 直方图中 x 的值为;(2) 在这些用户中,用电量落在区间[100, 250)内的户数为 .16.为了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前 3 个小组的频率之比为 1∶2∶3,其中第 2 小组的频数为 12,则报考飞行员的总人数是三、解答题(共 70 分)17.(10 分)对甲、乙的学习成绩进行抽样分析,各抽5 门功课,得到的观测值如下;甲60 80 70 90 70乙80 60 70 80 75问:甲、乙谁的平均成绩最好?谁的各门功课发展较平衡?18.(12 分)在每年的春节后,某市政府都会发动公务员参与到植树绿化活动中去.林业管理部门在植树前,为了保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了 10 株树苗,量出它们的高度如下(单位:厘米),甲:37,21,31,20,29,19,32,23,25,33;乙:10,30,47,27,46,14,26,10,44,46.(1)画出两组数据的茎叶图,并根据茎叶图对甲、乙两种树苗的高度作比较,写出两个统计结论;(2)设抽测的 10 株甲种树苗高度平均值为,将这 10 株树苗的高度依次输入,按程序框(如图)进行运算,问输出的 S 大小为多少?并说明 S 的统计学意义.19.(12 分)设关于某种设备的使用年限x和支出的维修费用y(万元),有以下的统计资料:使用年限x 2 3 4 5 6维修费用y2.2 3.8 5.5 6.5 7.0(1)画出散点图;(2)求支出的维修费用y 与使用年限x 的回归方程;(3)估计使用年限为 10 年时,维修费用是多少20.某校从参加高一年级期末考试的学生中抽出40 名学生,将其成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全频率分布直方图;(2)估计这次考试的及格率(60 分及以上为及格)和平均分;ƵÂÊ×é¾à0.0250.0150.010.00540 50 60 70 80 90 100·ÖÊý21.某校高二某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,其可见部分如图C26 所示.据此解答如下问题:(1)计算频率分布直方图中[80 ,90)间的矩形的高;(2)根据茎叶图和频率分布直方图估计这次测试的平均分.22.某地统计局就该地居民的月收入调查了10 000 人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[2000,2500)的频率;(2)根据频率分布直方图算出样本数据的中位数;(3)在月收入为[2500,3000),[3000,3500),[3500,4000]的三组居民中,采用分层抽样方法抽出90 人作进一步分析,则月收入在[3000,3 500)的这段应抽多少人?答案1-5 D B D B A 6-10 D A A B B11-12 C B 13. 9614. 0.215. 0.00447016. 4817. 解: x = 1 (60 + 80 + 70 + 90 + 70) = 74 ,(2 分) 甲 5x 乙 = 1(80 + 60 + 70 + 80 + 75) = 73,(4 分)s 2 = 1522222甲(14 + 6 5 + 4 +16 + 4 = 104 ,(6 分) s 2 = 1(72 +132 + 32 + 72 + 22 ) = 56 (8 分 ) 乙5x 甲乙> x , s 2 > s 2 ∴甲的平均成绩较好,乙的各门功课发展较平衡(10 分)甲乙18. 解:(1)茎叶图:统计结论:(答案不唯一,任意两个即可) ①甲种树苗的平均高度小于乙种树苗的平均高度; ②甲种树苗比乙种树苗长得整齐;③甲种树苗的中位数为 27,乙种树苗的中位数为 28.5;④甲种树苗的高度基本上是对称的,而且大多数集中在平均数附近,乙种树苗的高度分布比较分散.(2) =27,S =35,S 表示 10 株甲种树苗高度的方差.S 越小,表示长得越整齐,S 值越大,表示长得越参差不齐.19. 解:(1)散点图如图:∑∑ i∑i (4 分)(2)x =2 + 3 + 4 + 5 + 6= 4 ,y =2.2 +3.8 + 5.5 + 6.5 ++7= 5 ,5 55x i y i= 2 ⨯ 2.2 + 3 ⨯ 3.8 + 4 ⨯ 5.5 + 5 ⨯ 6。

【精编】高中数学必修3第2章统计章末测验试卷(含答案 word可编辑)

【精编】高中数学必修3第2章统计章末测验试卷(含答案 word可编辑)

必修3~第02章~章末测验 (____月___日)一、选择题(共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知A 、B 、C 三个社区的居民人数分别为600、1200、1500,现从中抽取一个容量为n 的样本,若从C 社区抽取了15人,则n = A .33 B .18 C .27 D .212.一幼儿园有10个班,每个班有30名同学,每个班同学随机编号为01﹣30,为了了解他们家长对幼儿园管理方面的要求,对每班第19号同学的家长进行调查,这里运用的抽样方法是 A .抽签法 B .分层抽样法 C .随机数表法 D .系统抽样法3.已知某区中小学学生人数如图所示,为了解学生参加社会实践活动的意向,拟采用分层抽样的方法来进行调查.若高中需抽取20名学生,则小学与初中共需抽取的人数为 A .30 B .40 C .70 D .904.高铁、扫码支付、共享单车、网购被称为中国的“新四大发明”,为评估共享单车的使用情况,选了n 座城市作实验基地,这n 座城市共享单车的使用量(单位:人次/天)分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估共享单车使用量的稳定程度的是 A .x 1,x 2,…x n 的平均数 B .x 1,x 2,…x n 的标准差 C .x 1,x 2,…x n 的最大值 D .x 1,x 2,…x n 的中位数5.某协会有200名会员,现要从中抽取40名会员作样本,采用系统抽样法等间距样本,将全体会员随机按1﹣200编号,并按编号顺序平均分为40组(1﹣5号,6﹣10号,…,196﹣200号),若第5组抽出的号码为23,则第1组至第3组抽出的号码依次是 A .3,8,13 B .2,7,12 C .3,9,15 D .2,6,126.10名学生在一次数学考试中的成绩分别为x 1,x 2,…,x 10,要研究这10名学生成绩的平均波动情况,则最能说明问题的是 A .频率 B .平均数 C .独立性检验 D .方差7.10名小学生的身高(单位:cm )分成了甲、乙两组数据,甲组:115,122,105,111,109;乙组:125,132,115,121,119.两组数据中相等的数字特征是A .中位数、极差B .平均数、方差C .方差、极差D .极差、平均数 8.甲、乙两名同学8次数学测验成绩如茎叶图所示,1x ,2x 分别表示甲、乙成绩的平均数,s 1,s 2分别表示甲、乙成绩的标准差,则有 A .12x x >,s 1<s 2 B .12x x =,s 1<s 2 C .12x x =,s 1=s 2 D .12x x <,s 1>s 29.将某选手的7个得分去掉1个最高分,去掉1个最低分,5个剩余分数的平均分为21,现场作的7个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则5个剩余分数的方差为:A .1167 B .365C .36 D10.某工厂对一批新产品的长度(单位:mm )进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为A.20,22.5 B.22.5,25C.22.5,22.75 D.22.75,22.7511.已如样本x1,x2,x3,x n的平均数为x,标准差为s,那么样本3x1+1,3x1+1,3x3+1,……,3x n+1的平均数和标准差分别是A.3x+1,3s B.3x+1,9s C.3x+1,3s+1 D.3x,9s 12.已知如表为x与y x的回归直线y=bx+a必过点A.(2,2)B.(1.5D.(1.5,4)二、填空题(本题共4小题,每小题5分,共20分)13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从高级职称抽取的人数是__________.14.若八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的方差是__________.15.已知x,y=+中的b=2.2,那么a=__________.根据上表利用最小二乘法求得回归直线方程y x b a16.已知变量x和y线性相关,其一组观测数据为(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),由最小二乘法求得回归直线方程为y=0.67x+50.9.若已知x1+x2+x3+x4+x5=150,则y1+y2+y3+y4+y5=__________.三、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图是某地某公司1000名员工的月收入后的直方图.根据直方图估计:(1)该公司月收入在1000元到1500元之间的人数;(2)该公司员工的月平均收入.18.(本小题满分12分)某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包产品,称其重量,分别记录抽查数据如下:甲:86、72、92、78、77;乙:82、91、78、95、88(1)这种抽样方法是哪一种?(2)将这两组数据用茎叶图表示;(3)将两组数据比较,说明哪个车间产品较稳定.19.(本小题满分12分)某校全体教师年龄的频率分布表如表所示,其中男教师年龄的频率分布直方图如图所示.已知该(2)若按性别分层抽样,随机抽取16人参加技能比赛活动,求男女教师抽取的人数.20.(本小题满分12分)有同一型号的汽车100辆,为了解这种汽车每耗油1L所行路程的情况,现从中随机地抽出10辆,在同一条件下进行耗油1L所行路程的试验,得到如下样本数据(单位:km):13.7 12.7 14.4 13.8(1(2)根据上表,在坐标系中画出频率分布直方图.21.(本小题满分12分)在一次高三年级统一考试中,数学试卷有一道满分10分的选做题,学生可以从A ,B 两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001一900.(1)若采用随机数表法抽样,并按照以下随机数表,以加粗的数字5为起点,从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端.写出样本编号的中位数;05 26 93 70 60 22 35 85 15 13 92 03 51 59 77 59 56 78 06 83 52 91 05 70 74 07 97 10 88 23 09 98 42 99 64 61 71 62 99 15 06 51 29 16 93 58 05 77 09 51 51 26 87 85 85 54 87 66 47 54 73 32 08 11 12 44 95 92 63 16 29 56 24 29 48 26 99 61 65 53 58 37 78 80 70 42 10 50 67 42 32 17 55 85 74 94 44 67 16 94 14 65 52 68 75 87 59 36 22 41 26 78 63 06 55 13 08 27 01 50 15 29 39 39 43 (2)若采用系统抽样法抽样,且样本中最小编号为08,求样本中所有编号之和;(3)若采用分层轴样,按照学生选择A 题目或B 题目,将成绩分为两层,且样本中A 题目的成绩有8个,平均数为7,方差为4:样本中B 题目的成绩有2个,平均数为8,方差为1.用样本估计900名考生选做题得分的平均数与方差.22.(本小题满分12分)在倡导低碳、节能减排政策的推动下,越来越多的消费者选择购买新能源汽车,某品牌新能源汽(1)根据表中数据建立y 关于x 的回归方程为y =1.14x ﹣0.34.我们认为,若残差绝对值|y i y -i |>0.5,则该数据为可疑数据,请找出上表中的可疑数据(2)经过确认,数据采集有误,(1)中可疑数据的维修保养总费用应增加0.7千元.请重新利用线性回归模型拟合数据.(精确到0.01).附:1122ˆni ii nii x y n xx ybxn ==-=-∑∑;a b y x =-;61ii x ==∑21,61 i =∑y i=21.9,61i =∑x i 2=91,61i =∑x i y i =96.6.。

人教版数学必修三第二章统计章末检测题含答案

人教版数学必修三第二章统计章末检测题含答案

必修三第二章统计章末检测题含答案一、选择题1.对于简单随机抽样,下列说法中,正确的为().①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概率进行分析;②它是从总体中按排列顺序逐个地进行抽取;③它是一种不放回抽样;④它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种方法抽样的公平性.A.①②③B.①②④C.①③④D.①②③④2.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90人的样本,应在这三校分别抽取学生().A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人3.已知一个样本数据按从小到大的顺序排列为13,14,19,x,23,27,28,31,中位数为22,则x的值等于().A.21 B.22 C.20 D.234.下列说法中,正确的是().A.数据5,4,4,3,5,2 的众数是4B.一组数据的标准差是这组数据的方差的平方C.数据2,3,4,5 的标准差是数据4,6,8,10 的标准差的一半D.频率分布直方图中各小长方形的面积等于相应各组的频数5.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在2 700~ 3 000(单位:克)的频率为( ).A .0.001B .0.1C .0.2D .0.36.下列说法中正确的是( ).A .y =2x 2+1中的x ,y 是具有相关关系的两个变量B .正四面体的体积与其棱长具有相关关系C .电脑的销售量与电脑的价格之间是一种确定性的关系D .某地区感染流感人数与外来流感患者人数是具有相关关系的两个变量7.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁~18岁的男生体重(kg ),得到频率分布直方图如下:根据上图可得这100名学生中体重在(56.5,64.5)的学生人数是( ). A .20B .30C .40D .508.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表s 1,s 2,s 3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( ). A .s 3>s 1>s 2B .s 2>s 1>s 3C .s 1>s 2>s 3D .s 2>s 3>s 19.通过随机抽样用样本频率分布估计总体分布的过程中,下列说法正确的是( ).A .总体容量越大,可能估计越精确B .样本容量大小与估计结果无关C .样本容量越大,可能估计越精确D .样本容量越小,可能估计越精确10.从观测所得的数据中取出m 个x 1,n 个x 2,p 个x 3组成一个样本,那么这个样本的平均数是( ).A .3++321x x x B .pn m x x x ++++321C .3++321px nx mxD .pn m px nx mx ++++321二、填空题11. 一个总体容量为60,其中的个体编号为00,01,02,…,59.现需从中抽取一个容量为7的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11~12列的18开始,依次向下,到最后一行后向右,直到取足样本,则抽取样本的号码是 .95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 95 38 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 80 82 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 50 24 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 49 96 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 6012.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是 .13.一个容量为40的样本,分成若干组,在它的频率分布直方图中,某一组相应的小长方形的面积为0.4,则该组的频数是 .14.甲乙两种冬小麦试验品种连续5年的平均单位面积产量如下:其中产量比较稳定的小麦品种是 .15.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7.现去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 , .16.某鱼塘放养鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%.一段时间后准备打捞出售,第一次捞出40条,称得平均每条鱼重2.5 kg;第二次捞出25条,称得平均每条鱼重2.2 kg;第三次捞出35条,称得平均每条鱼重2.8 kg.请你根据这些数据,估计鱼塘中的鱼的总重量约是.三、解答题17.某中学高中部共有16个班,其中一年级6个班,二年级6个班,三年级4个班.每个班的人数均在46人左右(44人~49人),各班的男女学生数均基本各占一半.现要调查这所学校学生的周体育活动时间,它是指学生在一周中参加早锻炼、课间操、课外体育活动、体育比赛等时间的总和(体育课、上学和放学路上的活动时间不计在内).为使所得数据更加可靠,应在所定抽样的“周”之后的两天内完成抽样工作.试给出抽样方法,分别对男、女学生抽取一个容量相同的样本,样本容量可在40~50之间选择.18.一个单位有职工160人,其中业务员120人,管理人员16人,后勤服务人员24人.为了了解职工的某种情况,要从中抽取一个容量为20的样本,用分层抽样的方法写出抽取样本的过程.19.为了了解某地区高三学生的身体发育情况,抽查了地区内100名年龄为17.5岁~18岁的男生的体重情况,结果如下(单位:kg):试根据上述数据画出样本的频率分布直方图,并对相应的总体分布作出估计.20.有顾客反映某家航空公司售票处售票的速度太慢.为此,航空公司收集了100位顾客购票时所花费时间的样本数据(单位;分钟),结果如下表:2.3 1.03.5 0.7 1.0 1.3 0.8 1.0 2.4 0.91.1 1.5 0.2 8.2 1.7 5.2 1.6 3.9 5.42.36.1 2.6 2.8 2.4 3.9 3.8 1.6 0.3 1.1 1.13.1 1.14.3 1.4 0.2 0.3 2.7 2.7 4.1 4.03.1 5.5 0.9 3.34.2 21.7 2.2 1.0 3.3 3.44.6 3.6 4.5 0.5 1.2 0.7 3.5 4.8 2.6 0.97.4 6.9 1.6 4.1 2.1 5.8 5.0 1.7 3.8 6.33.2 0.6 2.1 3.7 7.8 1.9 0.8 1.3 1.4 3.511 8.6 7.5 2.0 2.0 2.0 1.2 2.9 6.5 1.04.6 2.0 1.25.8 2.9 2.0 2.96.6 0.7 1.5航空公司认为,为一位顾客办理一次售票业务所需的时间在5分钟之内就是合理的.上面的数据是否支持航空公司的说法?请你对上面的数据进行适当的分析,回答下面问题:(1)根据原始数据计算中位数、均值和标准差,并进行分析;(2)对数据进行适当的分组,分析数据分布的特点;(3)你认为应该用哪一个统计量来分析上述问题比较合适?参考答案一、选择题 1.C解析:②错.若按排列顺序逐个抽取,则导致了每个个体被抽取的概率不等. 2.B解析:甲校、乙校、丙校学生人数之比为2∶3∶1,采用分层抽样法,抽取一个容量为90人的样本,应在这三校分别抽取学生30人,45人,15人. 3.A.解析:22应是x 与23的平均数,所以答案为A . 4.C解析:A ×,众数为 4、5;B ×,标准差是方差的算术平方根;C √;D ×,面积是频率.5.D解析:300×0.001=0.3. 6.D解析:感染非典的医务人员人数不仅受医院收治病人数的影响,还受防护措施等其他因素的影响,所以选D .A ,B 是确定性函数关系,C 非确定性关系(销售量还与其它因素如质量等有关).7.C解析:根据运算的算式:体重在(56.5,64.5)学生的累积频率为2×0.03+2×0.05+2×0.05+2×0.07=0.4,则体重在(56.5,64.5)学生的人数为0.4×100=40.8.B 解析:∵x 甲=205+109+8+7 )(=8.5,1.25=208.5-10+8.5-9+8.5-8+8.5-75=222221])()()()[( s ;x 乙=58 =204 9+8+6 10+7.)()(, 20589+588 4+5810+587 6=222222])()(])()(.-.- .-.- s [[=1.45;x 丙=58 =206 9+8+4 10+7.)()(,× ×× × × ××20589+588 6+5810+587 4=222222])()(])()(.-.- .-.- s [[=1.05; 由22s >21s >23s ,得s 2>s 1>s 3.9.C解析:样本容量越大越能反映总体. 10.D解析:根据加权平均数的定义或直接根据平均数定义即可得出. 二、填空题11. 18,05,07,35,59,26,39.解析:先选取18,向下81,90,82不符合要求,下面选取05,向右读数,07,35,59,26,39,因此抽取的样本的号码为:18,05,07,35,59,26,39.12.63.解析:由题意第7组中抽取的号码的个位数字为3,这是因为6+7=13,而十位数字为6,故抽取的号码为63.13.16.解析:频数=频率×样本容量. 14.甲.解析:比较它们的方差即可,方差较小的较稳定. 15.9.5,0.016.解析:最高分是9.9,最低分是8.4,去掉后的数据为9.4,9.4,9.6,9.4,9.7, 它们的平均数5.9 = 57.9+4.9+6.9+4.9+4.9= x ,方差为016.0 = 55.97.9+5.94.9+5.96.9+5.94.9+5.9-4.9 = 222222)()()()()(----s .16.约24万(kg ).解析:先算出三次捞出的鱼每条鱼的重量平均数为35+25+40358.2+252.2+405.2⨯⨯⨯=2.53(kg ),所以鱼塘中的鱼的总重量约为2.53×(100 000×95%)≈24万(kg ).三、解答题17.解:由于各个年级的学生参加体育活动的时间存在差异,应采用分层抽样;又由于各班的学生数相差不多,且每班的男女学生人数也基本各占一半,为便于操作,分层抽样时可以班级为单位.关于抽取的人数,如果从每班中抽取男、女学生各3人,样本容量各为48(即3×16),符合对样本容量的要求.18.解:样本容量与职工总人数的比为20∶160=1∶8,业务人员、管理人员、后勤服务人员应抽取的个体数为8120,816,824,即分别为15人、2人和3人,每一层抽取时可采用简单随机抽样或系统抽样,再将各层抽取的个体合在一起,就是要抽取的样本.19.按照下列步骤获得样本的频率分布. (1)求最大值与最小值的差.在上述数据中,最大值是76,最小值是55,它们的差(又称为极差)是76-55=21所得的差告诉我们,这组数据的变动范围有多大.(2)确定组距与组数.如果将组距定为2,那么由21÷2=10.5,组数为11,这个组数是适合的. 于是组距为2,组数为11.(3)决定分点.根据本例中数据的特点,第1小组的起点可取为54.5,第1小组的终点可取为56.5,为了避免一个数据既是起点,又是终点从而造成重复计算,我们规定分组的区间是“左闭右开”的.这样,所得到的分组是[54.5,56.5),[56.5,58.5),…,[74.5,76.5).(4)列频率分布表(5)绘制频率分布直方图.频率分布直方图如图所示:由于图中各小长方形的面积等于相应各组的频率,这个图形以面积的形式反映了数据落在各个小组的频率的大小.在反映样本的频率分布方面,频率分步表比较确切,频率分布直方图比较直观,它们起着相互补充的作用.在得到了样本的频率后,就可以对相应的总体情况作出估计.例如可以估计,体重在(64.5,66.5)kg 的学生最多,约占学生总数的16%;体重小于58.5 kg 的学生较少,约占8%;等等.20.(1)根据原始数据计算中位数、均值和标准差如下: 顾客购票花费时间的中位数位置=21+n =21+100=50.5,将100个数据由小到大排列,中位数在第50个数值(2.4)和第51个数值(2.6)之间,中位数=2.62+2.4=2.5(分钟); 平均花费时间为:17.3=100.317=1005.1+7.0++0.1+3.2==1⋅⋅⋅∑=nxx ni i(分钟);标准差为:10097.811==12nx xs ni i∑=-)(≈2.85(分钟). (2)对数据进行分组的结果如下表: 100名顾客购票花费时间的分组表54.556.558.574.572.566.5 68.570.576.562.5 60.564.5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【最新整理,下载后即可编辑】
高中数学必修3 第2章《统计》测试题(第15周)
一、选择题:(本大题共8小题,每小题5分,共40分)
1. 为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( ) A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是100 2.为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况.若用系统抽样法,则抽样间隔和随机剔除的个体数分别为( )
A.3,2 B.2,3 C.2,30 D.30,2 3.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到下列抽样方法( )
①简单随机抽样;②系统抽样;③分层抽样.
A.②③B.①③C.③
D.①②③
4.下列说法不正确的是( )
A.频率分布直方图中每个小矩形的高就是该组的频率
B.频率分布直方图中各个小矩形的面积之和等于1
C.频率分布直方图中各个小矩形的宽一样大
D.频率分布直方图能直观地表明样本数据的分布情况
5.容量为20的样本数据,分组后的频数如下表:
分组[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)
频数23454 2
A.0.35 B.0.45 C.0.55
D.0.65
6.已知10名工人生产同一零件,生产的件数分别是
16,18,15,11,16,18,18,17,15,13,设其平均数为a,中位数为b,众数为c,则有( )
A.a>b>c B.a>c>b C.c>a>b
D.c>b>a
7. 已知一个样本中的数据为1,2,3,4,5,则该样本的标准差为( )
A.1 B. 2 C. 3 D.2
8. 如图是2012年某校举行的元旦诗歌朗诵比赛中,七位评委为某位选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为( )
A.84,4.84 B.84,1.6 C.85,1.6 D.85,0.4
二、填空题:(本大题共5小题,每小题4分,共20分)
9.五个数1,2,3,4,a的平均数是3,则a=_______,这五个数的标准差是________.
10.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为
________.
(10题图) (11题图)11.已知一组数据的频率分布直方图如下.则众数=_____,中位数=_____,平均数=______.
12.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进
球数为1.8,全年比赛进球个数的标准差为0.3.下列说法正确的为_________
①甲队的技术比乙队好②乙队发挥比甲队稳定③乙队几乎每场都进球④甲队的表现时好时坏
三、解答题:(本大题分2小题,共40分)
13.某制造商在今年3月份生产了一批乒乓球,随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如下表:分组频数频率
[39.95,39.97)10
[39.97,39.99)20
[39.99,40.01)50
[40.01,40.03]20
合计100
补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图.
14.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得
他们的最大速度(m/s)的数据如下表.
)数据的平均数、中位数、标准差,并判断选谁参加比赛更合适.
参考答案
1.A
2.A
3.D
4.A
5.B
6.D
7.B
8.C
9. 5;210.9
11.65;65;67
12. ④D解析:四种说法都正确,甲队的平均进球数多于乙队,故第一句正确;乙队标准差较小,说明技术水平稳定;甲队平均进球数是3.2,但其标准差却是3,离散程度较大,由此可判断甲队表现不稳定;平均进球数是1.8,标准差只有0.3,每场的进球数相差不多,可见乙队的确很少不进球.
13.解:频率分布表如下:
分组频数频率
[39.95,39.97)100.10
[39.97,39.99)200.20
[39.99,40.01)500.50
[40.01,40.03]200.20
合计100 1 频率分布直方图如下:
14.依题意得
x甲=33,s甲=3.96,甲的中位数是33;
x乙=33,s乙=3.56,乙的中位数是35
由于x
甲=x
乙,
s

>s乙,则选乙参加比赛较为合适.。

相关文档
最新文档