线性代数考试题库及答案(五)

合集下载

线性代数单元测试卷(含答案)

线性代数单元测试卷(含答案)

线性代数单元测试卷(含答案)一、选择题(每题2分,共20分)1. 在线性代数中,什么是矩阵的秩?A. 矩阵的行数B. 矩阵的列数C. 矩阵的非零行数D. 矩阵的最大线性无关行数正确答案:D2. 下列哪个不是矩阵的运算?A. 矩阵的加法B. 矩阵的减法C. 矩阵的除法D. 矩阵的乘法正确答案:C3. 矩阵的转置满足下列哪个性质?A. (A^T)^T = AB. (AB)^T = B^T * A^TC. (A + B)^T = A^T + B^TD. (AB)^T = A^T + B^T正确答案:B4. 什么是向量的线性组合?A. 向量相加B. 向量相减C. 向量乘以常数后相加D. 向量与常数相乘正确答案:C5. 下列哪组向量线性无关?A. (1, 0)B. (0, 1)C. (1, 1)D. (1, -1)正确答案:C二、填空题(每题3分,共30分)1. 给定矩阵A = [[1, 2], [3, 4]],求A的逆矩阵。

正确答案:[[-2, 1], [1.5, -0.5]]2. 给定矩阵B = [[2, 4], [1, 3]],求B的特征值。

正确答案:[5, 0]3. 给定向量v = (1, 2, 3),求v的范数。

正确答案:sqrt(14)4. 给定矩阵C = [[1, 2, 3], [4, 5, 6]],求C的秩。

正确答案:25. 给定矩阵D = [[1, 2], [3, 4], [5, 6]],求D的转置矩阵。

正确答案:[[1, 3, 5], [2, 4, 6]]三、解答题(每题10分,共40分)1. 什么是线性相关和线性无关?线性相关表示向量之间存在线性组合的系数不全为零的情况,即存在非零向量组合得到零向量。

线性无关表示向量之间不存在这样的关系,即只有全为零的线性组合才能得到零向量。

2. 什么是矩阵的行列式?矩阵的行列式是一个标量,它是一个方阵中各个元素按照一定规律相乘再求和的结果。

行列式可以用来判断方阵的逆是否存在,以及计算方阵的特征值等。

考研数学一(线性代数)历年真题试卷汇编5(题后含答案及解析)

考研数学一(线性代数)历年真题试卷汇编5(题后含答案及解析)

考研数学一(线性代数)历年真题试卷汇编5(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(16年)设二次型f(x1,x2,x3)=x12+x22+x32+4x1x2+4x1x3+4x2x3,则f(x1,x2,x3)=2在空间直角坐标下表示的二次曲面为A.单叶双曲面.B.双叶双曲面.C.椭球面.D.柱面.正确答案:B解析:二次型f(x1,x2,x3)的矩阵为由得A的全部特征值为λ1=5,λ2=λ3=一1,因此,二次曲面方程f(x1,x2,x3)=2在适当的旋转变换下可化成方程5y12一y22一y32=2,由此可知该二次曲面是双叶双曲面.知识模块:线性代数2.(98年)设A、B是两个随机事件,且0<P(A)<1,P(B)>0,P(B | A)=,则必有A.P(A | B)=.B.P(A|B))≠.C.P(AB)=P(A)P(B).D.P(AB)≠P(A)P(B).正确答案:C 涉及知识点:概率论与数理统计3.(06年)设A,B为随机事件,且P(B)>0,P(A | B)=1,则必有A.P(A ∪B)>P(A).B.P(A ∪B)>P(B).C.P(A ∪B)=P(A).D.P(A ∪B)=P(B).正确答案:C解析:由1=P(A|B)=得P(B)=P(AB)故P(A ∪B)=P(A)+P(B)一P(AB)=P(A),选(C).知识模块:概率论与数理统计4.(07年)某人向同一目标独立重复射击,每次射击命中目标的概率为p(0<p<1),则此人第4次射击恰好第2次命中目标的概率为A.3p(1-p)2.B.6p(1一p)2.C.3p2(1一p)2.D.6p2(1一p)2.正确答案:C解析:P{第4次射击恰好第2次命中目标}=P{前3次射击恰中1枪,第4次射击命中目标}=P{前3次射击恰中1枪}.P{第4次射击命中目标}=C31p(1一p)2.p=3p2(1一p)2 知识模块:概率论与数理统计5.(14年)设随机事件A与B相互独立,且P(B)=0.5,P(A—B)=0.3,则P(B—A)=A.0.1B.0.2C.0.3D.0.4正确答案:B 涉及知识点:概率论与数理统计6.(15年)若A,B为任意两个随机事件,则A.P(AB)≤P(A)P(B).B.P(AB)≥P(A)P(B).C.D.正确答案:C 涉及知识点:概率论与数理统计填空题7.(87年)设在一次试验中A发生的概率为p,现进行n次独立试验,则A 至少发生一次的概率为_____;而事件A至多发生一次的概率为____.正确答案:1一(1一p)n;(1一p)n+np(1一p)n-1.解析:由贝努里概型的概率计算公式,A至少发生一次的概率为1一P(A发生0次)=1—Cn0p0(1一p)n-0。

线性代数试题库+解析

线性代数试题库+解析

线性代数期末考试题库一、填空题(1)设A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-7345327254321111,则=+++44434241A A A A 6+2-22+14=0 (2)若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101010001P , 则P AP=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++++++13331232133311312322232113121311a a a a a a a a a a a a a a a a (3)设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963042321,B 为三阶非零矩阵,满足AB=O ,则r(B)= 1 3)因为rank(AB)>=rank(A)+rank(B)-n ,而本题中rank(AB)=0,rank(A)-2,所以rank (B )=1 (4)设44⨯矩阵A=[]432,,,γγγα,B=[]432,,,γγγβ其中432,,,,γγγβα均为四维列向量,且已知行列式,1,4==B A 则=+B A ( 40 )(5)设C B A ,,皆为n 阶矩阵,已知0)det(≠-A I 。

若AB I B +=,CA A C +=,则=-C BE(5)解析:因为AB I B +=,则B(I-A)=I ,所以(I-A)=B -1。

又CA A C +=,则C(I-A)=A ,所以有CB -1=A, C=AB, B-C=B-AB=B(I-A)=I;(6)设A 为三阶非零矩阵,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=a B 11213112,且O AB T=)(,则=a 0(6)解析:(AB)T =O ,即为AB=O,说明A 有非零解B ,说明rank(A)=rank(A|B)<3;当a 不等于0时,rank(B)=3,此时rank(A|B)=3,所以只有a=0,rank(A|B)<3。

(7)设三阶方阵A =[21,,γγα] ,B=[β21,,γγ]其中21,,,γγβα均为三维列向量,且已知det A =3, det B=4,则det(5A -2B )= 63 (8)已知齐次线性方程组⎪⎩⎪⎨⎧=++=+-+-=-+-++00)3(0)2()2(3213213221ax x x abx x a x x a ab x a b bx 的解空间是二维的,则=a 2 ,=b -1(8)注:齐次线性方程组的解空间的维数=n-r(A).非齐次线性方程组的解不够成线性空间。

自考试题线性代数题库及答案

自考试题线性代数题库及答案

自考试题线性代数题库及答案线性代数是数学的一个重要分支,广泛应用于工程、物理、计算机科学等领域。

以下是一套自考试题线性代数题库及答案,供学习者参考。

一、选择题1. 下列矩阵中,哪一个是可逆矩阵?A. \( A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \)B. \( B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)C. \( C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)D. \( D = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \)答案: C2. 设 \( A \) 是一个 \( n \times n \) 矩阵,\( I \) 是 \( n\times n \) 的单位矩阵,若 \( A^2 = I \),则 \( A \) 称为:A. 正交矩阵B. 反对称矩阵C. 正交变换矩阵D. 反射变换矩阵答案: D二、填空题1. 设向量 \( \mathbf{v} = (1, 2, 3) \),向量 \( \mathbf{w} =(4, 5, 6) \),这两个向量的点积为 __________。

答案: 322. 若 \( A \) 是一个 \( m \times n \) 矩阵,\( B \) 是一个\( n \times p \) 矩阵,则 \( AB \) 的行列数为 __________。

答案: \( m \times p \)三、解答题1. 证明:若 \( A \) 是一个 \( n \times n \) 矩阵,且 \( A^n =I \),则 \( A \) 必定可逆。

解答:由于 \( A^n = I \),我们可以得出 \( A \) 的 \( n \) 次幂是单位矩阵。

线性代数期末考试题及答案

线性代数期末考试题及答案

《线性代数》期末考试题及答案一、单项选择题(每小题3分,共24分).1.设行列式1112132122233132331a a a a a a a a a =,则111112132121222331313233234234234a a a a a a a a a a a a --=-( ). A. 6; B. -6; C. 8; D. -8.2.设B A ,都是n 阶矩阵,且0=AB , 则下列一定成立的是( ).A. 0A =或0B =;B. 0A =且0B =;C. 0=A 或0=B ;D. 0=A 且0=B .3.设A ,B 均为n 阶可逆矩阵,则下列各式中不正确...的是( ). A. ()T T T A B A B +=+; B . 111()A B A B ---+=+; C. 111()AB B A ---= ; D. ()T T T AB B A =.4.设12,αα是非齐次线性方程组Ax b =的解,是β对应的齐次方程组0Ax =的解,则Ax b =必有一个解是( ).A .21α+α;B .21α-α;C . 21α+α+β ;D .121122βαα++.5.齐次线性方程组123234 020x x x x x x ++=⎧⎨--=⎩的基础解系所含解向量的个数为( ).A. 1;B. 2;C. 3;D. 4. 6.向量组12,,αα…,s α(2)s ≥线性无关的充分必要条件是( ).A. 12,,αα…,s α都不是零向量;B. 12,,αα…,s α任意两个向量的分量不成比例;C. 12,,αα…,s α每一个向量均不可由其余向量线性表示;D. 12,,αα…,s α至少有一个向量不可由其余向量线性表示. 7.若( ),则A 相似于B .A. A B = ; B . 秩(A )=秩(B );C. A 与B 有相同的特征多项式;D. n 阶矩阵A 与B 有相同的特征值,且n 个特征值各不相同. 8.正定二次型1234(,,,)f x x x x 的矩阵为A ,则( )必成立.A. A 的所有顺序主子式为非负数;B. A 的所有顺序主子式大于零;C. A 的所有特征值为非负数;D. A 的所有特征值互不相同.二、填空题(每小题3分,共18分)1.设3阶矩阵100220333A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,*A 为A 的伴随矩阵,则*A A =_____________.2.1111n⎛⎫⎪⎝⎭=__________________(n 为正整数). 3.设a b A c d ⎛⎫= ⎪⎝⎭,且det()0A ad bc =-≠,则1A -=________________.4.已知4阶方阵A 的秩为2,则秩(*A )=_________________.5.已知向量组123(1,3,1),(0,1,1),(1,4,)a a a k ===线性相关,则k =____________.6.3阶方阵A 的特征值分别为1,-2,3,则1A -的特征值为_________.三、计算题(10分,共44分)1.(7分)计算行列式01231000100001x x a a a a ---2.(7分)设矩阵121348412363A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,问a 为何值时,(1) 秩(A )=1; (2) 秩(A )=2.3.(15分)给定向量组12103a -⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=,21324a ⎛⎫⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,33021a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭=,40149a ⎛⎫ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,试判断4a 是否为123,,a a a 的线性组合;若是,则求出组合系数4.(15分)λ取何实值时,线性方程组12233414x x x x x x x x λλλλλλλλ-=⎧⎪-=⎪⎨-=⎪⎪-+=⎩有唯一解、无穷多解、无解?在有无穷多解的情况求通解。

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

线性代数第五章习题答案

线性代数第五章习题答案

则 H 是正交阵. 综上得证 H 是对称的正交阵.
4 . 设 A 与 B 都是正交阵, 证明 AB 也是正交阵.
证明: 因为 A, B 是正交阵, 故 A−1 = AT , B −1 = B T .
(AB ) (AB ) = B T AT AB = B −1 A−1 AB = E .
T
故 AB 也是正交阵.
9 . 设 A 为正交阵, 且 |A| = −1, 证明 λ = −1 是 A 的特征值.
证明: 即需证明 λ = −1 满足特征方程 |A − λE | = 0, 即 |A + E | = 0. 因为
|A + E | = A + AT A = E + AT |A| = − AT + E = − (A + E )T = − |A + E | , (|A| = −1) (A 为正交阵)
(A2 − 3A + 2E )p = (λ2 − 3λ + 2)p.
又由 A2 − 3A + 2E = O , 代入上式得
(λ2 − 3λ + 2)p = 0.
而特征向量 p = 0, 所以
λ 2 − 3λ + 2 = 0 .
解得 λ = 1 或 2. 得证 A 的特征值只能取 1 或 2. 一个有缺陷的证明: 由 A2 − 3A + 2E = O , 得 (A − 2E )(A − E ) = O . 两边取行列式得
的全部特征值向量.
−1 0 1 1 0 0
0 1 −1
−1 1 0 0 0 2 0
0 , −1
得基础解系 p3 = 1 , 故 k3 p3 (k3 = 0) 是对应于 λ3 = 9 的全部特征值向量. 2 (3) 由 −λ |A − λE | = 0 1

线性代数网络教学阶段测试五

线性代数网络教学阶段测试五

一、单项选择题(共20题)1.下列矩阵中不是二次型的矩阵的是()【正确答案】C【您的答案】A【答案解析】2.n元实二次型正定的充分必要条件是()A.该二次型的秩=nB.该二次型的负惯性指数=nC.该二次型的正惯性指数=它的秩D.该二次型的正惯性指数=n【正确答案】D【您的答案】A【答案解析】二次型正定的充分必要条件是二次型的正惯性指数=n3.下列条件不能保证n阶实对称阵A为正定的是()A.A-1正定B.A没有负的特征值C.A的正惯性指数等于nD.A合同于单位阵【正确答案】B【您的答案】A【答案解析】A-1正定表明存在可逆矩阵C使C T A-1C=I n,两边求逆得到C-1A(C T)-1= C-1A(C -1)T=I n即A合同于I n,A正定,因此不应选A。

C是A正定的定义,也不是正确的选择。

D表明A的正惯性指数等于n,故A是正定阵,于是只能B。

事实上,一个矩阵没有负的特征值,但可能有零特征值,而正定阵的特征值必须全是正数。

4.矩阵的特征值为()A.1,1B.2,2C.1,2D.0,0【正确答案】A【您的答案】A【答案正确】【答案解析】得到特征值是1,1。

5.已知相似,则有()【正确答案】D【您的答案】A【答案解析】6.设矩阵相似.则下列结论错误的是()【正确答案】B【您的答案】A【答案解析】根据相似矩阵的性质判断B错误.7.设A为3阶矩阵,且已知,则A必有一个特征值为()【正确答案】B【您的答案】A【答案解析】8.已知3阶矩阵A的特征值为1,2,3,则|A-4E|=()A.2B.-6C.6D.24【正确答案】B【您的答案】A【答案解析】∵3阶矩阵A的特征值为1,2,3∴|λE - A | 展开式含有三个因子乘积:(λ-1)(λ-2)(λ-3)∵|λE -A | 展开式λ3项系数为1∴|λE - A |=(λ-1)(λ-2)(λ-3)∵A为3阶矩阵∴| A-λE |=(-1)3|λE - A |=(-1)3(λ-1)(λ-2)(λ-3)将4代入上式得到-6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数考试题库及答案一、单项选择题(共5小题,每题2分,共计10分)1.在111()111111x f x x x -+=-+-展开式中,2x 的系数为 ( )(A) -1 (B) 0 (C) 1 (D) 22.A 是m ×n 矩阵,(),r A r B =是m 阶可逆矩阵,C 是m 阶不可逆矩阵,且()r C r <,则 ( )(A) BAX O =的基础解系由n-m 个向量组成 (B) BAX O =的基础解系由n-r 个向量组成 (C) CAX O =的基础解系由n-m 个向量组成 (D) CAX O =的基础解系由n-r 个向量组成3.设n 阶矩阵,A B 有共同的特征值,且各自有n 个线性无关的特征向量,则( ) (A)A B = (B) ,0A B A B ≠-=但(C) AB (D) A B 与不一定相似,但A B =4.设,,A B C 均为n 阶矩阵,且AB BC CA E ===,其中E 为n 阶单位阵,则222A B C ++= ( )(A) O (B) E (C) 2E (D) 3E5.设1010,0203A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则A B 与 ( ) (A)合同,且相似 (B)不合同,但相似 (C)合同,但不相似 (D )既不合同,又不相似二、填空题(共 二、填空题(共10小题,每题 2分,共计 20 分)1.已知1112223330a b c a b c m a b c =≠,则111122223333232323a b c c a b c c a b c c ++=+ 。

2.设101020101A ⎛⎫⎪= ⎪ ⎪⎝⎭,若三阶矩阵Q 满足2,AQ E A Q +=+则Q 的第一行的行向量是 。

3.已知β为n 维单位列向量,T β为β的转置,若T C ββ= ,则2C = 。

4.设12,αα分别是属于实对称矩阵A 的两个互异特征值12,λλ的特征向量,则12T αα= 。

5.设A 是四阶矩阵,A *为其伴随矩阵,12,αα是齐次方程组0AX =的两个线性无关解,则()r A *= 。

6.向量组123(1,3,0,5,0),(0,2,4,6,0),(0,3,0,6,9)T T T ααα===的线性关系是 。

7.已知三阶非零矩阵B 的每一列都是方程组1231231232202030x x x x x x x x x λ+-=⎧⎪-+=⎨⎪+-=⎩的解,则λ= 。

8.已知三维向量空间3R 的基底为123(1,1,0),(1,0,1),(0,1,1)T T T ααα===,则向量(2,0,0)T β=在此基底下的坐标是 。

9.设21110012100,112004A a a ⎛⎫⎛⎫⎪⎪== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭则 。

10.二次型222123123121323(,,)222222f x x x x x x x x x x x x =++++-的秩为 。

三、计算题(一)(共4小题,每题8分,共计32分)1.试求行列式1234ab b b ba b bD b b a b =的第四行元素的代数余子式之和.2.设100100020,010003031A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 求1()AB -.3.设n 阶方阵,A B 满足2A B AB +=,已知120120003B ⎛⎫⎪=- ⎪⎪⎝⎭,求矩阵A . 4.设二次型22212312313(,,)222(0)f x x x ax x x bx x b =+-+>中,二次型的矩阵A 的特征值之和为1,特征值之积为-12 .(1)求,a b 的值;(2)用配方法化该二次型为标准形.四、计算题(二)(共3小题,每题10 分,共30分) 1.当λ为何值时,方程组1231231232124551x x x x x x x x x λλ+-=⎧⎪-+=⎨⎪+-=-⎩ 无解、有唯一解或有无穷多组解?在有无穷多组解时,用导出组的基础解系表示全部解.2已知向量组1(1,3,2,0)T α=,2(7,0,14,3)Tα= ,3(2,1,0,1)T α=-,45(5,1,6,2),(2,1,4,1)T T αα==-,(1)求向量组的秩;(2)求该向量组的一个极大无关组,并把其余向量分别用该极大无关组线性表示.3.已知矩阵122212221A ⎛⎫⎪= ⎪ ⎪⎝⎭;判断A 能否对角化,若可对角化,求正交矩阵P ,使1PAP -为对角矩阵,并写出相应的对角矩阵。

五、证明题(共2小题,每题4分,共计8分)1.设α是n 阶矩阵A 的属于特征值λ的特征向量.证明:α也是534A A E -+的特征向量. 其中E 为n 阶单位矩阵.2. 设n 维向量组,,αβγ线性无关,向量组,,αβδ 线性相关,证明:δ必可由,,αβγ线性表示.《线性代数》(A 卷)答案要点及评分标准一.选择题(共5小题,每题2分,共计10分)1.A ; 2.B ; 3.C ; 4.D ; 5.C .二.填空题(共10小题,每题2分,共计20分)1.6m ; 2.(2,0,1); 3.Tββ; 4.0; 5.0; 6.线性无关; 7. 1; 8. 1,1,-1; 9. 1; 10. 2.三、计算题(一)(共4小题,每题8分,共计32分)1、解:414243441111a b b bb a b bA A A A b b a b +++=………4分 300()001a b a b a b a b a b a b b a b ----==-- ………8分2、解:方法一:100100100020010020003031093AB ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭………2分100100()0200100931ABE ⎛⎫ ⎪= ⎪ ⎪⎝⎭→10010010********312⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪- ⎪⎝⎭→10010010100023100123⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭所以11001()00231023AB -⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪- ⎪⎝⎭………8分(2)方法二:11110010010011()010000022********0323AB B A ---⎛⎫⎛⎫⎪ ⎪⎛⎫⎪⎪⎪ ⎪ ⎪=== ⎪⎪ ⎪ ⎪-⎪ ⎪⎝⎭ ⎪ ⎪-⎝⎭⎝⎭………8分3、解:方法一:由2A B AB +=, 得到()2A E B B -=-,……2分→110010210100021001002⎛⎫- ⎪ ⎪⎪- ⎪ ⎪⎪- ⎪⎝⎭ ……5分 所以,E B -可逆,12()A B E B -=--=320120003-⎛⎫ ⎪⎪ ⎪⎝⎭. ……8分020100(,)110010002001E B E -⎛⎫ ⎪-=- ⎪ ⎪-⎝⎭方法二:由2A B AB +=, 得到()2A E B B -=-, ……2分 用初等列变换求A0201100022240240006E B B -⎛⎫ ⎪- ⎪ ⎪--⎛⎫= ⎪ ⎪---⎝⎭ ⎪ ⎪- ⎪ ⎪-⎝⎭ → 100010001320120003⎛⎫⎪ ⎪ ⎪⎪- ⎪ ⎪ ⎪ ⎪⎝⎭……6分所以, 320120003A -⎛⎫⎪= ⎪ ⎪⎝⎭. ……8分4、 解:二次型的矩阵002002a b A b ⎛⎫⎪= ⎪ ⎪-⎝⎭ 根据题意得到22(2)1,4212a a b ++-=--=- 1,2a b == ………4分f =222222123131323224(2)26x x x x x x x x x +-+=++- 令 11322332y x x y x y x=+⎧⎪=⎨⎪=⎩,标准形为22212326y y y +-. ………8分四、计算题(二)(共3小题,每题10分,共计30分)1、解: 2111(1)(54)455A λλλλ-=-=-+- 由克莱姆法则当415λλ≠≠-且时,方程组有唯一解; ……2分当45λ=-时(,)r A b =42115411254551⎛⎫-- ⎪ ⎪⎪-- ⎪ ⎪-- ⎪ ⎪⎝⎭→⋅⋅⋅→1045545510009--⎛⎫ ⎪-- ⎪ ⎪⎝⎭有()(,)r A r A b ≠,所以方程组无解; ……4分 当1λ=时(,)r A b =211111124551-⎛⎫⎪- ⎪ ⎪--⎝⎭→⋅⋅⋅→100101110000⎛⎫ ⎪-- ⎪ ⎪⎝⎭ 有()(,)23r A r A b ==<,方程组有无穷多组解,原方程组等价于方程组为12311x x x =⎧⎨-=-⎩ 取30x =,得到特解(1,1,0)T η=-令31x =,代入等价方程组的齐次线性方程组中求得基础解系为(1,0,1)T ξ=方程组的全部解为x k ηξ=+ 其中k 为任意常数 ……10分2、解:初等行变换矩阵12345(,,,,)ααααα到行最简梯矩阵为123451725230111(,,,,)21406403121ααααα⎛⎫⎪-- ⎪= ⎪ ⎪ ⎪⎝⎭→ 211003311010330011000000⎛⎫- ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭……6分可得向量组的秩为3,向量组的一个极大无关组为123,,ααα,且41235122111,3333ααααααα=++=-+ ……10分3、解:A 的特征多项式为2122212(5)(1)221E A λλλλλλ----=---=-+--- ………3分得到矩阵A 的全部特征值为1231,5λλλ==-= 当121λλ==-时,由()0E A x --=得一个基础解系12(1,1,0),(1,0,1)T T ξξ=-=-正交化,单位化1(T β=,2(Tβ=当35λ=时,由(5)0E A x -=的一个基础解 3(1,1,1)T ξ=将其单位化得3Tβ= ………8分 因此A 能对角化且正交阵123(,,)6Pβββ⎛⎫⎪==-⎝,1P AP-=Λ使,相应的对角阵为100010005-⎛⎫⎪Λ=-⎪⎪⎝⎭……10分五、证明题(共2小题,每题4分,共计8分)1、证明:因为,Aαλα=有53535353(4)44(41)A A E A Aααααλαλααλλα-+=-+=-+=-+根据特征值和特征向量的定义得α也是534A A E-+的特征向量.………4分2、证明:由,,αβγ线性无关,得到,αβ线性无关,又,,αβδ线性相关,则δ可以由,αβ线性表示,所以δ必可由,,αβγ线性表示.………4分。

相关文档
最新文档