电控悬架系统控制原理与检修
汽车电控悬架原理及检修分析

汽车电控悬架原理及检修分析汽车电控悬架是汽车技术领域里的一项重要的技术创新,这种悬架可以调节车身高度、阻尼和弹簧的硬度,达到更加舒适平稳的行驶效果,并可改善车辆的操纵性和稳定性。
本文将深入分析汽车电控悬架的工作原理和检修分析。
一、汽车电控悬架工作原理汽车电控悬架装置是一种集机电一体化的新型悬架,分别由机械部分和电子控制部分组成。
主要包括四个主要的电动执行器、几个传感器和一台电控计算机。
整个系统的电动执行器位于车轮附近,可以升降车身,增加或减少车身的高低位置,实现各种各样的动态调整,并能根据不同的路面状态自适应地调节路面硬度和减震性能。
传感器可以检测路面状态、车身高度、车速、加速度和转向等数据,电控计算机根据传感器传回的信号实时分析、计算后控制悬架系统的调整。
电控悬架系统的工作原理如下:1. 传感器检测:悬架系统通过装配在车辆上的各种传感器检测路面的状态、车身的高度、车速、加速度和转向等数据,并向电控计算机发出反馈信号。
2. 数据处理:电控计算机对传感器传回的信号进行分析和处理,并结合车辆当前的工况,采取最优控制策略。
3. 电动执行器调整:电控计算机通过对电动执行器的控制,升降车身,增加或减少车身的高低位置,以实现车身的动态调整。
4. 反馈控制:调整完成后,执行器将调整信息反馈到电控计算机,以便更好地应对路面或车辆状态的任何变化。
二、汽车电控悬架检修分析汽车电控悬架系统由于具有高度智能化的特点,在使用过程中更容易遇到故障,而这些故障在短时间内可能会影响整个汽车的行驶效果。
以下是一些常见的汽车电控悬架故障和检修方法:1. 卡住或升降不动若电动执行器没有正常工作,则车身可能会无法升降。
产生这种问题的主要原因是机械部分的故障,例如马达断路和控制器故障。
这时应该检查发现和更换故障的元件。
2. 过度波动如果你车身过度波动或颠簸,通常是后悬挂器的问题,而这是一个比较普遍的问题。
该问题的主要原因是弹簧或减震器老化或损坏。
汽车电控悬架原理及检修分析

汽车电控悬架原理及检修分析电控悬架系统可以在各种不同的工况下同时提高汽车乘坐的舒适性和行驶稳定性,能够同时控制弹簧刚度、减振器减振阻尼和车身高度的系统。
使汽车的操纵稳定性达到最佳状态。
标签:汽车;电控悬架;高度控制随着现代科学技术的发展,人们对汽车行驶的平顺性要求越来越高,提高乘坐的舒适性是目前汽车研究的重要方向之一。
提高乘坐的舒适性,应从汽车噪音的控制、悬架的控制等方面来进行研究。
当汽车悬架高度较低时,汽车行驶平顺性较好,但如果高度过低,会使得汽车行驶稳定性降低,主要表现在行驶中会伴随有横向摆动和纵向的摇动。
因此,想提高汽车的乘坐舒适性和行驶稳定性,需要将车身高度控制和减振器的减振阻尼控制联合作用,这就是汽车的电子控制悬架。
1 电子控制悬架结构1.1 悬架控制开关悬架ECU接收传感器信号,同样也接收开关信号,此系统中包含两种控制开关,分别是水平控制开关和高度控制开关。
需要空气弹簧和减震器工作时,可以选择水平控制开关;希望达到的车身高度,就选择高度控制开关。
1.2 高度控制通断开关此开关在OFF位置时,车辆高度控制将终止,车辆举升、不平路面行驶,压缩空气不会从空气弹簧中排出。
1.3 制动灯开关制动灯开关有三种形式,液压式、气压式、弹簧式。
经常采用液压式制动灯开关,安装在液压制动管路系统中,踩下制动踏板,液压的作用下使开关接通,制动灯亮,此时,制动灯开关会将此信号送给悬架ECU,ECU接收到此信号便可判断汽车是否在制动。
1.4 节气门位置传感器现在普遍采用电子节气门,根据踏板位置传感器的信号,电子节气门的电机会将节气门打开一定的角度,获得进气量和负荷的信息。
在电子控制悬架系统中,ECU接收此信号,可控制“防下坐”。
1.5 车速传感器车速传感器直接检测汽车的行驶速度,由变速器输出轴驱动,其种类形式很多:舌簧开关式、电磁感应式、光电式、霍尔式、磁阻式。
1.6 车身高度传感器高度传感器也叫车姿传感器,主要是检测车身高度的变化,由于汽车行驶过程中遇不平路面时,车身高度发生变化,悬架产生位移,从而破坏舒适性和操纵稳定性。
电控悬架系统控制原理和检修

本科毕业设计(论文)电控悬架系统控制原理和检修摘要电子技术与汽车技术的结合形成了一门新技术——汽车电子技术,随着汽车电子技术的日趋完善,时至今日,汽车电子化已达到相当高的程度。
汽车电子技术已成为一个国家汽车工业发展的标志。
本篇论文不仅对应用广泛的电子控制悬架系统的结构、原理进行了系统阐述,而且对其故障类型与产生原因进行分析,同时也对诊断与检测方法、流程也作了详细的介绍。
关键词:电子控制,悬架系统,故障,诊断AbstractElectronics and automotive technology combine to form a new technology - automotive electronics, automotive electronics technology is maturing, to date, automotive electronics has reached a very high level.Automotive electronics technology has become the symbol of the development of a national auto industry. This thesis, not only for the application of a wide range of electronically controlled suspension system structure, the principle of the system described, and its failure types and causes analysis, diagnosis and detection methods, the process is also introduced in detail.Key words:Electronically controlled suspension system, fault, diagnosis目录1 绪论 (1)1.1 选题背景及意义 (1)1.2 国内外研究状况 (1)1.3 研究内容 (2)2电子控制悬架系统概述 (3)2.1 电子控制悬架系统主要功能 (3)2.2 电子控制悬架系统结构与工作原理 (4)3电子控制悬架系统传感器 (7)3.1 车身高度传感器 (7)3.2 方向盘转角传感器 (9)3.3 车速传感器 (10)3.4 加速信号 (12)3.5 车门信号 (12)3.6 制动信号 (12)3.7 悬架控制开关 (13)4电子控制悬架系统电子控制模块 (15)4.1 电控空气悬架系统电子控制模块(悬架ECU)功能 (15)4.2 电控空气悬架系统电子控制模块(悬架ECU)的结构和工作原理 (15)4.3 电控空气悬架系统执行器的功能 (17)4.4 电控空气悬架系统执行器的结构、工作原理及分类 (18)5电子控制悬架系统故障诊断与检测 (20)5.1 电子控制悬架系统故障诊断 (20)5.2 故障类型及原因 (20)5.3 故障诊断方法 (21)5.4 故障诊断流程及其诊断类型 (23)结论 (30)参考文献 (31)致谢 (32)1绪论1.1 选题背景及意义随着生活水平的不断提高,对车辆乘坐舒适性和操纵稳定性提出了更高的要求。
电控悬架系统的控制原理和控制方法

1、弹性元件空气弹簧在空气悬挂系统中,空气弹簧代替了普通悬挂系统的螺旋弹簧。
他有一个被卡紧在弹簧底部活塞上的合成橡胶和塑料膜片,一个端盖固定在膜片的上部,并且在端盖上有空气弹簧阀。
通过空气弹簧的充气或者放气,保证了恒定的车辆纵倾高度。
前空气弹簧安装在控制臂和横梁之间。
空气弹簧的下端用卡箍卡紧在控制臂上,而在上端安装在横梁的弹簧座上。
前减震器和弹簧是分开安装的。
空气弹簧电磁阀在每个空气弹簧的上部都安装了一个空气弹簧电磁阀,并且正常情况下电磁阀是关闭的。
当电磁阀线圈通电时,活塞移动就会使得到空气弹簧的气路打开。
上面这种情况下,空气就会进入空气弹簧,或者从空气弹簧排出。
在阀的末端安装了两个O形密封圈,用来密封空气弹簧罩。
而阀就安装在类似于散热器承压盖的两成转动作用的空气弹簧罩内。
空气压缩机空气压缩机的单活塞通过曲轴和连杆带动在缸体内上下运动。
电枢连接在曲轴上,因此,电枢的转动就会使得活塞上下运动,当压缩机的输入端接上12V电源时,电枢就开始转动了。
在缸体的顶部有进气阀和排气阀。
压缩机上安装的硅胶干燥器去除了进入系统空气中的水分。
2、传感器高度传感器在空气悬架系统中,位于下控制器臂和横梁之间有2个前高度传感器,而在悬架和车架之间有一个后高度传感器。
每个高度传感器都有一个安装传感器上端的磁性滑块。
当车辆行程高度发生变化时,磁性滑块就会在传感器下壳内上下运动。
传感器下壳上有2个通过电线束连接在控制模块上的电子继电器。
车辆动态悬挂(VDS)系统车辆动态悬挂(VDS)系统由以下部件组成:1,双位维护开关;2,2个前高度传感器;3,1个后高度传感器;4,有内部电磁排气阀和空气干燥器的压缩机;5,控制模块;6,空气管路;7,前后混合空气弹簧和减震器;8,4个空气弹簧电磁阀;9,压缩机继电器。
3、车辆动态悬挂(VDS)系统当空气弹簧需要增大空气压力时,控制模块就会使得压缩机继电器闭合,压缩机就开始工作,并且使得空气弹簧的电磁阀适度打开。
电控悬架结构原理及检修

2章 电控悬架结构原理及检修章 电
控悬架结构原理及检修章 电控悬架
结构原理及检修章 电控悬架结构原
理及检修章 电控悬架结构原理及检
修
5
2.1.2 电控悬架的基本组成
各种传感器
电控单元
执行机构
图2-1 悬架电子控制系统的组成
传感器名称 车身加速度传感器
车身高度传感器 车速传感器
转向盘转角传感器 车门传感器 制动灯开关
修
3
学习重点难点
主动悬架主要元件的结构原理及检查。
教学方法及教具
讲授、现场教学、课件
教学时数
8课时
2章 电控悬架结构原理及检修章 电
控悬架结构原理及检修章 电控悬架
结构原理及检修章 电控悬架结构原
理及检修章 电控悬架结构原理及检
修
4
2.1 电控悬架概述
2.1.1 被动悬架与主动悬架
引入:悬架的基本组成、主要作用 被动悬架——刚度、阻尼系数固定; 主动悬架——刚度、阻尼系数可调。
修
28
2.故障码的读取 (1)接通点火开关。 (2)用跨接线将TDCL或检查连接器的端子TC与El连接。 (3)根据仪表板高度控制“NORM”指示灯的闪烁情况修 Nhomakorabea24
2)弹簧刚度和减振器阻尼力控制
进入空气悬架副气室的空气量越 多,贮气空间越大,空气弹簧的刚度 越小,反之刚度越大。
2章 电控悬架结构原理及检修章 电 控悬架结构原理及检修章 电控悬架 结构原理及检修章 电控悬架结构原 理及检修章 电控悬架结构原理及检
修
图2-21 气压缸的结构
25
2.3 电控悬架检修及故障诊断
尼可调减振器; 6结-悬构原架理弹及簧检修;章 电7-控非悬悬架结架构质原 量 ; 8-轮胎的当量质量
电动汽车电控悬架系统的故障自诊断与检修

电动汽车电控悬架系统的故障自诊断与检修1、电控悬架系统常见故障诊断如果自诊断系统显示正常代码,可是电动汽车悬架系统故障仍然出现,此时就应该根据故障的现象进行人工判断排除。
电控悬架系统常见故障就是悬架刚度和阻尼系数控制失灵和高度控制失灵。
电动悬架系统1)悬架刚度和阻尼系数控制失灵(1)LRC指示灯显示状态不变现象:不管如何操作悬架刚度和阻尼系数控制开关(LRC),LRC指示灯显示状态保持原样不变。
原因:悬架刚度和阻尼系数控制开关(LRC)电路故障,悬架电子控制单元(ECU)有故障。
(2)悬架刚度和阻尼系数控制失效现象:电动汽车在行驶时,悬架刚度和阻尼系数不随着行驶状况、路况、电动汽车姿态变化而调节。
原因:悬架控制执行器电路有故障,悬架控制执行器电源电路故障,Tc与Ts 端子电路有故障,悬架刚度和阻尼系数控制开关(LRC)电路故障,空气弹簧减振器故障,悬架电子控制单元(ECU)有故障。
(3)只有防侧倾控制失效现象:电动汽车在急转弯行驶时有侧倾现象,其它方面正常。
原因:转向传感器电路故障,悬架电子控制单元(ECU)有故障。
(4)只有防后坐控制失效现象:电动汽车在急加速行驶时车身后部有下沉(后倾)现象。
原因:节气门位置信号电路故障,悬架电子控制单元(ECU)有故障。
(5)只有防前倾控制失效现象:电动汽车在紧急制动时车身前部有下沉(前倾)现象,其它均正常。
原因:停车灯开关电路故障,车速传感器电路故障,悬架电子控制单元(ECU)有故障。
(6)只有高速控制失效现象:电动汽车在高速行驶时明显感到悬架比较软,操纵稳定性较差。
原因:车速传感器电路故障,悬架电子控制单元(ECU)有故障。
2、高度控制失灵(1)高度控制指示灯的显示不随高度控制开关操作而变化现象:高度控制开关无论转换在何种模式,高度指示灯显示模式不变。
原因:高度控制开关电路故障,调节器电路故障,高度控制电源电路故障,高度控制传感器故障,悬架电子控制单元(ECU)有故障。
丰田凌志400电控悬架系统的结构控制原理与检修

丰田凌志400电控悬架系统的结构控制原理与检修一、结构控制原理:1.传感器:悬架系统通过多个传感器获取车身姿态和路况信息,如加速度传感器、角度传感器等。
2.控制单元:悬架系统的控制单元根据传感器的数据,通过算法对悬架系统进行控制。
3.液压控制器:悬架系统通过液压控制器来控制悬架的升降和硬度调节。
4.气压控制器:悬架系统可以根据传感器数据控制气压控制器,以调节悬架系统的高度。
5.阀体:悬架系统通过阀体调节液压油的流向,从而实现对悬架系统的控制和调节。
6.气囊:悬架系统的气囊可以通过气压控制器调节,以对车身高度进行调整。
7.电磁液压阀:悬架系统通过电磁液压阀来控制液压油的流动,实现对悬架系统的硬度调节。
二、检修方法:1.故障诊断:当悬架系统出现故障时,可以使用故障诊断仪进行检测,通过读取系统的故障代码来确定具体的故障原因。
2.传感器检查:检查悬架系统的传感器是否正常工作,如是否损坏或接触不良等问题。
3.阀体检查:检查阀体是否漏油或堵塞,如果有问题需要进行维修或更换。
4.液压系统检查:检查液压系统的油管是否有渗漏,需要及时修复或更换。
5.气囊检查:检查气囊是否有漏气或坏损,如有需要更换气囊。
6.电磁液压阀检查:检查电磁液压阀的工作状态,如是否正常开关,需要进行维修或更换。
三、结构控制原理和检修方法的关系:1.结构控制原理是悬架系统正常工作时的工作原理,通过了解结构控制原理可以更好地理解悬架系统的工作方式。
2.检修方法是在悬架系统出现故障时的修理方法,通过了解检修方法可以及时发现和解决悬架系统故障,确保悬架系统的正常工作。
总结:丰田凌志400的电控悬架系统通过传感器、控制单元、液压控制器、气压控制器、阀体、气囊和电磁液压阀等组成,通过以上结构和原理实现对悬架系统的控制和调节。
在检修时,可以使用故障诊断仪进行故障诊断,然后通过检查传感器、阀体、液压系统、气囊和电磁液压阀等部件来判断和解决故障。
这样可以保证悬架系统的正常工作。
项目三(2) 汽车电控悬架系统检修

电控空气悬架就不存在这样的问题,它 采用气压结构来控制车身平衡,并且空气弹 簧和减振器能抵消大部分路面传递的短波和 长波振动,这也是电控液压悬架所不具备的。 不过两者的共同特性是都能为高速行驶的车 辆提供足够的稳定性,当车辆在不平的路面 上行驶时,又能提高车身和增加通过能力。 但电控主动空气悬架的缺点也很明显,成本 高昂、维护保养成本高。
图3-6 霍尔式车身高度传感器 1—传感器体 2—霍尔式集成电路 3—弹簧夹 4—滑动轴 5—窗孔
● 光电式车身高度传感器。光电式车 身高度传感器应用比较广泛,该传感器一般 安装在车身与车桥之间,其安装位置和工作 原理如图3-7所示。
图3-7 光电式车身高度传感器安装位置和工作原理 1—传感器轴 2—光电耦合器 3—遮光盘 4—连接杆
⑤ 车身高度的控制。车身高度的控制装 置通过向空气弹簧的主气室内充放气体来实 现车身高度的调节。
图3-15 车身高度控制调节原理 1—压缩机 2—电动机 3—干燥器及排气阀 4—控制电磁阀 5—空气悬架 6—指示灯 7—悬架ECU 8—车身高度传感器
悬架ECU根据车高传感器送来的信号来判 断车身的高度状况。当判定车身需要升高时, 向高度控制阀发出指令,高度控制阀打开, 压缩空气进入空气弹簧的主气室,车身升高; 当判定车身需要降低时,发出指令,控制高 度控制阀和排气阀同时通电打开,悬架的主 气室中的空气通过高度控制阀、管路,最后 由排气阀排出,车身高度下降;当车身达到 规定高度时,高度控制阀关闭,空气弹簧的 主气室中的空气量保持不变,车身维持一定 高度不变。
② 空气悬架刚度的调节。电控悬架是用 空气弹簧代替传统悬架的螺旋弹簧或钢板弹 簧,空气悬架的构造如图3-11所示。主气室 是可变容积的,在它的下部有一个可伸缩的 橡皮隔膜,压缩空气进入主气室可升高悬架 的高度,反之使悬架高度下降。主、副气室 设计成一体既节省空间,又减轻了重量。悬 架的上端与车架相连,下端与车桥相连。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电控悬架系统控制原理与检修
作者:顾丽英
来源:《科学与信息化》2016年第35期
摘要近年来,我国汽车工业发展飞速,许多新技术在汽车上得到应用,满足了人们对汽车安全性、舒适性越来越高的要求。
随着汽车电子技术以及高速公路飞速发展的同时,各汽车厂家相继开发了电控悬架系统以提高汽车性能。
由于电控悬架的应用数量不断增加,使电控悬架的维护逐渐被人们重视,但由于普及速度太快,致使对于电控悬架这方面的维护比较欠缺,本篇阐述了电控悬架的结构原理及检修。
关键词电控悬架;控制原理;检修
1 电控悬架概述(自适应阻尼悬挂系统ADS)
传统悬架的弹簧刚度是固定的,减振器阻尼也是确定的,不能同时满足良好的乘坐舒适性和操纵稳定性,无法满足现代社会的需求。
对于传统悬架,如果悬架刚度低,那么悬架的平顺性好,但会造成汽车在行驶过程中产生横摆和纵摇,使汽车行驶稳定性降低,增加了驾驶危险性,不利于安全行车。
如果只是单方面降低悬架刚度,而不改变减振器阻尼,地面冲击力还是会通过减振器传到车身,也会影响汽车乘坐的舒适性[1]。
反之,悬架刚度高,汽车操纵稳定性好但乘坐舒适性变差。
因此,悬架弹簧刚度控制和减振器阻尼控制在设计的时候最好能随路况改变,才能使汽车的乘坐舒适性和操纵稳定性得到兼顾。
这便有了电控悬架系统,它能使车身高度,悬架刚度,减振器阻尼的大小随汽车的负载、速度及路面状况等行驶条件的变化而自动调节。
电控悬架通过采用电子技术控制,使车辆能提高汽车乘坐舒适性和同时提高汽车操纵稳定性,也能使两者在各种行驶条件下达到最佳的组合。
2 电控悬架系统的功能和控制过程
2.1 电控悬架功能
电控悬架系统的汽车能够根据本身的负载情况、行驶状态和路面情况等,主动地对悬架弹簧刚度和减振器阻尼调整、车身高度调整、高车速控制、急加速时车身的“后仰”控制(车尾下蹲)、制动时的车身的“点头”控制(车头下沉)、转向时的车身的“侧倾”控制、坏路面控制和路面感应半主动控制等。
2.2 主要组成
目前,电控空气悬架在高级轿车、客车上应用较为广泛,主要由传感器(转向传感器、车高传感器、车速传感器、节气门位置传感、加速度传感器)、电控悬架ECU 和执行器(压缩
机控制继电器、空气压缩机排气阀、空气弹簧进/排气电磁控制阀、模式控制继电器)等组成。
根据悬架车身高度、车速、转向和制动等传感信号,由ECU控制电磁式或步进电机执行器,改变悬架的特性,以适应各种复杂的行驶工况对悬架特性的不同要求。
[2]
2.3 电控悬架主要控制过程
ECU接收由车速传感器、转向传感器、加速度传感器和汽车高度传感器传来的信息,计算并控制弹簧刚度、减震器阻尼力和车身高度,具体包括防“点头”控制、防“侧倾”控制、防“下坐”控制、坏路控制、高车速控制和车身高度控制等。
(1)防“点头”控制
该控制用于防止汽车在制动时过量的“点头”。
一般是汽车高速行驶时突然制动时发生的现象,可以分别用制动灯开关和汽车高度传感器检测制动状况和前倾状况。
如果判断为汽车处于紧急制动时自动地将弹簧刚度增加,使在正常行驶条件下时的弹簧刚度的“中”设置变为“硬”设置,当不再需要时则恢复到一般状态的设置。
一般在松开制动踏板1s后这一控制被取消,悬架执行器恢复至原来的减振阻尼力和弹簧刚度。
[3]
(2)防“侧倾”控制
该控制可在汽车转弯时和S形弯路上抑制车辆的侧倾。
当汽车紧急转向时,应由正常行驶的“中”刚度转换为“硬”刚度,以防止车辆产生侧倾。
当转向盘恢复至正前方位置约2s后,悬架ECU取消这一控制,悬架恢复至原来的减振阻尼力和弹簧刚度。
(3)防“下坐”控制
该控制可在汽车起步或突然加速时抑制汽车后部的“下坐”。
悬架ECU通过节气门位置的变化程度判断汽车是否在起步或者急加速,如果是,则通过使悬架执行器动作把减震器阻尼力和弹簧刚度设置到“硬”状态。
从而抑制汽车起步或急加速时产生“下坐”现象。
这一控制约在2s 后或是车速达到预定值时取消。
(4)坏路控制
该控制可抑制汽车在不平道路上行驶时发生的碰底、俯仰和跳振,改善乘坐的舒适性。
可根据汽车前后高度的变化分别对前后轮单独进行。
当左前或右前高度传感器检测到路面不平整时,悬架ECU将减振阻尼力设置为“中”,弹簧刚度设置为“硬”;若检测到路面很不平整时,悬架ECU将减振阻尼力和弹簧刚度均设置为“硬”。
但当车速低于10km/h时,不再进行这一控制。
(5)高车速控制
该控制可在汽车高速行驶时改善行驶的稳定性和可控制性。
当车速在140km/h以上,悬架ECU将减振阻尼力和弹簧刚度分别设置到“中”和“硬”位置,以提高汽车稳定性。
当车速降至120km/h以下时,悬架ECU使悬架执行器恢复至原来的设置。
(6)车身高度控制
当悬架ECU检测到汽车高度变化时,通过控制排气电磁阀及空气压缩机的动作,调节气缸内的空气压缩量,使汽车高度保持恒定。
不管车内乘员人数和装载质量如何变化,电控悬架都能控制车身高度,使其保持恒定。
3 电控悬架系统的检修
在对电控悬架系统进行维修与诊断故障时,一般首先要进行自诊断系统检测,然后进行功能检查与调整。
3.1 自诊断系统
当维修人员需要进行电控悬架系统的故障自诊断测试,读取ECU中存储的故障码时,首先要进入故障自诊断状态。
如果自诊断系统显示正常代码,可是汽车悬架系统故障仍然出现,此时就应该根据故障的现象进行人工判断排除。
3.2 功能检查与调整
(1)车辆高度功能检查
通过操作高度控制开关来检查。
①检查胎压是否正常。
②检查车身高度。
③起动发动机,将高度控制开关从NORM位置转到HIGH位置,高度的变化量应为10~30mm,从操纵开关到压缩机启动约需2s,从压缩机启动到完成高度调整所需的时间20~
40s。
④使车辆处于“HIGH”高度调整状态,起动发动机,并将高度控制开关从HIGH位置切换至NORM位置。
汽车车身高度的变化量应为10~30mm,从操作控制开关到排气约需2s,从开始排气到完成高度调整所需的时间20~40s。
(2)安全阀检查
当压缩机工作时,检查安全阀是否能工作。
①将点火开关转到ON位置,连接高度控制连接器的两端子,使压缩机工作。
②等压缩机工作一段时间后,检查安全阀是否放气。
若不放气,应检查压缩机、安全阀是否工作不良以及管路是否漏气。
③将点火开关转至OFF位置,清除故障代码。
(3)管路漏气检查 [4]
①将高度控制开关置于HIGH位置,使车辆高度升高,使发动机熄灭。
②在软、硬管连接处涂抹肥皂水检查是否有漏气现象。
除了以上的检查,还有车身高度的检查与调整、指示灯的检查、检查输入信号、电控悬架电路故障的检查、车身高度传感器电路的故障检查、悬架控制执行器电路的故障检查等。
4 总结
本文主要介绍了汽车电控悬架的重要性、功能和主要控制过程及简单的检修。
电控主动悬架性能优越,由于成本原因还只能成为高级轿车和豪华客车的装备。
采用新型电控技术,研究和开发一类控制有效、能耗低、造价合理的无级可调阻尼减振器和算法简单有效地控制策略将是主动悬架走向大众的必经之路。
由于每种车型的电子悬系统具体结构不尽相同,特别是采用不同的动力源系统时,其机理不同,因此具体的检修方法和步骤会有所不同。
无论其结构怎样变化,都是从基础的结构上发展过来的,因此,主要掌握其基本原理和基本的维修技术,对于进一步熟练掌握其维修技术并不困难。
参考文献
[1] 黄松.丰田凌志LS400轿车的故障自诊断系统[J].汽车维护与修理, 1998 (2).
[2] 李春明.现代汽车底盘技术[M].北京:北京理工大出版社,2002.
[3] 吴际璋.当代汽车电控系统结构原理与检修[M].北京:人民交通出版社,2001.
[4] 赵良红.汽车底盘电控技术[M]. 机械工业出版社,2012.06.。