行列式按行(列)展开

合集下载

线性代数课件1-4行列式按行(列)展开

线性代数课件1-4行列式按行(列)展开

实例解析
• 实例2:考虑行列式$\begin{vmatrix}
实例解析
01
a&b&c
02
d&e&f
g&h&i
03
实例解析
• \end{vmatrix}$,按第2行展开,得到 $D=b\times\begin{vmatrix}
实例解析
d&f g&i
end{vmatrix}+ctimesbegin{vmatrix}
二阶行列式
由两个元素$a_{11}$和$a_{12}$,以及$a_{21}$ 和$a_{22}$构成的矩形,其值为$a_{11}a_{22} a_{12}a_{21}$。
三阶行列式
由八个元素构成的三个二阶行列式,其结果为三 个二阶行列式的代数和。
n阶行列式
由n阶方阵的n个元素构成的n个二阶行列式的代数 和。
行列式的性质
01
交换律:行列式的行和列可以交换, 即$|begin{matrix} a_{11} & a_{12} a_{21} & a_{22} end{matrix}| = | begin{matrix} a_{21} & a_{22} a_{11} & a_{12} end{matrix}|$。
02
结合律:行列式的行和列的乘法可以 按照任意组合进行,即 $|begin{matrix} a_{11} & a_{12} a_{21} & a_{22} end{matrix}| = | begin{matrix} a_{11} & a_{12} a_{21} & a_{22} end{matrix}| - | begin{matrix} a_{11} & a_{21} a_{12} & a_{22} end{matrix}|$。

3 行列式行列式的按行(列)展开

3 行列式行列式的按行(列)展开

则根据归纳假设得证: Dn ( x 2 x1 )( x 3 x1 )( x n x1 ) ( x i x j )
( x i x j ).
n i j 1
n i j 2



P26 4(4), 9 补充: 利用范德蒙德行列式计算4阶行列式
1 1 1 1 16 8 2 4 D 81 27 3 9 256 64 4 16
D = ai 1 Ai 1 + ai 2 Ai 2 + = a1 j A1 j + a2 j A2 j + + ain Ain + anj Anj .
i , j 1,2,
, n
推论 行列式中任一行或列的元素与另一行对应元 素的代数余子式乘积之和为零。 ai 1 Aj 1 ai 2 Aj 2 ain Ajn 0, i j
1 1
例2 求解方程
1 x 0. x2
2 3 4 9

方程左端
D 3 x 2 4 x 18 9 x 2 x 2 12
x 2 5 x 6,
由 x 2 5 x 6 0 解得
x 2 或 x 3.
推论
行列式中任一行或列的元素与另一行 或列对应元素的代数余子式乘积之和 为零。即
a11 A11 a12 A12 a13 A13 a1 j A1 j
j 1
3
定理4 三阶行列式等于它的任一行或列的各元素 与其代数余子式乘积之和,即
D ai 1 Ai 1 ai 2 Ai 2 ai 3 Ai 3
a1 j A1 j a2 j A2 j a3 j A3 j ( j 1,2, 3)

(简)1.5行列式按行展开定理

(简)1.5行列式按行展开定理

1 −1 0 例 2: D = ⋮ 0 0
a 1− a
1
0
1

2
0 0 0 ⋮
0 0 0 ⋮
−1 ⋮ 0 0
a 1− a
⋮ 0 0

2
⋯ ⋱
求D=?
⋯ 1 − a n−2 a n −1 −1 1 − a n −1 ⋯
0 0 0
分析:特点是 行作和为 分析:特点是n行作和为 0,0,0……1,再展开 , , , 即可降阶! 即可降阶!
或 D , 当i = j , ∑ aik Ajk = Dδ ij = 0, 当i ≠ j; k =1 1, 当i = j , δ ij = 其中 0, 当 i ≠ j ;
n
例1

3 −5 2 1 1 1 0 −5 D= , −1 3 1 3 2 −4 −1 − 3
D的( i , j )元的余子式和代数余子 式依次记作 M ij 和Aij, 求
调,这样数 aij 就调成(1, j )元,调换的次数为 i − 1. ⋯ 列调换, 再把第 j列依次与第 j − 1列、第 j − 2列、 、第1列调换, 这样数 aij 就调换成(1,1)元,调换的次数为 j − 1 .
总 , i + j − 2次 换 把 aij调 (11)元 所 之 经 调 , 数 成 , , 得 的 列 D = (−1)i+ j−2 D1 = (−1)i+ j D1, D中1,1)元 行 式 而 1 ( 的 余 式 是 中 i, j)元 余 式 ij . 子 就 D ( 的 子 M

0 0 0
1 0 0
解:D
1 × r 2 + r 1 , ⋯ ,1 × r n + r 1

行列式的展开法则

行列式的展开法则

03. 行列式的展开法则 一、按一行(列)展开法则定义3.1 (,)i j 元素或(,)i j 位置的余子式ij M 、代数余子式(1)i j ij ij A M +=- 例3.1 3111112121313111112121313||ij a a M a M a M a A a A a A =-+=++. 定理3.1 1)按一行展开法则1122||(1,2,,)A i i i i in in a A a A a A i n =+++=L L ; 2)按一列展开法则1122||(1,2,,)A j j j j nj nj a A a A a A j n =+++=L L . 按第一行的展开公式就是n 阶行列式(2)n ≥的降阶定义. 例3.2 计算下列n 阶行列式1)xy x y yxO O; 2)111111121n n----O OL ; 3)121111n n n a a x D a x a x---=-M O O .解 1)按1c 展开得原式1111111(1)(1)n n n n n nn xA yA xx y y x y -+-+=+=+-=+-.2)原式121(1)(12)2n n nn n c c c c n n n A c -++++++++=L L 按展开. 3)法1 按1r 展开得法2 在n D 中,元素(21)i a i n ≤≤-的余子式为11111(1)11i n i i x xM x x xx-----==---O OO O. 将n D 按1c 展开得11211211(1)ni n n n i i n n i D a M a x a x a x a +---==-=++++∑L .法3 1121212112121101,1,,210i i nn n n n n n na a x a r xr D i n n a x a x a a x a x a x a --------+-+=-+++-++++M O OL L L12121n n n n a x a x a x a ---=++++L . ()11111(1)(1)(1)1n n n n n A M ++-=-=--=法4 按n r 展开得 定理3.2 当i j ≠时,11220i j i j in jn a A a A a A +++=L ;11220i j i j ni nj a A a A a A +++=L . 注 1122||A i j i j in jn ij a A a A a A +++=L δ, 1122||A i j i j ni nj ij a A a A a A +++=L δ,其中为克罗内克(Kronecker )符号.例3.3 1)二元(实)函数显然(,)xy f x y =δ. 2)diag(1,1,,1)[]ij n n ⨯=L δ.例3.4 设四阶行列式1212211220211234D =.1)求代数余子式12A ; 2)求1121314123A A A A +++; 3)求41424344A A A A +++.行列式的完全展开定义、公理化定义、降阶定义可以互相推证. 以降阶定义为原始定义做理论推导时,可以引入仿克罗内克符号例3.5 1)若正整数i j ≠,则2)仿克罗内克符号有缺项定位功能. 在序列 中,(17,3)i a i i ≤≤≠位于第3i i -ρ位. 在序列 中,(17,3,5)i a i i ≤≤≠位于第35i i i --ρρ位.3)仿克罗内克符号有描述逆序功能.s t j j 构成逆序01s t t s j j j j ⇔=⇔=ρρ,121()t sn j j s t nj j j ≤<≤=∑L τρ.例3.6 n 阶范德蒙(Vandermonde )矩阵1[]i j n n a -⨯的行列式例3.7 填空11112345_____49162582764125----=----.例3.8 设0abcd ≠,求证222211(,,,)11a a bcdbb acdV a b c d c c abd d d abc=-.例3.9 计算n 阶三对角行列式111n a b ab a b ab D a b aba b++=++O OO .二、按多行(列)展开法则定义3.2 矩阵A m n ⨯的k l ⨯子矩阵1212A k l i i i j j j ⎛⎫⎪⎝⎭L L 及其余子阵,k 阶子方阵、k 阶子式;n 阶方阵或其行列式中k 阶子式的n k -阶余子式M 、代数余子式1212()()(1)k k i i i j j j A M +++++++=-L L ,k 阶(顺序)主子阵、k 阶(顺序)主子式. 主子式的代数余子式就是余子式.例3.10 设55[]A ij a ⨯=.1)25135A ⎛⎫⎪⎝⎭是A 的一个23⨯子矩阵,13424A ⎛⎫⎪⎝⎭为其余子阵; 2)1325A ⎛⎫⎪⎝⎭是A 的一个2阶子方阵,1325A ⎛⎫ ⎪⎝⎭是A 的一个2阶子式,245134A ⎛⎫ ⎪⎝⎭为对应余子式,而对应代数余子式为(13)(25)245245(1)134134A A +++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭;3)235235A ⎛⎫⎪⎝⎭是A 的一个3阶主子阵,235235A ⎛⎫ ⎪⎝⎭是A 的一个3阶主子式,其代数余子式就是余子式1414A ⎛⎫⎪⎝⎭,是A 的一个2阶主子式;4)A 共有五个顺序主子阵(式).定理3.3 按多行(列)展开法则——拉普拉斯(Laplace )定理1122C C ||A k k nnN A N A N A =+++L .例3.11 计算四阶行列式1234500112365112D -=--.例3.12 计算六阶行列式111000234000310161111101112411243161139D =---.例3.13 计算六阶行列式120000350000635475124583240064270034D -=-.例3.14 计算叉形行列式1)11211n n n nna b a b D c d c d =ONN O;2)112111nn n nna b a b D e c d c d +=ONN O.。

行列式按行展开

行列式按行展开

4
二:定理1.4(拉普拉斯定理)
若在n阶行列式D中,任意选取k行k 列, 这样组成的所有k阶子式其对应的代数余子式 乘积之和等于行列式D的值。(证略)
5
5 60 0 0 1 5 6 0 0 例 D 0 1 5 6 0 0 01 5 6 0 0 0 1 5
6
5 6 0
1 6 0
56
50
D
1 5 6
一、 n阶行列式展开定理
定理3 n阶行列式D等于它的任意一行(列)各元 素与其对应的代数余子式的乘积之和,即
D ai1Ai1 ai2 Ai2 ain Ain
n
aij Aij i 1,2,, n j 1
按行展开
1

D a1 j A1 j a2 j A2 j anj Anj
n
19
例5(伪范德蒙)
1111 abcd D a2 b2 c2 d 2 a4 b4 c4 d 4
111 1 1
abcd x a2 b2 c2 d 2 x2 a3 b3 c3 d 3 x3 a4 b4 c4 d 4 x4
构造范德蒙行列式 对比x^3的系数。
20
例6(递推降阶法)
21 121
121 D
27
思考题6
a b ab 1 a b ab 1 a b ab
D ... ... ... 1 a b ab 1 ab
28
思考题7
x z z ... z z y x z ... z z y y x ... z z D ... ... ... ... ... ... y y y ... x z y y y ... y x
... ... ... 1 21 12
按第一行展开,可得 Dn 2Dn1 Dn2

行列式按行列展开定理讲解学习

行列式按行列展开定理讲解学习

行列式按行列展开定理行列式按行列展开定理一、 余子式的定义:在n 阶行列式中,把(i.j )元ij a 所在的第i 行,第j 列去掉之后,留下来的n-1阶行列式称作ij a 的余子式,记作ij M二、 代数余子式:在n 阶行列式的ij a 余子式ij M 加上符号(1)i j +-,称作ij a 的代数余子式ij A : (1)i j ij ij A M +=-三、 引理1:一个n 阶行列式,如果其中的第i 行所有元素除了(i,j )元ija 外都为0,则这个行列式等于ij a 与它的代数余子式乘积:ij ij D a A =⋅四、 行列式按行(列)展开法则:定理3:行列式等于它的任一行(列)的各个元素与其对应的代数余子式的乘积之和:1122i i i i in in D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122j j j j nj nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)推论:行列式某一行(列)的元素与对应的另一行(列)元素的代数余子式乘积之和等于0:1122i j i j in jn D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122i j i j ni nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)五、 克拉默法则:如果含有n 个未知数的n 个线性方程组:11112211n n a x a x a x b ++⋅⋅⋅+=21122222n n a x a x a x b ++⋅⋅⋅+=31132233n n a x a x a x b ++⋅⋅⋅+=………………………………………………………………………………………………………1122n n nn n n a x a x a x b ++⋅⋅⋅+=其系数行列式不等于0,即:1111............0...nn nna a D a a =≠ 那么,方程组有惟一解:11D x D =,22D x D =,…n N D x D= 1111,1122,11,1......................j nj j n n n j nn a b a a b a D a b a a +++=① 定理4:如果含n 个未知数的n 个线性方程组的系数行列式不等于0,则方程一定有解,且解是惟一的。

行列式按一行(列)展开

行列式按一行(列)展开

证明过程
• 利用归纳假设和余子式的性质,证明$D_{n+1}$ 可以按第$n+1$行(或第$n+1$列)展开。
证明过程
3. 结论
通过数学归纳法,证明了行列式可以按任意一行(或列)展开。
04
Байду номын сангаас行列式按一行(列)展开的 实例
实例一:二阶行列式
定义
01
二阶行列式表示为$|begin{matrix} a & b c & d
行列式按一行(列)展 开
目录
• 行列式按一行(列)展开的定义 • 行列式按一行(列)展开的公式 • 行列式按一行(列)展开的证明
目录
• 行列式按一行(列)展开的实例 • 行列式按一行(列)展开的应用
01
行列式按一行(列)展开的 定义
定义与性质
定义
行列式按某一行(或列)展开,是指 将该行列式拆分成若干个二阶子行列 式之和。
• 应用:用于计算高维向量的外积和混合积,以及解决线性方程组等数学问题。
05
行列式按一行(列)展开的 应用
在线性代数中的应用
计算行列式的值
行列式按一行或一列展开,可以方便地计算行列式的 值。
矩阵的逆运算
行列式按一行或一列展开,可以用于计算矩阵的逆运 算。
线性方程组的求解
行列式按一行或一列展开,可以用于求解线性方程组。
数值分析
行列式按一行或一列展开,可以用于数值分析中的矩阵运算和数值逼近。
THANKS
感谢观看
3. 将上述求和结果作 为分子,分母保持不 变,得到按选定行 (或列)展开后的行 列式。
02
行列式按一行(列)展开的 公式
展开公式

线性代数03-行列式按行(列)展开

线性代数03-行列式按行(列)展开

1
3 4 c1 2c3 11
1
3 1
2 0 1 1 c4 c3
0010
1 5 3 3
5 5 3 0
511 (1)33 11 1 1
5 5 0
r2 r1
5 11 6 2 0 5 5 0
(1)13 6 2 40. 5 5
说明
定理3叫做行列式按行(列)展开法则, 利用这个法则降阶并结合行列式的性质, 可以简化行列式的计算.
思考 任意一个行列式是否都可以用较低阶的行列式表示?
在n 阶行列式中,把元素 aij 所在的第 i 行和第 j 列划去后,
留下来的n-1阶行列式叫做元素 aij 的余子式,记作Mij .
把 Aij 1 i j Mij 元素 aij 的代数余子式.
例如
a11 a12 a13 a14
D a21 a22 a23 a24 a31 a32 a33 a34
a41 a42 a43 a44
a11 a12 a14 M23 a31 a32 a34
a41 a42 a44
A23 1 23 M23 M23
结论 行标和列标是行列式中元素的唯一标识,有且仅有一 个余子式和一个代数余子式与行列式中每一个元素对应.
说明
(1)对于给定的 n 阶行列式 D det(aij ) ,元素
证明 我们以3阶行列式为例.
a11 a12 a13 a11 A11 a12 A12 a13 A13 a21 a22 a23
a31 a32 a33
把第1行的元素换成第2行的对应元素,则
a21 a22 a23
a21 A11 a22 A12 a23 A13 a21 a22 a23 0.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20 42 12 1080.
【练习】计算
3
1
1 3 1 3 1
2 4 1 3

5 1 D 2 0 1 5 1 1 0 5 1 3 1 3
c1 2c3 11 D c4 c3 0
5
5
r2 r1
1 ( 1) 3 3 11 1 1 0 5 5 0 0
D中项 aij a1 j1 ai 1 ji1 ai 1 ji1 anjn 符号为
(1)
( i 1( i 1)( i 1)n) ( jj1 ji 1 ji 1 jn )
i 1
(1)
(1)
(1)
j 1 ( j1 ji 1 ji 1 jn )
Aij 1
i j
M ij, 称为元素 a ij 的代数余子式.
例如
a11 a 21 D a 31 a 41
a12 a 22 a 32 a 42
a13 a 23 a 33 a 43
a14 a11 a12 a14 a 24 M 23 a 31 a 32 a 34 a 41 a 42 a 44 a 34 a 44 A 12 3 M M . 23 23 23
行列式按某一行(列)展开定理 n阶行列式等于它的任一行(列)的各元素与其对应 的代数余子式乘积之和,即 D ai 1 Ai 1 ai 2 Ai 2 ain Ain i 1,2,, n 或 D a1 j A1 j a2 j A2 j anj Anj
j 1, 2, , n
选1、3行,2、4列,得到D的一个2阶子式 M M的余子式 N
1
8
i j
(1)
( j1 ji 1 ji 1 jn )
行列式按某一行(列)展开定理 n阶行列式等于它的任一行(列)的各元素与其对应 的代数余子式乘积之和,即 D ai 1 Ai 1 ai 2 Ai 2 ain Ain i 1,2,, n 或 D a1 j A1 j a2 j A2 j anj Anj
( x 2 x1 )( x 3 x1 )( x n x1 )
1 x2
n 2 x2
1 x3

1 xn
n 2 n 2 x3 xn
n-1阶范德蒙行列式
Dn ( x 2 x1 )( x 3 x1 )( x n x1 )
n i j 1
0 Dn 0 0
x2 x1 x2 ( x2 x1 )
n 2 x2 ( x2 x1 )
x3 x1 x3 ( x3 x1 )

xn x1 xn ( xn x1 )
n 2 n 2 x3 ( x3 x1 ) xn ( xn x1 )
按第1列展开,并把每列的公 因子 ( x i x1 ) 提出, 就有
,称为 M 的代数余子式.
其中 i1 , i2 , , ik , j1 , j2 ,, jk分别为 k 阶子式在 D 中的 行标、列标,记 A (1)( i1 i2 ik )( j1 j2 jk ) N
例如
2 1 0 8 4 3 0 0 D 0 2 1 5 0 4 7 0
ai 1 A j1 ai 2 A j 2 ain A jn 0, (i j ).
同理 a1i A1 j a2i A2 j ani Anj 0, (i j ). 命题得证.
二、行列式按某k行(列)展开(Laplace定理)
定义2 在 n 阶行列式D中,任意取定 k 行, k 列 (1 k n),
位于这些行和列交叉处的 k 2个元素,按照原来的顺序
构成一个 k 阶行列式 M ,称为 D 的一个 k 阶子式. 定义3 划去这 k 行 k 列,余下的元素按照原来的顺序 构成一个 n k 阶行列式N,称为 M 的余子式.在其前面 冠以符号(1)
( i1 i2 ik )( j1 j2 jk )
( 1)n1 ... ... 0 0 a n 1 a a n 2
a n ( 1)n 1 ( 1)1 n1
a n a n 2
例3
证明范德蒙 (Vandermonde)行列式(n≥2)
1 x1 1 x2
2 x2

1 xn
2 xn
2 Dn x1 n 1 x1
n 1
aij Aij中每一项可写成
aij ( 1)i j M ij aij ( 1)i j [( 1) ( j1 ji 1 ji 1 jn ) a1 j1 ai 1 ji 1 ai 1 ji 1 anjn ] ( 1)i j ( 1) ( j1 ji 1 ji 1 jn ) aij a1 j1 ai 1 ji 1 ai 1 ji 1 anjn
1 3
5
1
1
5
1
1
6 2 0 ( 1) 5 5 0
6
2
5 5
40.
【注】 直接应用按行(列)展开定理计算行列式, 运算量较大, 尤其是高阶行列式, 因此, 计算行列式时,一般选择行(列) 中零元素多的行(列)展开; 或者先利用行列式性质将某行(列)化为仅含一个非零 元素, 再按此行(列)展开, 化为低一阶行列式, 如此继续 下去, 直到化为三阶或二阶行列式求解.
1 0 1 5 0
0 4 1 4 0
0 2 3 1 2 0 4 1 4 0 2 3 5
2 3 1 2 3 1 r2 2r1 2 5 4 1 4 10 0 7 2 r3 r1 2 3 5 0 6 6
10 2 7 2 6 6
a i 1 A j 1 a i 2 A j 2 a in A jn 0 , i j .
a1i A1 j a2i A2 j ani Anj 0, (i j ).
即 i 行元素与 j 行对应元素的代数余子式乘积之和为0. i 列元素与 j 列对应元素的代数余子式乘积之和为0.
【注】本题所给行列式各行(列)都是某元素的不同方幂, 而其方幂次数或其排列与范德蒙行列式不完全相同,需 要利用行列式的性质(如提取公因子、调换各行(列)的次 序等)将此行列式化成范德蒙行列式, 然后根据公式计算 出结果.
推论 行列式任一行(列)的元素与另一行(列)的对应元素 的代数余子式乘积之和等于零,即

n i j 1
( xi x j ).
(1)
n 1 n 1 x2 xn
证 用数学归纳法
1 D i x j ), 2 i j 1 x2
当 n 2 时( 1)式成立.
假设(1)对于 n 1 阶范德蒙行列式结论成立,要证明 对于n阶范德蒙行列式,结论也成立. 对于n阶范德蒙行列式,从第n行开始依次减去上一行的 x1倍,得到 1 1 1 1
2 22 2n Dn 3 32 3n . n n2 nn 1 1 2 3 n 1 22 32 n2 1 2n 1 3n 1 . n n 1
解 每一行提取各行的公因子,于是得到
1 Dn n ! 1 1
上面等式右端行列式为n阶范德蒙行列式,由范 德蒙行列式知 D n n ! ( i j ) n !(2 1)(3 1)(4 1)( n 1) n i j 1 (3 2)(4 2) ( n 2) (4 3) ( n 3) [n ( n 1)] n !( n 1)!( n 2)! 2!1!.
往证 D ai1 Ai1 ai 2 Ai 2 ain Ain () 证明思路: ① (*)式两端所含项数相同, 并且各项互不相同; ② 右端 aij Aij 每一项都是D中的项, 并且带有相同的符号. a11 a1 j 1 a1 j 1 a1n
M ij ai 11 ai 1 j 1 ai 11 ai 1 j 1 a n1 anj 1 ai 1 j 1 ai 1 n ai 1 j 1 ai 1 n anj 1 ann
j 1, 2, , n
【说明】行列式按某行(列)展开是“降阶”简化计算行 列式的重要方法.
例1 计算行列式
5 1
3 7
1 2 0 2 5 2 3 3 1 0 5 0
D 0 2 0 2
0 4 1 4 0

5 1
3 7
1 2 0 2 5 2 3 3
5
2 5
3
1 2
D 0 2 0 2
§1.3 行列式按行(列)展开
分析三阶行列式的一个规律: 现以第二行元素为标准, 将 各项分组 a11 a12 a13
a21 a31 a22 a32 a23 a33
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 .
( xi x j ).
1 5 25 125
n i j 2
( xi x j )
【练习1】计算
1 1 1 2 4 3 (2 5)(4 5)(3 5) 4 16 9 (4 2)(3 2)(3 4) 12 8 64 27
【练习2】 计算
1
1

1
证明
det( aij ) 按第 把行列式 D a aik ( kj行展开有 1, , n) 可得 把行列式中的 jk 换成 a11 a1n
第i 行 ai 1 ain 相同 ai 1 A A a A Dj 1 aa A a A =0 i 2 j 1j 2 in jn jn j1 jn aij11 aajn 第j行 in an1 ann
a21 (a12a33 a13a32 ) a22 (a11a33 a13a31 ) a23 (a11a32 a12a31 )
相关文档
最新文档