行列式按行(列)展开定理共45页

合集下载

线性代数1.5行列式按行展开定理

线性代数1.5行列式按行展开定理

(i, j)元 aij外都为零,那么这行列式等于aij与它的代
数余子数的乘积,即 D aij Aij . a11 0 0

先证(i,
j)

(1,1)的情形,此时
D

a21
a22

a2n
,
即有D a11M11.
an1 an2 ann

A11 (1)11 M11 M11 , a11 a1 j a1n
从而
D a11A11 .
再证一般情形,此时



D 0 aij 0 .



an1 anj ann
把D的行列作如下调换: 把D的第i行依次与第i 1行、第i 2行、 、第1行对 调,这样数aij就调成(1, j)元,调换的次数为i 1. 再把第j列依次与第j 1列、第j 2列、 、第1列调换, 这样数aij就调换成(1,1)元,调换的次数为 j 1 .
1 3
0 1
5 3
,
2 4 1 3
D的(i, j)元的余子式和代数余子式依次记作Mij和Aij,
求 A11 A12 A13 A14及M11 M21 M31 M41.
解:
因为A11 A12 A13 A14等于用1, 1, 1, 1代替
D的第1 行所得的行列式,即
1 a2
1 1 , ai 0
1
1 1 an
10 0 0
1 1 a1 1 1 解:Dn Dn1 1 1 1 a2 1

11
1 1 an
1 1 1
1 a1 0
c c c c a (1) , , (1)

线性代数03-行列式按行(列)展开

线性代数03-行列式按行(列)展开

1
3 4 c1 2c3 11
1
3 1
2 0 1 1 c4 c3
0010
1 5 3 3
5 5 3 0
511 (1)33 11 1 1
5 5 0
r2 r1
5 11 6 2 0 5 5 0
(1)13 6 2 40. 5 5
说明
定理3叫做行列式按行(列)展开法则, 利用这个法则降阶并结合行列式的性质, 可以简化行列式的计算.
思考 任意一个行列式是否都可以用较低阶的行列式表示?
在n 阶行列式中,把元素 aij 所在的第 i 行和第 j 列划去后,
留下来的n-1阶行列式叫做元素 aij 的余子式,记作Mij .
把 Aij 1 i j Mij 元素 aij 的代数余子式.
例如
a11 a12 a13 a14
D a21 a22 a23 a24 a31 a32 a33 a34
a41 a42 a43 a44
a11 a12 a14 M23 a31 a32 a34
a41 a42 a44
A23 1 23 M23 M23
结论 行标和列标是行列式中元素的唯一标识,有且仅有一 个余子式和一个代数余子式与行列式中每一个元素对应.
说明
(1)对于给定的 n 阶行列式 D det(aij ) ,元素
证明 我们以3阶行列式为例.
a11 a12 a13 a11 A11 a12 A12 a13 A13 a21 a22 a23
a31 a32 a33
把第1行的元素换成第2行的对应元素,则
a21 a22 a23
a21 A11 a22 A12 a23 A13 a21 a22 a23 0.

行列式按行(列)展开

行列式按行(列)展开


a a a a a a a a a
D
xa
xa
c1 c2 cn
[ x ( n 2)a ] 1 x a 1 a
1 a
xa
xa
20
r2 r1 r3 r1 rn r1
1 [ x ( n 2)a ]0 0 0
ak 1 ak 2 akn an 2 ann
右端的行列式含有两个相同的行,值为 0 。
11
综上,得公式
D, (当k i) ak 1 Ai 1 ak 2 Ai 2 akn Ain 0,(当k i) D, (当l j) a1l A1 j a2 l A2 j anl Anj 0,(当l j)
a11 a12 a1n ai 1 0 0
a11 0
a12 a1n ai 2
a11 a12 a1n 0 ain
0 0
an1 an 2 ann
an1 an 2 ann
3 11
7 17 8
按第二列展开
7 25 8 0 3 0 11 5 2
1 ( 1)
2 2
0 3
5 9
5 2
按第二行展开
5 ( 1)
2 3
7 25 3 11
5(77 75) 10
19
例2:
xa a a a
a xa a a 1
a a a a
a a a
( xi a , i 1,2,3,4)
(可以化为箭形行列式)
r2 r1 r3 r1 r3 r1 r4 r1

行列式按行展开

行列式按行展开
当系数行列式D等于0时,克莱姆法则 失效,无法判断方程组是否有解以及 解的个数。
利用矩阵的秩
通过分析系数矩阵的秩和常数项矩阵的秩, 判断方程组的解的情况。当系数矩阵的秩等 于常数项矩阵的秩时,方程组有解;否则无 解。
引入参数法
通过引入参数将原方程组转化为参数方 程组,利用克莱姆法则求解参数方程组 的解,再回代求解原方程组的解。
• 适用性广:该方法适用于任何阶数的行列式,具有普适性。
行列式按行展开的优点与不足
要点一
计算量较大
要点二
难以直接观察行列式性质
对于高阶行列式,按行展开可能涉及大量的计算,导致计 算效率低下。
按行展开后,原行列式的结构和性质可能被掩盖,不利于 进一步分析和研究。
对未来研究的展望
探索更高效的计算方法
利用高斯消元法
通过高斯消元法将原方程组化简为阶 梯形方程组或最简形方程组,从而直 接求解方程组的解。
06 总结与展望
行列式按行展开的优点与不足
简化计算
通过按行展开,可以将一个高阶行列式转化为多个低阶行列式的和,从而简化计算过程。
直观性
按行展开的方法较为直观,易于理解和掌握。
行列式按行展开的优点与不足
行列式按行展开有助于理解行列式的本质和性质,加深对线性代数相关概 念的理解。
02 行列式按行展开的基本原 理
代数余子式的概念
代数余子式定义
在n阶行列式中,把元素$a_{ij}$所在的第i行和第j列划去后,留下来的n-1阶行 列式叫做元素$a_{ij}$的余子式,记作$M_{ij}$;记$A_{ij}=(-1)^{i+j}M_{ij}$, $A_{ij}$叫做元素$a_{ij}$的代数余子式。
行列式按行展开的公式为:$D = a_{i1}A_{i1} + a_{i2}A_{i2} + ldots + a_{in}A_{in}$,其中$a_{ij}$是所选行中的元素,$A_{ij}$ 是对应的代数余子式。

行列式按行(列)展开

行列式按行(列)展开
11
a21 a22 a2 n 证 当 aij 位于首位时,即 D 即有 D a11 M11 . an1 an 2 ann

A11 1
11
M 11 M 11 ,
从而
D a11 A11 .
命题得证
a11 a1 j a1n
下证一般情形, 此时 D 0
aij
0

an1 anj ann
把 D 的第i 行依次与第 i 1 行,第 i 2行,…第1行对调 0 aij 0

得 D 1
i 1
anj
ann
ai 1,1 ai 1, j ai 1,n a n1
D 0
aij
0
中的余子式 M ij .
an1 anj ann
aij anj aij
故 D 1
i j

0

0
于是有 ai 1, j ai 1, j 1 ai 1,n aij Mij ,
a n , j 1 0
D ai 1 Ai 1 ai 2 Ai 2 ain Ain
i 1,2,, n
D a1 j A1 j a2 j A2 j anj Anj
j 1, 2, , n
证 利用行列式的性质四--拆分原理有 a11 a12 a1n D ai 1 0 0 0 ai 2 0 0 0 ain a n1 an 2 ann
课前复习 性质1 行列式与它的转置行列式相等.即 DT D . 性质2 互换行列式的两行(列),行列式变号. 推论 如果行列式有两行(列)的对应元素完全相 同,则此行列式为零. 性质3 行列式的某一行(列)中所有的元素都乘以 同一数 k ,等于用数 k 乘此行列式. 推论2 行列式中如果有两行(列)元素成比例,则 此行列式为零. 性质4 若行列式的某一列(行)的元素都是两数之 和,则这个行列式等于两个行列式之和. 性质5 把行列式的某一列(行)的各元素乘以同一 数然后加到另一列(行)对应的元素上去,行列式不 变.

3.行列式按行按列展开解读

3.行列式按行按列展开解读
a11 A11 a12 A12 a13 A13 ai 1 Ai 1 ai 2 Ai 2 ai 3 Ai 3 ,
( i 1, 2,3).
二、行列式按行(列)展开法则
定理 行列式等于它的任一行(列)的各元素与 它对应的代数余子式乘积之和,即
det(aij ) ai 1 Ai 1 ai 2 Ai 2
a12 ai2 an2

a1n a11 ain bi1 ann an1
a12 bi2 an2

a1n bin ann
性质5引申若行列式的某一行(列)的元素都是n个数之和 则行列式等于n个行列式之和
同理
ain Asn 0, i s .
a1 j A1t a2 j A2t
anj Ant 0,
j t.
二、行列式按行(列)展开法则
定理 行列式等于它的任一行(列)的各元素与 它对应的代数余子式乘积之和,即 或 det(aij ) ai 1 Ai 1 ai 2 Ai 2
a11 a21 D a31 a41
a12 a13 a14 a22 a23 a24 , a32 a33 a34 a42 a43 a44
a11 a12 a13 M 44 a21 a22 a23 , a31 a32 a33
A44 1
4 4
M 44 M 44 .
注1: 行列式的每个元素分别对应着一个余子式 与一个代数余子式. 注2: 行列式的某个元素的余子式与代数余子式, 只与该元素的位置有关,与该元素的大小无关.
a11 a22a33 a23a32 a12 a23a31 a21a33 a13 a21a32 a22a31

线性代数-行列式按行(列)展开

线性代数-行列式按行(列)展开

2
证明 用数学归纳法
x n1 n
11
D2 x1
x2
x2 x1
( xi x j )
2i j1
所以n=2时(1)式成立.
假设(1)对于n-1阶范德蒙行列式成立,从第n行开始,后行
减去前行的 x1倍:
1 0 Dn 0
1 x2 x1 x2 ( x2 x1 )
1 x3 x1 x3 ( x3 x1 )
行列式按行(列)展开
•对角线法则只适用于二阶与三阶行列式. •本节主要考虑如何用低阶行列式来表示高 阶行列式.
一、引言
a11 a12 a13 a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 a31 a32 a33 a11a23a32 a12a21a33 a13a22a31
2 35
02 35
2 r2 (2)r110 0
3 7
1
7
2 10 (2)
2
r3 r1
66
0 66
20 (42 12) 1080.
3 5 2 1 例 设 D 1 1 0 5 , D的(i, j) 元的余子式和
1 3 1 3 2 4 1 3
10 0
M11 M21 M34 M41 A11 A21 A31 A41
1 5 2 1
1 5 2 1
1
1
0 5 r4 r3 1
1 0 5
1313
1 31 3
1 4 1 3
0 1 0 0
1 1
2 0
1 5
1 r1 2r3 1
x3
xn
n−1阶范德蒙德行列式

行列式按行(列)展开定理

行列式按行(列)展开定理



M11 2 2 4 A11 (1)11 M11 4
1 0 M23 3 2 2
A23 (1)23 M 23 2
行列式的每个元素分别对应着一个余子式和一个
代数余子式。
4
(二)行列式展开定理
引理 若在n阶行列式D第i行中有一个元素 aij 0,其 余元素全为零,则
D aij Aij
an1
an2
ann
由行列式的性质4及引理,得
11
a11
a12
a1n
D ai1 0 0 0 ai2 0 0 0 0 ain
an1
an2
ann
a11 a12 a1n
a11 a12 a1n
a11 a12 a1n
ai1
0 0 0
ai2 0 0
0 ain
an1 an2 ann
1 0 0 an

n 1
a0 i1 ai
0
原式
0
1 11
a1
0
0 a2
0 0
a1a2 an (a0
n i 1
1 ai
)
.
0
0 0 an
31
a1 a1 0 0
0
例14 计算
a2 a2
0
0
0
“全加法”
0 0 0 an an 1 1 1 1 1
n1
解 0 a1 0 0 0
1 1 2
1 1 2
D 1 (1)21 4 3 1 1 (1)23 2 4 1
1 2 2
1 1 2
1 1 1
(1) (1)24 2 4 3
1 1 2
7 2418 1 ,
15
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档