第三讲 行列式按行按列展开

合集下载

第一章 行列式 S3 行列式按行(列)展开

第一章 行列式 S3 行列式按行(列)展开


aaiijj
0
0
0
0
a1, j
a11
a1, j1
a1, j1
a1n
D (1)i1(1) j1 ai1, j ai1, j
ai1,1 ai1,1
ai1, j1 ai1, j1
ai1, j1 ai1, j1
ai1,n ai1,n
anj
an1
a a n, j1
n, j1
aij (1)(i j)2 Mij aij (1)i j Mij aij Aij
11
x2 xn
x
2 2
xn2
( xi x j ). (1)
ni j1
x1n1
x
n1 2
xnn1
证 用数学归纳法
1 D2 x1
1
x2
x2 x1
( xi x j ),
2i j1
当 n 2 时(1)式成立.
17
假设(1)对于 n 1阶范德蒙行列式成立,
对(1)式,由下而上依次从每一行减去上一行的x1倍,得
定理2 n(n≥2)阶行列式的任一行(列)元与另一行(列)对应 元的代数余子式乘积之和为零。即
ai1Ak1 ai2 Ak 2 或
a1 j A1t a2 j A2t
n
ain Akn ais Aks 0, (i k, i,k 1, 2, ,n) s1
n
anj Ant asj Ast 0, ( j t, j,t 1, 2, ,n) s1
3
a11 a12 a13 a14 D a21 a22 a23 a24 ,
a31 a32 a33 a34 a41 a42 a43 a44
a21 a23 a24 M12 a31 a33 a34 ,

线性代数03-行列式按行(列)展开

线性代数03-行列式按行(列)展开

1
3 4 c1 2c3 11
1
3 1
2 0 1 1 c4 c3
0010
1 5 3 3
5 5 3 0
511 (1)33 11 1 1
5 5 0
r2 r1
5 11 6 2 0 5 5 0
(1)13 6 2 40. 5 5
说明
定理3叫做行列式按行(列)展开法则, 利用这个法则降阶并结合行列式的性质, 可以简化行列式的计算.
思考 任意一个行列式是否都可以用较低阶的行列式表示?
在n 阶行列式中,把元素 aij 所在的第 i 行和第 j 列划去后,
留下来的n-1阶行列式叫做元素 aij 的余子式,记作Mij .
把 Aij 1 i j Mij 元素 aij 的代数余子式.
例如
a11 a12 a13 a14
D a21 a22 a23 a24 a31 a32 a33 a34
a41 a42 a43 a44
a11 a12 a14 M23 a31 a32 a34
a41 a42 a44
A23 1 23 M23 M23
结论 行标和列标是行列式中元素的唯一标识,有且仅有一 个余子式和一个代数余子式与行列式中每一个元素对应.
说明
(1)对于给定的 n 阶行列式 D det(aij ) ,元素
证明 我们以3阶行列式为例.
a11 a12 a13 a11 A11 a12 A12 a13 A13 a21 a22 a23
a31 a32 a33
把第1行的元素换成第2行的对应元素,则
a21 a22 a23
a21 A11 a22 A12 a23 A13 a21 a22 a23 0.

第三讲 行列式按行按列展开

第三讲 行列式按行按列展开

单位:理学院应用数学物理系计算数学教研室批准:日期:年月日任课教员:刘静课程名称:线性代数章节名称:第一章行列式课题:第三讲行列式按行按列展开目的、要求: 1. 行列式的按行按列展开法则;2. 掌握行列式的计算方法。

难点、重点:行列式按行按列展开法则及其应用。

器材设备:多媒体设备课前检查教学内容课堂组织教学内容: 本讲主要介绍:1. 行列式的按行(列)展开法则;2. 掌握行列式的计算方法。

教学方法与思路:1. 首先介绍余子式和代数余子式的概念;2. 对于三阶行列式,容易验证:111213222321232123212223111213323331333133313233a a a a a a a a a a a a a a a a a a a a a a a a =-+可见一个三阶行列式可以转化成三个二阶行列式的计算。

由此容易想到:一个n 阶行列式是否可以转化为若干个 n -1 阶行列式来计算?3. 给出一个特殊的n 阶行列式的计算方法,从而给出一个引理;4. 进而介绍行列式的按行(列)展开法则。

教学中运用多媒体手段,讲解、板书与教学课件相结合,以讲解为主。

教学步骤:教学内容、方法、步骤教学内容课堂组织1. 介绍余子式和代数余子式的概念;2. 引理;3. 行列式的按行(列)展开法则;4. 应用举例。

5. 小结并布置作业。

21222120n n n nna a a a中仅含下面形式的项232323,,)(1,,,,)11231123(1)n n n nj j j j j j nj j j nj a a a a a a a a τ=-2323(1,,,,)23n nj j j j j nj a a a 恰是11M 的一般项,所以1111111111(1)D a M a M a A +==-=的第 i 行除了ij a 外都是111110j n ij n njnna a a a a a 行依次与第i-1行,第i-2行,……,第2行进行交换;再将第j 列与第1j -列,第2j -列,……,列交换,这样共经过(1)(1)i j i j -+-=+-交换行与交换列的步骤。

行列式按行按列展开

行列式按行按列展开

... a1n ... ... ... 0 . ... ... ... ann
把D转化为(1)的情形
· · · · · , 把 D 的第 i 行依次与第 i 1 行,第 i 2 行,·
第2行,第1行交换;再将第 j 列依次与第 j 1 列, 第 j 2 列,· · · · · · , 第2列,第1列交换,这样共经过
an ( 1)n 1 1 0 x 1 0 x 0 0 0 0 0 0 0 0 x 1
Dn x 0 an 1
x
an 2 a2
于是,得递推公式
Dn xDn1 an
而由递推公式,得
继续递推公式,得
Dn1 xDn 2 an1 D1 x a1
(1) ( j2 j3 ... jn ) a2 j2 a3 j3 ...anjn 恰是 M 11 的一般项。
D a11 M11
a11 (1)11 M11
a11 A11
13
(2) 设 D 的第 i 行除了 aij 外都是 0 。
a11 ... a1 j ... D 0 ... an1 ... ... ... aij ... ... ... anj
... ... ... an 2 ... ann
12
由行列式定义,D 中仅含下面形式的项
D
a11 (1) (1 j2 j3 ... jn ) a2 j2 a3 j3 ...anjn
其中 所以,
1 j2 j3 ... jn

(1) (1 j2 j3 ... jn ) a11a2 j2 a3 j3 ...anjn
... ai 1, j 1 ... ai 1,n
(1)i j aij Mij aij Aij

1-3行列式按行列展开

1-3行列式按行列展开
ab ab 0 D4 (a b)(1)11 a b a b 0
0 0 ab 0 ab ab
(a b)(1)14 0 a b a b ab 0 0
对等式右端的两个 3 阶行列式都按第 3 行展开,得
D4

[(a

b)2

(aБайду номын сангаас

b)2 ]
a a

a11 a12 a13
a21 a22 a23
a31 a32 a32
中元素 a23 的余子式为
M 23

a11 a31
a12 a32
元素 a23 的代数余子式为 A23 (1)23 M 23 M 23
例2 四阶行列式
1 0 1 1
0 2 5 1
1x 23
03 01
中元素 x 的代数余子式为
D ai1 Ai1 ai 2 Ai 2 ain Ain

D a1 j A1 j a2 j A2 j anj Anj
i 1,2,,n. j 1,2,, n
证 因为
a11
a12

a1n



D ai1 0 0 0 ai 2 0 0 0 ain
第三节 行列式按行(列)展开
在 n 阶行列式 det ( aij ) 中,把元素 aij 所在的第 i 行和第 j 列 划去, 剩下的( n −1 )2 个元素按原来的排法构成的 n − 1 阶行列式, 记成 Mij , 称为元素 aij 的余子式.
记 Aij = ( −1 ) i+j Mij
称它为元素 aij 的代数余子式. 例1 三阶行列式

线性代数1.6行列式按行(列)展开

线性代数1.6行列式按行(列)展开

感谢您的观看
THANKS
某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。即
$D = a_{i1}A_{ j1} + a_{i2}A_{ j2} + ldots + a_{in}A_{ jn} = 0$,其中 $i neq j$。
行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。即
$D = a_{i1}A_{i1} + a_{i2}A_{i2} + ldots + a_{in}A_{in}$ 或 $D = a_{1j}A_{1j} + a_{2j}A_{2j} + ldots + a_{nj}A_{nj}$。
行列式按行(列)展开的性质二
行列式中某一行(列)的所有元素都 乘以同一数 $k$,等于用数 $k$ 乘此 行列式。即:$D_1 = kD$。
行列式中如果有两行(列)元素成比 例,则此行列式等于零。
行列式按行(列)展开的性质三
若行列式中某一行(列)的所有元素 都是两数之和,则这个行列式可以拆 分为两个行列式的和,这两个行列式 分别由这两组数构成。
01
02
行列式是一个数值,由方阵中所 有元素的代数和计算得出。
03
行列式具有交换性质,即交换行 列式中两行(列)的位置,行列 式的值变号。
04
行列式按行(列)展开的意义
行列式按行(列)展开是计算行列式的 一种重要方法,特别是当行列式的阶数 较高时,直接计算往往比较困难,而按 行(列)展开可以简化计算过程。
行列式按行展开的步骤
01
1. 选择要展开的行(或列)。
02 2. 划去该元素所在的行和列,得到余子式。
03

第三节行列式按行展开

第三节行列式按行展开
2 n
其中(1) N ( j2 j3 jn ) a2 j2 anjn 恰是M 11的一般项. 所以,D = a11M 11 = a11 (1)1+1 M 11 = a11 A11
山东财政学院统计与数理学院
(2)其次讨论行列式D的第i行的元素除aij ≠ 0外,其余都为0的情形; aij 0 0 a11 a1 j a1n i 1 2 1 i ai 1, j ai 1, j 1 0 = D ' 0 aij 0 j 1 2 j 1 anj an , j 1 ann a a a
定理1.3.1 (行列式按行(列)展开) n 阶行列式D = aij 等于它的 任意一行(列)中各元素与其对应的代数余子式乘积的和,即
D = ai1 Ai1 + ai 2 Ai 2 + + ain Ain (i = 1, 2, , n) 或 D = a1 j A1 j + a2 j A2 j + + anj Anj ( j = 1, 2, , n)
中的代数余子式,记为Aij , 即 Aij = (1)i + j M ij
山东财政学院统计与数理学院
a11 a21 例如:D = a31
a32的余子式
a12 a22 a32 a42
a13 a23 a33 a43
a14 a24 a34 a44
a32 的代数余子式
a41
a13 a23 a14 a24
a11 M 32 = a21 a41
a11 A32 = (1)3+ 2 a21 a41
a13 a23 a43
a14 a24 a44
a43
a44
注 行列式的每个元素分别对应着一个余子式和一个代数余子式

行列式性质按行(列)展开法则

行列式性质按行(列)展开法则
|a31 a32 a33|,可以选择第一行进行展开,得到其值等于a11*(a22*a33-a23*a32) - a12*(a21*a33a23*a31) + a13*(a21*a32-a22*a31)。
高阶行列式求解示例
递归降阶法
对于高阶行列式,可以采用递归降阶的 方法进行求解。即选择一行(列),将 这一行(列)的每个元素分别与其代数 余子式相乘并求和,从而将原行列式降 阶为一个低一阶的行列式。通过不断重 复这一过程,最终可以将高阶行列式降 阶为二阶或三阶行列式进行求解。
矩阵运算与行列式的关系
矩阵运算中的很多性质与行列式的性质密切相关,如矩阵的乘法、转置、逆等运算都与行列式有紧密联系。在求 解线性方程组时,我们常常需要利用矩阵的性质进行化简和计算。
线性方程组求解与行列式的应用
对于n元线性方程组,我们可以利用克拉默法则(Cramer's Rule)进行求解。克拉默法则是一种利用行列式求解 线性方程组的方法,它涉及到计算系数行列式和各个未知数的系数行列式,然后利用这些行列式的值求出未知数 的解。
03
把行列式的某一行(列)的各元素 乘以同一数然后加到另一行(列) 对应的元素上去,行列式不变。
04
行列式计算规则
01
对于二阶和三阶行列式,可以 直接套用公式进行计算。
02
对于高阶行列式,可以采用按行 (列)展开法则进行计算,即选择 某一行(列),将其各元素与对应 的代数余子式相乘后求和。
03
在按行(列)展开时,需要注意 代数余子式的符号取决于被删 除的行和列的序号之和的奇偶 性。
选择要展开的行或列
根据题目要求或行列式的特点,选择合适的行或 列进行展开。通常选择含有零元素较多或元素较 简单的行或列。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单位:理学院应用数学物理系计算数学教研室
批准:日期:年月日任课教员:刘静
课程名称:线性代数
章节名称:第一章行列式
课题:第三讲行列式按行按列展开
目的、要求: 1. 行列式的按行按列展开法则;
2. 掌握行列式的计算方法。

难点、重点:行列式按行按列展开法则及其应用。

器材设备:多媒体设备
课前检查
教学内容课堂组织
教学内容: 本讲主要介绍:
1. 行列式的按行(列)展开法则;
2. 掌握行列式的计算方法。

教学方法与思路:
1. 首先介绍余子式和代数余子式的概念;
2. 对于三阶行列式,容易验证:
1112132223212321232122231112
13
32
33
31
33
31
33
31
32
33
a a a a a a a a a a a a a a a a a a a a a a a a =-+
可见一个三阶行列式可以转化成三个二阶行列式的计算。

由此容易想到:一个n 阶行列式是否可以转化为若干个 n -1 阶行列式来计算?
3. 给出一个特殊的n 阶行列式的计算方法,从而给出一个引理;
4. 进而介绍行列式的按行(列)展开法则。

教学中运用多媒体手段,讲解、板书与教学课件相结合,以讲解为主。

教学步骤:
教学内容、方法、步骤
教学内容课堂组织
1. 介绍余子式和代数余子式的概念;
2. 引理;
3. 行列式的按行(列)展开法则;
4. 应用举例。

5. 小结并布置作业。

212
n n n nn
a a a
中仅含下面形式的项
a M =1
0n ij n nj
nn
a a a a 行依次与第i-1行,第i-2行,……,第21,1,11,,1
(1)i j j
i j i n ij nj
n j nn
a a a M a a a +-----=-
教 学 内 容 课堂组织
1
2121212
11
12111
121111211
21
2
1
2
1
0000
00000000n
i i in i i in n n nn n n nn n
n n i i in n n nn
n n nn
n n a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a =+++++
++
+++++21122nn
i i i i in in
a A a A a A +++
证毕。

行列式的任一行(列)的元素与另一行(列)的1
2121
2
n i i in
k k kn n n nn
a a a a a a a a a 中,如果令第外一行,譬如第 k 行的元素,则
1
2121
2
n k k kn
kn in k k kn n n nn
a a a a A a a a a a a +=
右端的行列式含有两个相同的行,值为 0 。

量,只是在行列式中某一行或某一列含有较多的零时,
21
1
1112
n n n i j n n n n
x x x ≥>≥---=
证明:用数学归纳法证。

112211
111111100
)
0)
n n n n r x r r x r x r x r x x ------=--2222
3
n
n n n n
x x ---
阶范得蒙行列式,故原式
)(x =


41234
1
n n n n -----0
123
21111111111
1
1
1
1
1
n n --------。

相关文档
最新文档