行列式按行(列)展开定理共45页
合集下载
线性代数1.5行列式按行展开定理

(i, j)元 aij外都为零,那么这行列式等于aij与它的代
数余子数的乘积,即 D aij Aij . a11 0 0
证
先证(i,
j)
(1,1)的情形,此时
D
a21
a22
a2n
,
即有D a11M11.
an1 an2 ann
又
A11 (1)11 M11 M11 , a11 a1 j a1n
从而
D a11A11 .
再证一般情形,此时
D 0 aij 0 .
an1 anj ann
把D的行列作如下调换: 把D的第i行依次与第i 1行、第i 2行、 、第1行对 调,这样数aij就调成(1, j)元,调换的次数为i 1. 再把第j列依次与第j 1列、第j 2列、 、第1列调换, 这样数aij就调换成(1,1)元,调换的次数为 j 1 .
1 3
0 1
5 3
,
2 4 1 3
D的(i, j)元的余子式和代数余子式依次记作Mij和Aij,
求 A11 A12 A13 A14及M11 M21 M31 M41.
解:
因为A11 A12 A13 A14等于用1, 1, 1, 1代替
D的第1 行所得的行列式,即
1 a2
1 1 , ai 0
1
1 1 an
10 0 0
1 1 a1 1 1 解:Dn Dn1 1 1 1 a2 1
11
1 1 an
1 1 1
1 a1 0
c c c c a (1) , , (1)
线性代数03-行列式按行(列)展开

1
3 4 c1 2c3 11
1
3 1
2 0 1 1 c4 c3
0010
1 5 3 3
5 5 3 0
511 (1)33 11 1 1
5 5 0
r2 r1
5 11 6 2 0 5 5 0
(1)13 6 2 40. 5 5
说明
定理3叫做行列式按行(列)展开法则, 利用这个法则降阶并结合行列式的性质, 可以简化行列式的计算.
思考 任意一个行列式是否都可以用较低阶的行列式表示?
在n 阶行列式中,把元素 aij 所在的第 i 行和第 j 列划去后,
留下来的n-1阶行列式叫做元素 aij 的余子式,记作Mij .
把 Aij 1 i j Mij 元素 aij 的代数余子式.
例如
a11 a12 a13 a14
D a21 a22 a23 a24 a31 a32 a33 a34
a41 a42 a43 a44
a11 a12 a14 M23 a31 a32 a34
a41 a42 a44
A23 1 23 M23 M23
结论 行标和列标是行列式中元素的唯一标识,有且仅有一 个余子式和一个代数余子式与行列式中每一个元素对应.
说明
(1)对于给定的 n 阶行列式 D det(aij ) ,元素
证明 我们以3阶行列式为例.
a11 a12 a13 a11 A11 a12 A12 a13 A13 a21 a22 a23
a31 a32 a33
把第1行的元素换成第2行的对应元素,则
a21 a22 a23
a21 A11 a22 A12 a23 A13 a21 a22 a23 0.
行列式按行(列)展开

a a a a a a a a a
D
xa
xa
c1 c2 cn
[ x ( n 2)a ] 1 x a 1 a
1 a
xa
xa
20
r2 r1 r3 r1 rn r1
1 [ x ( n 2)a ]0 0 0
ak 1 ak 2 akn an 2 ann
右端的行列式含有两个相同的行,值为 0 。
11
综上,得公式
D, (当k i) ak 1 Ai 1 ak 2 Ai 2 akn Ain 0,(当k i) D, (当l j) a1l A1 j a2 l A2 j anl Anj 0,(当l j)
a11 a12 a1n ai 1 0 0
a11 0
a12 a1n ai 2
a11 a12 a1n 0 ain
0 0
an1 an 2 ann
an1 an 2 ann
3 11
7 17 8
按第二列展开
7 25 8 0 3 0 11 5 2
1 ( 1)
2 2
0 3
5 9
5 2
按第二行展开
5 ( 1)
2 3
7 25 3 11
5(77 75) 10
19
例2:
xa a a a
a xa a a 1
a a a a
a a a
( xi a , i 1,2,3,4)
(可以化为箭形行列式)
r2 r1 r3 r1 r3 r1 r4 r1
行列式按行展开

当系数行列式D等于0时,克莱姆法则 失效,无法判断方程组是否有解以及 解的个数。
利用矩阵的秩
通过分析系数矩阵的秩和常数项矩阵的秩, 判断方程组的解的情况。当系数矩阵的秩等 于常数项矩阵的秩时,方程组有解;否则无 解。
引入参数法
通过引入参数将原方程组转化为参数方 程组,利用克莱姆法则求解参数方程组 的解,再回代求解原方程组的解。
• 适用性广:该方法适用于任何阶数的行列式,具有普适性。
行列式按行展开的优点与不足
要点一
计算量较大
要点二
难以直接观察行列式性质
对于高阶行列式,按行展开可能涉及大量的计算,导致计 算效率低下。
按行展开后,原行列式的结构和性质可能被掩盖,不利于 进一步分析和研究。
对未来研究的展望
探索更高效的计算方法
利用高斯消元法
通过高斯消元法将原方程组化简为阶 梯形方程组或最简形方程组,从而直 接求解方程组的解。
06 总结与展望
行列式按行展开的优点与不足
简化计算
通过按行展开,可以将一个高阶行列式转化为多个低阶行列式的和,从而简化计算过程。
直观性
按行展开的方法较为直观,易于理解和掌握。
行列式按行展开的优点与不足
行列式按行展开有助于理解行列式的本质和性质,加深对线性代数相关概 念的理解。
02 行列式按行展开的基本原 理
代数余子式的概念
代数余子式定义
在n阶行列式中,把元素$a_{ij}$所在的第i行和第j列划去后,留下来的n-1阶行 列式叫做元素$a_{ij}$的余子式,记作$M_{ij}$;记$A_{ij}=(-1)^{i+j}M_{ij}$, $A_{ij}$叫做元素$a_{ij}$的代数余子式。
行列式按行展开的公式为:$D = a_{i1}A_{i1} + a_{i2}A_{i2} + ldots + a_{in}A_{in}$,其中$a_{ij}$是所选行中的元素,$A_{ij}$ 是对应的代数余子式。
利用矩阵的秩
通过分析系数矩阵的秩和常数项矩阵的秩, 判断方程组的解的情况。当系数矩阵的秩等 于常数项矩阵的秩时,方程组有解;否则无 解。
引入参数法
通过引入参数将原方程组转化为参数方 程组,利用克莱姆法则求解参数方程组 的解,再回代求解原方程组的解。
• 适用性广:该方法适用于任何阶数的行列式,具有普适性。
行列式按行展开的优点与不足
要点一
计算量较大
要点二
难以直接观察行列式性质
对于高阶行列式,按行展开可能涉及大量的计算,导致计 算效率低下。
按行展开后,原行列式的结构和性质可能被掩盖,不利于 进一步分析和研究。
对未来研究的展望
探索更高效的计算方法
利用高斯消元法
通过高斯消元法将原方程组化简为阶 梯形方程组或最简形方程组,从而直 接求解方程组的解。
06 总结与展望
行列式按行展开的优点与不足
简化计算
通过按行展开,可以将一个高阶行列式转化为多个低阶行列式的和,从而简化计算过程。
直观性
按行展开的方法较为直观,易于理解和掌握。
行列式按行展开的优点与不足
行列式按行展开有助于理解行列式的本质和性质,加深对线性代数相关概 念的理解。
02 行列式按行展开的基本原 理
代数余子式的概念
代数余子式定义
在n阶行列式中,把元素$a_{ij}$所在的第i行和第j列划去后,留下来的n-1阶行 列式叫做元素$a_{ij}$的余子式,记作$M_{ij}$;记$A_{ij}=(-1)^{i+j}M_{ij}$, $A_{ij}$叫做元素$a_{ij}$的代数余子式。
行列式按行展开的公式为:$D = a_{i1}A_{i1} + a_{i2}A_{i2} + ldots + a_{in}A_{in}$,其中$a_{ij}$是所选行中的元素,$A_{ij}$ 是对应的代数余子式。
行列式按行(列)展开

11
a21 a22 a2 n 证 当 aij 位于首位时,即 D 即有 D a11 M11 . an1 an 2 ann
又
A11 1
11
M 11 M 11 ,
从而
D a11 A11 .
命题得证
a11 a1 j a1n
下证一般情形, 此时 D 0
aij
0
an1 anj ann
把 D 的第i 行依次与第 i 1 行,第 i 2行,…第1行对调 0 aij 0
得 D 1
i 1
anj
ann
ai 1,1 ai 1, j ai 1,n a n1
D 0
aij
0
中的余子式 M ij .
an1 anj ann
aij anj aij
故 D 1
i j
0
0
于是有 ai 1, j ai 1, j 1 ai 1,n aij Mij ,
a n , j 1 0
D ai 1 Ai 1 ai 2 Ai 2 ain Ain
i 1,2,, n
D a1 j A1 j a2 j A2 j anj Anj
j 1, 2, , n
证 利用行列式的性质四--拆分原理有 a11 a12 a1n D ai 1 0 0 0 ai 2 0 0 0 ain a n1 an 2 ann
课前复习 性质1 行列式与它的转置行列式相等.即 DT D . 性质2 互换行列式的两行(列),行列式变号. 推论 如果行列式有两行(列)的对应元素完全相 同,则此行列式为零. 性质3 行列式的某一行(列)中所有的元素都乘以 同一数 k ,等于用数 k 乘此行列式. 推论2 行列式中如果有两行(列)元素成比例,则 此行列式为零. 性质4 若行列式的某一列(行)的元素都是两数之 和,则这个行列式等于两个行列式之和. 性质5 把行列式的某一列(行)的各元素乘以同一 数然后加到另一列(行)对应的元素上去,行列式不 变.
a21 a22 a2 n 证 当 aij 位于首位时,即 D 即有 D a11 M11 . an1 an 2 ann
又
A11 1
11
M 11 M 11 ,
从而
D a11 A11 .
命题得证
a11 a1 j a1n
下证一般情形, 此时 D 0
aij
0
an1 anj ann
把 D 的第i 行依次与第 i 1 行,第 i 2行,…第1行对调 0 aij 0
得 D 1
i 1
anj
ann
ai 1,1 ai 1, j ai 1,n a n1
D 0
aij
0
中的余子式 M ij .
an1 anj ann
aij anj aij
故 D 1
i j
0
0
于是有 ai 1, j ai 1, j 1 ai 1,n aij Mij ,
a n , j 1 0
D ai 1 Ai 1 ai 2 Ai 2 ain Ain
i 1,2,, n
D a1 j A1 j a2 j A2 j anj Anj
j 1, 2, , n
证 利用行列式的性质四--拆分原理有 a11 a12 a1n D ai 1 0 0 0 ai 2 0 0 0 ain a n1 an 2 ann
课前复习 性质1 行列式与它的转置行列式相等.即 DT D . 性质2 互换行列式的两行(列),行列式变号. 推论 如果行列式有两行(列)的对应元素完全相 同,则此行列式为零. 性质3 行列式的某一行(列)中所有的元素都乘以 同一数 k ,等于用数 k 乘此行列式. 推论2 行列式中如果有两行(列)元素成比例,则 此行列式为零. 性质4 若行列式的某一列(行)的元素都是两数之 和,则这个行列式等于两个行列式之和. 性质5 把行列式的某一列(行)的各元素乘以同一 数然后加到另一列(行)对应的元素上去,行列式不 变.
3.行列式按行按列展开解读

a11 A11 a12 A12 a13 A13 ai 1 Ai 1 ai 2 Ai 2 ai 3 Ai 3 ,
( i 1, 2,3).
二、行列式按行(列)展开法则
定理 行列式等于它的任一行(列)的各元素与 它对应的代数余子式乘积之和,即
det(aij ) ai 1 Ai 1 ai 2 Ai 2
a12 ai2 an2
a1n a11 ain bi1 ann an1
a12 bi2 an2
a1n bin ann
性质5引申若行列式的某一行(列)的元素都是n个数之和 则行列式等于n个行列式之和
同理
ain Asn 0, i s .
a1 j A1t a2 j A2t
anj Ant 0,
j t.
二、行列式按行(列)展开法则
定理 行列式等于它的任一行(列)的各元素与 它对应的代数余子式乘积之和,即 或 det(aij ) ai 1 Ai 1 ai 2 Ai 2
a11 a21 D a31 a41
a12 a13 a14 a22 a23 a24 , a32 a33 a34 a42 a43 a44
a11 a12 a13 M 44 a21 a22 a23 , a31 a32 a33
A44 1
4 4
M 44 M 44 .
注1: 行列式的每个元素分别对应着一个余子式 与一个代数余子式. 注2: 行列式的某个元素的余子式与代数余子式, 只与该元素的位置有关,与该元素的大小无关.
a11 a22a33 a23a32 a12 a23a31 a21a33 a13 a21a32 a22a31
( i 1, 2,3).
二、行列式按行(列)展开法则
定理 行列式等于它的任一行(列)的各元素与 它对应的代数余子式乘积之和,即
det(aij ) ai 1 Ai 1 ai 2 Ai 2
a12 ai2 an2
a1n a11 ain bi1 ann an1
a12 bi2 an2
a1n bin ann
性质5引申若行列式的某一行(列)的元素都是n个数之和 则行列式等于n个行列式之和
同理
ain Asn 0, i s .
a1 j A1t a2 j A2t
anj Ant 0,
j t.
二、行列式按行(列)展开法则
定理 行列式等于它的任一行(列)的各元素与 它对应的代数余子式乘积之和,即 或 det(aij ) ai 1 Ai 1 ai 2 Ai 2
a11 a21 D a31 a41
a12 a13 a14 a22 a23 a24 , a32 a33 a34 a42 a43 a44
a11 a12 a13 M 44 a21 a22 a23 , a31 a32 a33
A44 1
4 4
M 44 M 44 .
注1: 行列式的每个元素分别对应着一个余子式 与一个代数余子式. 注2: 行列式的某个元素的余子式与代数余子式, 只与该元素的位置有关,与该元素的大小无关.
a11 a22a33 a23a32 a12 a23a31 a21a33 a13 a21a32 a22a31
线性代数-行列式按行(列)展开

2
证明 用数学归纳法
x n1 n
11
D2 x1
x2
x2 x1
( xi x j )
2i j1
所以n=2时(1)式成立.
假设(1)对于n-1阶范德蒙行列式成立,从第n行开始,后行
减去前行的 x1倍:
1 0 Dn 0
1 x2 x1 x2 ( x2 x1 )
1 x3 x1 x3 ( x3 x1 )
行列式按行(列)展开
•对角线法则只适用于二阶与三阶行列式. •本节主要考虑如何用低阶行列式来表示高 阶行列式.
一、引言
a11 a12 a13 a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 a31 a32 a33 a11a23a32 a12a21a33 a13a22a31
2 35
02 35
2 r2 (2)r110 0
3 7
1
7
2 10 (2)
2
r3 r1
66
0 66
20 (42 12) 1080.
3 5 2 1 例 设 D 1 1 0 5 , D的(i, j) 元的余子式和
1 3 1 3 2 4 1 3
10 0
M11 M21 M34 M41 A11 A21 A31 A41
1 5 2 1
1 5 2 1
1
1
0 5 r4 r3 1
1 0 5
1313
1 31 3
1 4 1 3
0 1 0 0
1 1
2 0
1 5
1 r1 2r3 1
x3
xn
n−1阶范德蒙德行列式
行列式按行(列)展开定理

解
M11 2 2 4 A11 (1)11 M11 4
1 0 M23 3 2 2
A23 (1)23 M 23 2
行列式的每个元素分别对应着一个余子式和一个
代数余子式。
4
(二)行列式展开定理
引理 若在n阶行列式D第i行中有一个元素 aij 0,其 余元素全为零,则
D aij Aij
an1
an2
ann
由行列式的性质4及引理,得
11
a11
a12
a1n
D ai1 0 0 0 ai2 0 0 0 0 ain
an1
an2
ann
a11 a12 a1n
a11 a12 a1n
a11 a12 a1n
ai1
0 0 0
ai2 0 0
0 ain
an1 an2 ann
1 0 0 an
解
n 1
a0 i1 ai
0
原式
0
1 11
a1
0
0 a2
0 0
a1a2 an (a0
n i 1
1 ai
)
.
0
0 0 an
31
a1 a1 0 0
0
例14 计算
a2 a2
0
0
0
“全加法”
0 0 0 an an 1 1 1 1 1
n1
解 0 a1 0 0 0
1 1 2
1 1 2
D 1 (1)21 4 3 1 1 (1)23 2 4 1
1 2 2
1 1 2
1 1 1
(1) (1)24 2 4 3
1 1 2
7 2418 1 ,
15