行列式按行(列)展开及计算

合集下载

3 行列式行列式的按行(列)展开

3 行列式行列式的按行(列)展开

则根据归纳假设得证: Dn ( x 2 x1 )( x 3 x1 )( x n x1 ) ( x i x j )
( x i x j ).
n i j 1
n i j 2



P26 4(4), 9 补充: 利用范德蒙德行列式计算4阶行列式
1 1 1 1 16 8 2 4 D 81 27 3 9 256 64 4 16
D = ai 1 Ai 1 + ai 2 Ai 2 + = a1 j A1 j + a2 j A2 j + + ain Ain + anj Anj .
i , j 1,2,
, n
推论 行列式中任一行或列的元素与另一行对应元 素的代数余子式乘积之和为零。 ai 1 Aj 1 ai 2 Aj 2 ain Ajn 0, i j
1 1
例2 求解方程
1 x 0. x2
2 3 4 9

方程左端
D 3 x 2 4 x 18 9 x 2 x 2 12
x 2 5 x 6,
由 x 2 5 x 6 0 解得
x 2 或 x 3.
推论
行列式中任一行或列的元素与另一行 或列对应元素的代数余子式乘积之和 为零。即
a11 A11 a12 A12 a13 A13 a1 j A1 j
j 1
3
定理4 三阶行列式等于它的任一行或列的各元素 与其代数余子式乘积之和,即
D ai 1 Ai 1 ai 2 Ai 2 ai 3 Ai 3
a1 j A1 j a2 j A2 j a3 j A3 j ( j 1,2, 3)

2_3行列式按一行或一列展开及行列式的计算

2_3行列式按一行或一列展开及行列式的计算

A12 = (− 1) M 12 = − M 12 . a11 a12 a13 M 44 = a21 a22 a23 , A44 = (− 1)4+ 4 M 44 = M 44 . a31 a32 a33
行列式的每个元素分别 对应着一个余子式和一 个代数余子式 .
Page 4
阶行列式, 引理 一个 n 阶行列式,如果其中第 i 行所有 外都为零, 元素除 a ij外都为零,那末这行列式等于 a ij 与它的 代数余子式的乘积, 代数余子式的乘积,即 D = a ij Aij . a11 a12 a13 a14 例如 D =
0 2 0 0 0

5 3 −1 2 1 7 2 5 D= 0 −2 3 1 0 −4 −1 4 0 2 3 5
Page 22
5 3 −1 2 −2 3 1 3 1 r2 + (− 2 )r1 2+ 5 0 − 2 = (− 1) 2 − 2⋅ 5− 4 −1 4 0 − 4 − 1 4 r3 + r1 2 3 5 0 2 3 5 −2 3 1 −7 2 = −10 0 − 7 2 = −10 ⋅ (− 2 ) 6 6 0 6 6
Page 9
aij aij M M anj aij aij M = ( − 1)
i+ j
L
0 M M
L
0 M M
(− 1)i + j − 2 ai −1, j L ai −1, j −1 L ai −1,n =
L L a n , j −1 0 M M L a n , j −1 L L L ann 0 M M ann
a14 a 34 a 44
D=
A23 = (− 1)
M 23 = − M 23 .

行列式的展开法则

行列式的展开法则

03. 行列式的展开法则 一、按一行(列)展开法则定义3.1 (,)i j 元素或(,)i j 位置的余子式ij M 、代数余子式(1)i j ij ij A M +=- 例3.1 3111112121313111112121313||ij a a M a M a M a A a A a A =-+=++. 定理3.1 1)按一行展开法则 1122||(1,2,,)A i i i i in in a A a A a A i n =+++= ; 2)按一列展开法则 1122||(1,2,,)A j j j j nj nj a A a A a A j n =+++= . 按第一行的展开公式就是n 阶行列式(2)n ≥的降阶定义. 例3.2 计算下列n 阶行列式1)xy x yyx; 2)111111121n n----; 3)121111n n na a xD a xa x---=-.解 1)按1c 展开得原式1111111(1)(1)n n n n n n n xA yA xxy y x y -+-+=+=+-=+-. 2)原式121(1)(12)2n n nn n c c c c n n n A c -++++++++=按展开. 3)法1 按1r 展开得()112112121223121211(,,,)(,,)(,,).()n n n n n n n n n n n n n n n D a a a a x D a a a x a x D a a a x a x a x a D a a --------=+=++==++++=法2 在n D 中,元素(21)i a i n ≤≤-的余子式为11111(1)11i n i i x x M x x x x-----==---.将n D 按1c 展开得11211211(1)ni n n n i i n n i D a M a x a x a x a +---==-=++++∑ .法3 1121212112121101,1,,210i i nn n n n n n na a x a r xr D i n n a x a x a a x a x a x a --------+-+=-+++-++++12121n n n n a x a x a x a ---=++++ . ()11111(1)(1)(1)1n n n n n A M ++-=-=--=法4 按n r 展开得111212121.n n n nn n n n n n n n n n D a A xA a xD a a x xD a x a x a x a ------=+=+=++==++++定理3.2 当i j ≠时, 11220i j i j in jn a A a A a A +++= ;11220i j i j ni nj a A a A a A +++= . 注 1122||A i j i j in jn ij a A a A a A +++= δ, 1122||A i j i j ni nj ij a A a A a A +++= δ,其中1,;0,ij i j i j=⎧=⎨≠⎩当当δ为克罗内克(Kronecker )符号.例3.3 1)二元(实)函数1,;(,)0,.x y f x y x y =⎧=⎨≠⎩当当 显然(,)xy f x y =δ.2)diag(1,1,,1)[]ij n n ⨯= δ.例3.4 设四阶行列式1212211220211234D =. 1)求代数余子式12A ; 2)求1121314123A A A A +++; 3)求41424344A A A A +++.行列式的完全展开定义、公理化定义、降阶定义可以互相推证. 以降阶定义为原始定义做理论推导时,可以引入仿克罗内克符号1,;0,.ij i j i j <⎧=⎨>⎩当当ρ 例3.5 1)若正整数i j ≠,则1.ij ji +=ρρ2)仿克罗内克符号有缺项定位功能. 在序列124567,,,,,a a a a a a 中,(17,3)i a i i ≤≤≠位于第3i i -ρ位. 在序列12467,,,,a a a a a中,(17,3,5)i a i i ≤≤≠位于第35i i i --ρρ位.3)仿克罗内克符号有描述逆序功能.s t j j 构成逆序01s t t s j j j j ⇔=⇔=ρρ,121()t sn j j s t nj j j ≤<≤=∑τρ.例3.6 n 阶范德蒙(Vandermonde )矩阵1[]i j n n a -⨯的行列式122131121(,,,)()()()(,,)().n n n j i i j nV a a a a a a a a a V a a a a ≤<≤=---=-∏例3.7 填空11112345_____49162582764125----=----.例3.8 设0abcd ≠,求证222211(,,,)11a a bcd b b acdV a b c d c c abd d d abc=-.例3.9 计算n 阶三对角行列式111n a b ab a b ab D a b aba b++=++ .二、按多行(列)展开法则定义3.2 矩阵A m n ⨯的k l ⨯子矩阵1212A k l i i i j j j ⎛⎫ ⎪⎝⎭ 及其余子阵,k 阶子方阵、k 阶子式;n 阶方阵或其行列式中k 阶子式的n k -阶余子式M 、代数余子式1212()()(1)k k i i i j j j A M +++++++=- ,k 阶(顺序)主子阵、k 阶(顺序)主子式. 主子式的代数余子式就是余子式.例3.10 设55[]A ij a ⨯=.1)25135A ⎛⎫⎪⎝⎭是A 的一个23⨯子矩阵,13424A ⎛⎫⎪⎝⎭为其余子阵;2)1325A ⎛⎫⎪⎝⎭是A 的一个2阶子方阵,1325A ⎛⎫ ⎪⎝⎭是A 的一个2阶子式,245134A ⎛⎫⎪⎝⎭为对应余子式,而对应代数余子式为(13)(25)245245(1)134134A A +++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭;3)235235A ⎛⎫ ⎪⎝⎭是A 的一个3阶主子阵,235235A ⎛⎫⎪⎝⎭是A 的一个3阶主子式,其代数余子式就是余子式1414A ⎛⎫⎪⎝⎭,是A 的一个2阶主子式;4)A 共有五个顺序主子阵(式).定理3.3 按多行(列)展开法则——拉普拉斯(Laplace )定理1122C C ||A k k nnN A N A N A =+++ .例3.11 计算四阶行列式1234500112365112D -=--.例3.12 计算六阶行列式111000234000310161111101112411243161139D =---.例3.13 计算六阶行列式120000350000635475124583240064270034D -=-.例3.14 计算叉形行列式1)11211n n n nna b a b D c d c d =;2)112111nn n nna b a b D e c d c d +=.。

行列式按行展开

行列式按行展开

4
二:定理1.4(拉普拉斯定理)
若在n阶行列式D中,任意选取k行k 列, 这样组成的所有k阶子式其对应的代数余子式 乘积之和等于行列式D的值。(证略)
5
5 60 0 0 1 5 6 0 0 例 D 0 1 5 6 0 0 01 5 6 0 0 0 1 5
6
5 6 0
1 6 0
56
50
D
1 5 6
一、 n阶行列式展开定理
定理3 n阶行列式D等于它的任意一行(列)各元 素与其对应的代数余子式的乘积之和,即
D ai1Ai1 ai2 Ai2 ain Ain
n
aij Aij i 1,2,, n j 1
按行展开
1

D a1 j A1 j a2 j A2 j anj Anj
n
19
例5(伪范德蒙)
1111 abcd D a2 b2 c2 d 2 a4 b4 c4 d 4
111 1 1
abcd x a2 b2 c2 d 2 x2 a3 b3 c3 d 3 x3 a4 b4 c4 d 4 x4
构造范德蒙行列式 对比x^3的系数。
20
例6(递推降阶法)
21 121
121 D
27
思考题6
a b ab 1 a b ab 1 a b ab
D ... ... ... 1 a b ab 1 ab
28
思考题7
x z z ... z z y x z ... z z y y x ... z z D ... ... ... ... ... ... y y y ... x z y y y ... y x
... ... ... 1 21 12
按第一行展开,可得 Dn 2Dn1 Dn2

行列式按一行(列)展开

行列式按一行(列)展开

证明过程
• 利用归纳假设和余子式的性质,证明$D_{n+1}$ 可以按第$n+1$行(或第$n+1$列)展开。
证明过程
3. 结论
通过数学归纳法,证明了行列式可以按任意一行(或列)展开。
04
Байду номын сангаас行列式按一行(列)展开的 实例
实例一:二阶行列式
定义
01
二阶行列式表示为$|begin{matrix} a & b c & d
行列式按一行(列)展 开
目录
• 行列式按一行(列)展开的定义 • 行列式按一行(列)展开的公式 • 行列式按一行(列)展开的证明
目录
• 行列式按一行(列)展开的实例 • 行列式按一行(列)展开的应用
01
行列式按一行(列)展开的 定义
定义与性质
定义
行列式按某一行(或列)展开,是指 将该行列式拆分成若干个二阶子行列 式之和。
• 应用:用于计算高维向量的外积和混合积,以及解决线性方程组等数学问题。
05
行列式按一行(列)展开的 应用
在线性代数中的应用
计算行列式的值
行列式按一行或一列展开,可以方便地计算行列式的 值。
矩阵的逆运算
行列式按一行或一列展开,可以用于计算矩阵的逆运 算。
线性方程组的求解
行列式按一行或一列展开,可以用于求解线性方程组。
数值分析
行列式按一行或一列展开,可以用于数值分析中的矩阵运算和数值逼近。
THANKS
感谢观看
3. 将上述求和结果作 为分子,分母保持不 变,得到按选定行 (或列)展开后的行 列式。
02
行列式按一行(列)展开的 公式
展开公式

线性代数课件14行列式按行列展开

线性代数课件14行列式按行列展开

111
1
a1 a2 a3
an
Dn a12 a22 a32
an2
a a a n1
n1
n1
1
2
3
a n 1 n
(a j ai )
1i jn
第 i 行乘以 a1 加到第 i + 1 行
1
1
1
Dn 0
a2 a1 a2 (a2 a1)
a3 a1 a3(a3 a1)
0
an2 2
(a2
a1 )
an2 3
1 4 N
1 2
02 M
0 3
进一步,N的代数余子式
A (1)1224 M 0
例:计算下面三阶行列式第二列元素的代数余子式
121 012 310
121 划去 2 所在的行和列,0 1 2
310
得子式 0 2 ,注意2在第一行第二列 30
所以,2 的代数余子式= (-1)1+2 0
2 6
30
121 划去 1 所在的行和列 , 0 Dn 2 0 0
10 21
01 00
0 0 2 10 0 0 1 21
2 1 0 01 1 2 0 00
00 00
21 12
注意第一个行列式是n-1阶,第二个是n-2阶,有:
(a3
a1
)
按第一列展开
a2 a1 Dn a2 (a2 a1)
a3 a1 a3 (a3 a1)
an2 2
(a2
a1 )
an2 3
(a3
a1)
每列依次提出公因子,得到
1 an a1 an (an a1)
an2 n
(an
a1 )

行列式按行(列)展开

线性代数
行列式按行(列)展开
a11 a12
定义1 在n 阶行列式 D a21 a22
a1n
ain 中,划去元素aij 所在的
an1 an2
ann
第i 行和第j列,余下的(n-1)2 个元素按原来的排列构成的n-1阶行 列式,称为元素aij 的余子式,记作Mij。在Mij前面加上符号(-1)i+j 后,得到(-1)i+jMij,称它为aij的代数余子式,记作Aij,即
Aij=(-1)i+jMij
436
例1 已知三阶行列式 D 5 2 1 ,分别求元素a21,a32的余子式和代
数余子式。
728
解 根据定义知,元素a21的余子式和代数余子式分别为
3 6 M 21 =12
2 8
A21 (-1)21
3 6
= -12
2 8
元素a32的余子式和代数余子式分别为
46
bn1
b1n
bnn
分析 对D1 作行运算,相当于对D 的前k 行作相同的行运算,且D 的后n 行不变;对D2作列运算,相当于对D 的后n 列作相同的列运算, 且D 的前k 列不变。
证 因为对D1 作适当的运算ri+krj,可将D1 化为下三角形;同理,对D2 作适当的列运算ci+kcj,可将D2 化为下三角形,分别设为
bnn
D (-1)(i-1)( j-1) D1 (-1)i j b11M11 (-1)i j aijMij aij Aij
定理1 n 阶行列式D 等于它的任一行(列)的各元素与其对应的代数余子 式乘积之和,即
D ai1Ai1+ai2 Ai2 + +ain Aini 1, 2, n)

行列式按一行或一列展开及行列式的计算

a41 a42 a43 a44
a11 a12 a14
1 33 a33 a21 a22 a24 .
a41 a42 a44
Page 5
证 当 aij位于第一行第一列时,
a11 0 0
D a21 a22 a2n
an1 an2 ann
即有 D a11M11.
又 A11 1 11 M11 M11,
0 an1
0 an2
ain ai1 Ai1 ai 2 Ai 2 ain Ain
i 1,2, ,n
ann
Page 13
推论 行列式任一行(列)的元素与另一行(列) 的对应元素的代数余子式乘积之和等于零,即
a A i1 j1 ai2 Aj2 ain Ajn 0, i j .
余子式仍然是aij在
a11 a1 j a1n
D 0 aij 0 中的余子式 Mij .
an1 anj ann
Page 10
aiij 于是有 ai1, j
0 ai1, j1
0 ai1,n aij Mij ,
anj an, j1
故得
aaiijj
0
D 1 i j ai1, j ai1, j1
a12
a1n
D ai1 0 0 0 ai2 0 0 0 ain
an1
an2
ann
Page 12
a11 a12 a1n
a11 a12 a1n
ai1 0 0 0 ai2 0
an1 an2 ann
an1 an2 ann
a11 a12 a1n
ai1
ain , ain
当 i j 时,
an1 ann
第i行 第 j行

行列式按行按列展开


... a1n ... ... ... 0 . ... ... ... ann
把D转化为(1)的情形
· · · · · , 把 D 的第 i 行依次与第 i 1 行,第 i 2 行,·
第2行,第1行交换;再将第 j 列依次与第 j 1 列, 第 j 2 列,· · · · · · , 第2列,第1列交换,这样共经过
an ( 1)n 1 1 0 x 1 0 x 0 0 0 0 0 0 0 0 x 1
Dn x 0 an 1
x
an 2 a2
于是,得递推公式
Dn xDn1 an
而由递推公式,得
继续递推公式,得
Dn1 xDn 2 an1 D1 x a1
(1) ( j2 j3 ... jn ) a2 j2 a3 j3 ...anjn 恰是 M 11 的一般项。
D a11 M11
a11 (1)11 M11
a11 A11
13
(2) 设 D 的第 i 行除了 aij 外都是 0 。
a11 ... a1 j ... D 0 ... an1 ... ... ... aij ... ... ... anj
... ... ... an 2 ... ann
12
由行列式定义,D 中仅含下面形式的项
D
a11 (1) (1 j2 j3 ... jn ) a2 j2 a3 j3 ...anjn
其中 所以,
1 j2 j3 ... jn

(1) (1 j2 j3 ... jn ) a11a2 j2 a3 j3 ...anjn
... ai 1, j 1 ... ai 1,n
(1)i j aij Mij aij Aij

线性代数1.6行列式按行(列)展开


感谢您的观看
THANKS
某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。即
$D = a_{i1}A_{ j1} + a_{i2}A_{ j2} + ldots + a_{in}A_{ jn} = 0$,其中 $i neq j$。
行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。即
$D = a_{i1}A_{i1} + a_{i2}A_{i2} + ldots + a_{in}A_{in}$ 或 $D = a_{1j}A_{1j} + a_{2j}A_{2j} + ldots + a_{nj}A_{nj}$。
行列式按行(列)展开的性质二
行列式中某一行(列)的所有元素都 乘以同一数 $k$,等于用数 $k$ 乘此 行列式。即:$D_1 = kD$。
行列式中如果有两行(列)元素成比 例,则此行列式等于零。
行列式按行(列)展开的性质三
若行列式中某一行(列)的所有元素 都是两数之和,则这个行列式可以拆 分为两个行列式的和,这两个行列式 分别由这两组数构成。
01
02
行列式是一个数值,由方阵中所 有元素的代数和计算得出。
03
行列式具有交换性质,即交换行 列式中两行(列)的位置,行列 式的值变号。
04
行列式按行(列)展开的意义
行列式按行(列)展开是计算行列式的 一种重要方法,特别是当行列式的阶数 较高时,直接计算往往比较困难,而按 行(列)展开可以简化计算过程。
行列式按行展开的步骤
01
1. 选择要展开的行(或列)。
02 2. 划去该元素所在的行和列,得到余子式。
03
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
授课时间
第周 星期第节
课次
2
授课方式
(请打√)
理论课□ 讨论课□ 实验课□ 习题课□ 其他□
课时
安排
2
授课题目(教学章、节或主题):
第二讲 行列式按行(列)展开及计算
教学目的、要求(分掌握、熟悉、了解三个层次):
熟练掌握行列式按行(列)展开;掌握运用行列式的定义与性质计算行列式;熟悉一些典型行列式的计算;熟悉用数学归纳法证明行列式.
一般可推广为:
作业:
1.复习 ;
1.预习 ;
3.习题 :6(5);8(1)(6);9
教学后记
(按行(列)展开法则)
推论行列式的某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即

例1、
解法1:
解法2:
例2、设 ,(1)求 ;(2) 。
解:(1)
(2)
二、行列式的计算
例3、例4、证明范德蒙行列式
证明:数学归纳法.
成立.
假如 成立,欲证 也成立,
例5、证明
教学重点及难点:
重点:行列式按行(列)展开;利用行列式的定义与性质计算行列式
难点:行列式的计算
教 学 基 本 内 容
备注
一、行列式按行(列)展开
引理一个 阶行列式,如果其中第 行所有元素除 元 外都为零,那么这行列式等于 与它的代数余子式的乘积.
定理行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即
相关文档
最新文档