(完整word版)线性代数考试题及答案解析
线性代数试题及详细答案

线性代数试题及详细答案线性代数试题及详细答案————————————————————————————————作者:————————————————————————————————日期:线性代数(试卷一)一、填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。
2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。
4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是_________5. 设A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。
6. 设A 为三阶可逆阵,=-1230120011A,则=*A 7.若A 为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。
10.若()Tk 11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分)1. 向量组r ααα,,,21Λ线性相关且秩为s ,则(D) A.s r = B.s r ≤C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A(A)A.8 B.8-C.34 D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R =D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。
(完整word版)线性代数习题集(带答案)

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C ) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B )k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项。
(A) 0 (B )2-n (C ) )!2(-n (D) )!1(-n4.=0001001001001000( )。
(A ) 0 (B)1- (C) 1 (D) 25. =0001100000100100( ).(A) 0 (B)1- (C ) 1 (D) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B )1- (C) 1 (D) 27。
若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A ) 4 (B) 4- (C) 2 (D ) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( )。
(A)ka (B)ka - (C )a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。
(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A )1- (B )2- (C )3- (D )011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( )。
最全线性代数习题及参考答案

第一章:一、填空题:1、若a a D ij n ==||,则=-=||ij a D ;解:a a a a a D aa a a a D n nnn nnnn nn )1(11111111-=----=∴==2、设321,,x x x 是方程03=++q px x 的三个根,则行列式132213321x x x x x x x x x = ; 解:方程023=+++d cx bx ax 的三个根与系数之间的关系为:a d x x x a c x x x x x x ab x x x ///321133221321-==++-=++所以方程03=++q px x 的三个根与系数之间的关系为:q x x x p x x x x x x x x x -==++=++3211332213210033)(3321221321333231132213321=--++-=-++=x x x q x x x p x x x x x x x x x x x x x x x3、行列式1000000019980001997002001000= ;解:原式按第1999行展开:原式=!19981998199721)1(0001998001997002001000219981999-=⨯⨯⨯-=+++4、四阶行列式4433221100000a b a b b a b a = ; 解:原式按第一行展开:原式=))(()()(000004141323243243214324321433221433221b b a a b b a a b b b b a a b a b b a a a a b a b b a b a a b b a a --=---=-5、设四阶行列式cdb a a cbda dbcd c ba D =4,则44342414A A A A +++= ;解:44342414A A A A +++是D 4第4列的代数余子式,44342414A A A A +++=0111111111111==d a c d d c c a bd b a c bdd b c c ba6、在五阶行列式中3524415312a a a a a 的符号为 ;解:n 阶行列式可写成∑-=n np p p ta a aD 2211)1(,其中t 为p 1p 2…p n 的逆序数所以五阶行列式中3524415312a a a a a 的符号为5341352412a a a a a 的符号,为1)1()1(5)3,1,5,4,2(-=-=-t7、在函数xx x xxx f 21112)(---=中3x 的系数是 ; 解:根据行列式结构,可知3x 须由a 11=2x ,a 33=x 和第二行的一个元素构成,但此时第三个元素只能取a 22(行、列数均不可重复),所以此式为3332211)3,2,1(2)1(x a a a t -=-,系数为-2。
完整word版线性代数考试题及答案解析

WORD格式整理……_…_学年第一学期期末考试-20102009_…__…_试卷《线性代数》…__…__…_分钟完卷。
分,1201、本试卷共6页,五个大题,满分100答卷说明:_…_…__…号2、闭卷考试。
…学)线(_总分五三四一二_…__…题号_…__…_分数_…__…_…________________ :_____________ 总分人:评阅人…_名…姓…) 分分,共24一、单项选择题。
(每小题得分……)级封班(11?31_…__…111?3__?…行列式【】1._1?311…__…_3111?_…_业……专3021(B) (D)(A) (C) …__…__…???A?A32?3?A阶方阵,数2. 】设,为,则【_…__)_6?624?24 (D) (A) (C) (B) _密_系(n,BA,阶方阵,则下列式子一定正确的是【】3.已知为…__…__…_222B?2(A?B)AB?A?BAAB? (A) (B)_…_…__…_22B?A?B?B)(A?)(A BA?AB (D) (C)_…__…_…_?0??aA?A3A【】4.设,则为阶方阵, _…__……243aaaa (D) (A) ( B) (C)AB等价,则有 5.设矩阵与【】专业技术参考资料WORD格式整理R(A)?R(B)R(A)?R(B) (A) (B)R(A)?R(B)R(A)R(B)的大小不能确定 (C) 和 (D)n Ax?0Ax?0A r有非零解的系数矩阵【】6.设,则元齐次线性方程组的秩为的充分必要条件是r?nr?nr?n nr? (B) (C) (D) (A)a,a,,a(m?2) 向量组】【 7. 线性相关的充分必要条件是m21a,a,,a (A) 中至少有一个零向量m12a,a,,a (B) 中至少有两个向量成比例m12a,a,,a m?1(C) 个向量线性表示中每个向量都能由其余m21a,a,,a m?1(D) 个向量线性表示中至少有一个向量可由其余m21n A与对角阵相似的充分必要条件是阶方阵】8. 【nn)?R(A A个互不相同的特征值有(A) (B)n AA一定是对称阵个线性无关的特征向量 (D)(C)有) 分,共15二、填空题。
线代参考答案(完整版)

线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 行列式的定义一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A D ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。
(完整word版)线性代数试题及答案

线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
线性代数试题(附参考答案)

《 线性代数 》课程试题(附答案)一、 填空。
(3×8=24分)1.设A 为四阶方阵,且3=A ,则=-A 22.设⎪⎪⎪⎭⎫⎝⎛=003020100A ,则=-1A3.设⎪⎪⎭⎫⎝⎛=4321A ,则A 的伴随矩阵=*A 4.设CB A ,,为n 阶方阵,若0≠A ,且C AB =,则=B 5.矩阵A 可逆的充要条件为6.齐次线性方程组01=⨯⨯n n m X A 有非零解的充要条件为7.设n 维向量组321,,∂∂∂线性无关,则向量组32,∂∂ (填“线性相关”或“线性无关”)8.设n 元齐次线性方程组0=Ax ,且n r A r <=)(,则基础解系中含有 个解向量。
二、 计算行列式的值。
(10分)321103221033210=D三、 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=145243121A ,求1-A 。
(10分)四、 设矩阵⎪⎪⎭⎫ ⎝⎛=1112A ,求矩阵X ,使E A AX 2+=。
(10分)五、 问K 取什么值时下列向量组线性相关(10分) T k )1,2,(1=α,T k )0,,2(2=α,T )1,1,1(3-=α。
六、 设A ,B 为n 阶矩阵且2B B =,E B A +=,证明A 可逆并求其逆(6分)七、 设矩阵⎪⎪⎪⎭⎫⎝⎛----=979634121121112A ,求矩阵A 的列向量组的秩及一个极大线性无关组,并把其余向量用极大线性无关组表示。
(15分)八、 求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解。
(15分)《线性代数》课程试题参考答案一、 填空。
(3×8=24分)1.设A 为四阶方阵,且3=A ,则=-A 2482.设⎪⎪⎪⎭⎫ ⎝⎛=003020100A ,则=-1A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛001021031003.设⎪⎪⎭⎫⎝⎛=4321A ,则A 的伴随矩阵=*A ⎪⎪⎭⎫ ⎝⎛--1324 4.设C B A ,,为n 阶方阵,若0≠A ,且C AB =,则=B C A 1- 5.矩阵A 可逆的充要条件为0≠A6.齐次线性方程组01=⨯⨯n n m X A 有非零解的充要条件为n A r <)(7.设n 维向量组321,,∂∂∂线性无关,则向量组32,∂∂线性无关(填“线性相关”或“线性无关”)8.设n 元齐次线性方程组0=Ax ,且n r A r <=)(,则基础解系中含有r n -个解向量。
线性考试题库及答案解析

线性考试题库及答案解析1. 线性代数中,矩阵的秩是指什么?答案:矩阵的秩是指矩阵中线性无关的行(或列)的最大数目。
2. 请解释线性方程组的解集。
答案:线性方程组的解集是指所有满足方程组的未知数的集合。
3. 什么是特征值和特征向量?答案:对于一个方阵A,如果存在一个非零向量v和标量λ,使得Av = λv,则称λ为矩阵A的特征值,v为对应的特征向量。
4. 矩阵的可逆性是什么?答案:如果一个方阵存在逆矩阵,则称该矩阵是可逆的。
5. 请解释什么是正交矩阵。
答案:正交矩阵是指一个矩阵的转置矩阵与其自身的乘积等于单位矩阵的矩阵。
6. 如何判断一个矩阵是否为正定矩阵?答案:一个实对称矩阵是正定的,如果它的所有特征值都是正的。
7. 线性空间的基是什么?答案:线性空间的基是构成该空间的一组线性无关的向量,且这组向量可以线性表出空间中的任意向量。
8. 请解释什么是线性变换。
答案:线性变换是指在两个线性空间之间,保持向量加法和数乘运算不变的映射。
9. 什么是线性方程组的齐次解?答案:线性方程组的齐次解是指方程组中所有方程的系数都为零时的解。
10. 请解释什么是矩阵的迹。
答案:矩阵的迹是指矩阵对角线元素之和。
11. 什么是向量的范数?答案:向量的范数是指衡量向量大小的非负实数。
12. 请解释什么是投影矩阵。
答案:投影矩阵是指将一个向量投影到另一个向量上得到的向量。
13. 什么是线性方程组的非齐次解?答案:线性方程组的非齐次解是指方程组中至少有一个方程的系数不为零时的解。
14. 什么是矩阵的行列式?答案:矩阵的行列式是一个标量值,它提供了矩阵是否可逆的信息。
15. 请解释什么是矩阵的伴随矩阵。
答案:矩阵的伴随矩阵是由原矩阵的代数余子式组成的矩阵的转置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。
2、闭卷考试。
评阅人:_____________ 总分人:______________ 一、单项选择题。
(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+(C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a__________________系__________专业___________班级姓名_______________学号_______________………………………………(密)………………………………(封)………………………………(线)………………………………(A) )()(B R A R < (B) )()(B R A R >(C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解的充分必要条件是(A) n r = (B) n r ≥ (C) n r < (D) n r >【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是(A) m a a a ,,,21 中至少有一个零向量(B) m a a a ,,,21 中至少有两个向量成比例(C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示(D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示【 】8. n 阶方阵A 与对角阵相似的充分必要条件是(A)n A R =)( (B)A 有n 个互不相同的特征值(C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵二、填空题。
(每小题3分,共15分)1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。
2.设矩阵方程⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡12640110X ,则=X 。
3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组0=Ax 的基础解系,则非齐次线性方程组b Ax =的通解为 . 4.设n m ⨯矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。
5.设λ是方阵A 的特征值,则 是2A 的特征值三、计算题(每小题8分,共40分).1.计算行列式2431101231215201---。
2.已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=814312201A ,求其逆矩阵1-A 。
3.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ηηη是它的三个解向量且⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=54321η,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=+432132ηη,求该方程组的通解。
4.求矩阵⎥⎦⎤⎢⎣⎡=2112A 的特征值和特征向量。
5.用配方法化二次型32312123222162252x x x x x x x x x f +++++=成标准型。
四、综合体(每小题8分,共16分)1. 解下列非齐次线性方程组 ⎪⎩⎪⎨⎧=--+=+-+=+-+12222412432143214321x x x x x x x x x x x x2. 已知向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1613,132,321321a a a 求)1(向量组的秩;)2(向量组的一个最大无关组,并把不属于最大无关组的向量用该最大无关组线性表示。
五、证明题(5分) 证明:设n 阶方阵A 满足022=--E A A ,证明A 及E A 2+都可逆,并求1-A 及1)2(-+E A 。
一、单项选择题。
(每小题3分,共24分1 A2 B3 C4 B5 C6 C7 D8 C二、填空题。
(每小题3分,共15分)1. 42.⎥⎦⎤⎢⎣⎡-6412 3. ),(212211R c c c c x ∈++=*ηξξ 4. r n - 5. 2λ三、计算题(每小题8分,共40分).1. 解:2431101231215201---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----72301141023205201………………(2分) =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----40100020500114105201………………(2分) =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----000020500114105201………………(2分) =0………………(2分) 2.已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=814312201A ,求其逆矩阵1-A 。
解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100814010312001201),(E A ………………(2分) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1161001040102211001~r………………(4分)则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-11610422111A ………………(2分) 3.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ηηη是它的三个解向量且⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=54321η,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=+432132ηη,求该方程组的通解。
解:由已知可得:对应的齐次线性方程组0=Ax 的解集S 的秩为134=-,因此齐次线性方程组0=Ax 的任意非零解即为它的一个基础解系。
………………(3分) 令)(2321ηηηξ+-=则022)](2[321321=--=--=+-=b b b A A A A A ηηηηηηξ所以0)6,5,4,3(≠=Tξ为齐次线性方程组0=Ax 的一个基础解系。
………(3分) 由此可得非齐次线性方程组b Ax =的通解为: )(54326543R k k k x ∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=+=*ηξ………………(2分) 4.求矩阵⎥⎦⎤⎢⎣⎡=2112A 的特征值和特征向量。
解:A 的特征多项式为: )3)(1(2112--=--=-λλλλλE A所以A 的特征值为3,121==λλ。
………………(4分)(1)当11=λ时,对应的特征向量满足⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡00111121x x ,解得:21x x -=则11=λ对应的特征向量可取⎥⎦⎤⎢⎣⎡-=111p ………………(2分) (2)当31=λ时,对应的特征向量满足⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--00111121x x ,解得:21x x = 则31=λ对应的特征向量可取⎥⎦⎤⎢⎣⎡=1121p ………………(2分)5.用配方法化二次型32312123222162252x x x x x x x x x f +++++=成标准型。
解:32232231212165222x x x x x x x x x f +++++=322322232144)(x x x x x x x +++++=2322321)2()(x x x x x ++++=………………(4分) 令⎪⎩⎪⎨⎧=+=++=3332232112x y x x y x x x y 则把f 化成标准型得:2221y y f +=…………(4分)四.综合题(每小题8分,共16分)1.解下列非齐次线性方程组⎪⎩⎪⎨⎧=--+=+-+=+-+12222412432143214321x x x x x x x x x x x x解:对增广矩阵B 作初等行变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111122122411112B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-000000100010112~r ………………(5分) 由上式可写出原方程组的通解为:),(0010011000212121321R c c c c x x x x ∈⎥⎥⎥⎥⎤⎢⎢⎢⎢⎡+⎥⎥⎥⎥⎤⎢⎢⎢⎢⎡+⎥⎥⎥⎥⎤⎢⎢⎢⎢⎡-=⎥⎥⎥⎥⎤⎢⎢⎢⎢⎡………………(3分)2.已知向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1613,132,321321a a a 求)1(向量组的秩;)2(向量组的一个最大无关组,并把不属于最大无关组的向量用该最大无关组线性表示。
解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1613132321A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-000510701~r ………………(2分) 则2=A R ,………………(2分)故向量组的最大无关组有2个向量,知21,a a 为向量组的一个最大无关组。
………………(2分)且21357a a a +-=………………(2分)五、证明题(5分)证明:设n 阶方阵A 满足022=--E A A ,证明A 及E A 2+都可逆,并求1-A 及1)2(-+E A 。
证明:(1) 由已知可得:E E A A E E A A )](21[2)(-⇒=-,知A 可逆,)(211E A A -=-………………(2分) (2) 由已知可得E E A E A E A A 4)3)(2(62-=-+=--, E A E E A =-+⇒)]3(41)[2( 知E A 2+可逆,)3(41)2(1A E E A -=+-………………(3分)。