山西近年中考之分式方程与不等式
山西中考数学计算真题汇总(历年)

山西省中考数学计算真题汇总一.选择题(共1小题)1.分式方程的解为()A.x=﹣1 B.x=1 C.x=2 D.x=3二.填空题(共8小题)2.不等式组的解集是.3.化简的结果是.4.计算:=.5.计算:9x3÷(﹣3x2)=.6.方程=0的解为x=.7.方程的解是x=.8.分解因式:5x3﹣10x2+5x=.9.分解因式:ax4﹣9ay2=.三.解答题(共21小题)10.(1)计算:(﹣3)2﹣()﹣1﹣×+(﹣2)0(2)先化简,再求值:﹣,其中x=﹣2.11.解方程:2(x﹣3)2=x2﹣9.12.(1)计算:(﹣3﹣1)×﹣2﹣1÷.(2)解方程:=﹣.13.阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.14.(1)计算:(﹣2)2•sin60°﹣()﹣1×;(2)分解因式:(x﹣1)(x﹣3)+1.15.解不等式组并求出它的正整数解:.16.(1)计算:sin45°﹣()0;(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.解:﹣=﹣…第一步=2(x﹣2)﹣x+6…第二步=2x﹣4﹣x﹣6…第三步=x+2…第四步小明的解法从第步开始出现错误,正确的化简结果是.17.解方程:(2x﹣1)2=x(3x+2)﹣7.18.(1)计算:.(2)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.19.解方程:.20.(1)先化简.再求值:,其中.(2)解不等式组:,并把它的解集表示在数轴上.21.(1)计算:°+(2)先化简,再求值:•,其中x=﹣3.22.化简:23.(1)计算:(x+3)2﹣(x﹣1)(x﹣2)(2)化简:(3)解方程:x2﹣2x﹣3=024.计算:(3﹣π)0+4sin45°﹣+|1﹣|.25.解不等式组:.26.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.27.已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.28.解不等式组,并写出它的所有非负整数解.29.计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|30.已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.山西省中考数学计算真题汇总参考答案与试题解析一.选择题(共1小题)1.(2011•山西)分式方程的解为()A.x=﹣1 B.x=1 C.x=2 D.x=3【分析】观察可得最简公分母是2x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘2x(x+3),得x+3=4x,解得x=1.检验:把x=1代入2x(x+3)=8≠0.∴原方程的解为:x=1.故选B.【点评】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.二.填空题(共8小题)2.(2012•山西)不等式组的解集是﹣1<x≤3.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x>﹣1,解不等式②得,x≤3,所以不等式组的解集是﹣1<x≤3.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.(2012•山西)化简的结果是.【分析】将原式第一项的第一个因式分子利用平方差公式分解因式,分母利用完全平方公式分解因式,第二个因式的分母提取x分解因式,约分后将第一项化为最简分式,然后利用同分母分式的加法法则计算后,即可得到结果.【解答】解:•+=•+=+=.故答案为:.【点评】此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分.4.(2011•山西)计算:=.【分析】根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+0.5﹣6×=,故答案为.【点评】本题是基础题,考查了实数的有关运算,还涉及了零指数幂、负指数幂、二次根式化简、绝对值等考点.5.(2010•山西)计算:9x3÷(﹣3x2)=﹣3x.【分析】根据单项式的除法和同底数幂相除,底数不变,指数相减,进行计算.【解答】解:9x3÷(﹣3x2)=﹣3x.【点评】本题主要考查单项式的除法,同底数幂的除法,熟练掌握运算法则和性质是解题的关键.6.(2010•山西)方程=0的解为x=5.【分析】观察可得最简公分母是(x+1)(x﹣2),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.【解答】解:方程两边同乘以(x+1)(x﹣2),得2(x﹣2)﹣(x+1)=0,解得x=5.经检验:x=5是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.7.(2009•太原)方程的解是x=5.【分析】本题最简公分母为2x(x﹣1),去分母,转化为整式方程求解.结果要检验.【解答】解:方程两边同乘2x(x﹣1),得4x=5(x﹣1),去括号得4x=5x﹣5,移项得5x﹣4x=5,合并同类项得x=5.经检验x=5是原分式方程的解.【点评】解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.8.(2015•北京)分解因式:5x3﹣10x2+5x=5x(x﹣1)2.【分析】先提取公因式5x,再根据完全平方公式进行二次分解.【解答】解:5x3﹣10x2+5x=5x(x2﹣2x+1)=5x(x﹣1)2.故答案为:5x(x﹣1)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.9.(2014•北京)分解因式:ax4﹣9ay2=a(x2﹣3y)(x2+3y).【分析】首先提取公因式a,进而利用平方差公式进行分解即可.【解答】解:ax4﹣9ay2=a(x4﹣9y2)=a(x2﹣3y)(x2+3y).故答案为:a(x2﹣3y)(x2+3y).【点评】此题主要考查了提公因式法与公式法的综合运用,正确利用平方差公式是解题关键.三.解答题(共21小题)10.(2016•山西)(1)计算:(﹣3)2﹣()﹣1﹣×+(﹣2)0(2)先化简,再求值:﹣,其中x=﹣2.【分析】(1)根据实数的运算顺序,首先计算乘方和乘法,然后从左到右依次计算,求出算式(﹣3)2﹣()﹣1﹣×+(﹣2)0的值是多少即可.(2)先把﹣化简为最简分式,再把x=﹣2代入求值即可.【解答】解:(1)(﹣3)2﹣()﹣1﹣×+(﹣2)0=9﹣5﹣4+1=1(2)x=﹣2时,﹣=﹣=﹣===2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a ≠0);②00≠1.(3)此题还考查了分式的化简求值,要熟练掌握,解答此题的关键是要明确:一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.11.(2016•山西)解方程:2(x﹣3)2=x2﹣9.【分析】方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:2(x﹣3)2﹣(x+3)(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x﹣3)=0,解得:x1=3,x2=9.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.12.(2015•山西)(1)计算:(﹣3﹣1)×﹣2﹣1÷.(2)解方程:=﹣.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣4×﹣÷(﹣)=﹣9+4=﹣5;(2)去分母得:2=2x﹣1﹣3,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(2015•山西)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.【分析】分别把1、2代入式子化简求得答案即可.【解答】解:第1个数,当n=1时,[﹣]=(﹣)=×=1.第2个数,当n=2时,[﹣]=[()2﹣()2]=×(+)(﹣)=×1×=1.【点评】此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.14.(2014•山西)(1)计算:(﹣2)2•sin60°﹣()﹣1×;(2)分解因式:(x﹣1)(x﹣3)+1.【分析】(1)本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据整式的乘法,可得多项式,根据因式分解的方法,可得答案.【解答】解:(1)原式=2﹣2×=﹣2;(2)原式=x2﹣4x+3+1=(x﹣2)2.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.15.(2014•山西)解不等式组并求出它的正整数解:.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解①得:x>﹣,解②得:x≤2,则不等式组的解集是:﹣<x≤2.则正整数解是:1,2【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.16.(2013•山西)(1)计算:sin45°﹣()0;(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.解:﹣=﹣…第一步=2(x﹣2)﹣x+6…第二步=2x﹣4﹣x﹣6…第三步=x+2…第四步小明的解法从第二步开始出现错误,正确的化简结果是.【分析】(1)根据特殊角的三角函数值,0指数幂的定义解答;(2)先通分,后加减,再约分.【解答】(1)解:原式=×﹣1=1﹣1=0.(2)解:﹣=﹣====.于是可得,小明的解法从第二步开始出现错误,正确的化简结果是.故答案为二,.【点评】(1)本题考查了特殊角的三角函数值,0指数幂,是一道简单的杂烩题;(2)本题考查了分式的加减,要注意,不能去分母.17.(2013•太原)解方程:(2x﹣1)2=x(3x+2)﹣7.【分析】根据配方法的步骤先把方程转化成标准形式,再进行配方即可求出答案.【解答】解:(2x﹣1)2=x(3x+2)﹣7,4x2﹣4x+1=3x2+2x﹣7,x2﹣6x=﹣8,(x﹣3)2=1,x﹣3=±1,x1=2,x2=4.【点评】此题考查了配方法解一元二次方程,掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方是解题的关键,是一道基础题.18.(2012•山西)(1)计算:.(2)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.【分析】(1)分别根据0指数幂、负整数指数幂、特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行解答即可;(2)先根据整式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:(1)原式=1+2×﹣3=1+3﹣3=1;(2)原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5.当x=﹣时,原式=(﹣)2﹣5=3﹣5=﹣2.【点评】本题考查的是实数的混合运算及整式的化简求值,熟记0指数幂、负整数指数幂、特殊角的三角函数值计算法则及整式混合运算的法则是解答此题的关键.19.(2012•山西)解方程:.【分析】先去分母把分式方程化为整式方程,求出整式方程中x的值,代入公分母进行检验即可.【解答】解:方程两边同时乘以2(3x﹣1),得4﹣2(3x﹣1)=3,化简,﹣6x=﹣3,解得x=.检验:x=时,2(3x﹣1)=2×(3×﹣1)≠0所以,x=是原方程的解.【点评】本题考查的是解分式方程.在解答此类题目时要注意验根,这是此类题目易忽略的地方.20.(2011•山西)(1)先化简.再求值:,其中.(2)解不等式组:,并把它的解集表示在数轴上.【分析】(1)将分式的分子、分母因式分解,约分,通分化简,再代值计算;(2)先分别解每一个不等式,再求解集的公共部分,用数轴表示出来.【解答】解:(1)原式=•﹣=﹣===,当a=﹣时,原式==﹣2;(2)由①得,x≥﹣1,由②得,x<2∴不等式组的解集为﹣1≤x<2.用数轴上表示如图所示.【点评】本题考查了分式的化简求值解一元一次不等式组.分式化简求值的关键是把分式化到最简,然后代值计算,解一元一次不等式组,就是先分别解每一个不等式,再求解集的公共部分.21.(2010•山西)(1)计算:°+(2)先化简,再求值:•,其中x=﹣3.【分析】(1)先把根式化成最简根式,把三角函数化为实数,再计算;(2)先对括号里的分式通分、对分解因式,再去括号化简求值.【解答】解:(1)原式=3+(﹣8)﹣+1 (4分)=3﹣8﹣1+1=﹣5.(5分)(2)原式=•(1分)=(2分)==(3分)=x+2.(4分)当x=﹣3时,原式=﹣3+2=﹣1.(5分)【点评】考查了实数的运算和分式的化简求值,熟练掌握和运用有关法则是关键.22.(2009•太原)化简:【分析】首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.【解答】解:原式===1.【点评】解决本题的关键是分式的通分和分式的乘法中的约分.要先化简后计算.23.(2009•山西)(1)计算:(x+3)2﹣(x﹣1)(x﹣2)(2)化简:(3)解方程:x2﹣2x﹣3=0【分析】(1)首先计算一次式的平方和两个一次式的积,然后进行减法计算即可;(2)首先把第一个分式进行化简转化为同分母的分式的加法,即可计算;(3)利用配方法,移项使方程的右边只有常数项,方程两边同时加上一次项系数的一半,则左边是完全平方式,右边是常数,即可利用直接开平方法求解.【解答】解:(1)(x+3)2﹣(x﹣1)(x﹣2)=x2+6x+9﹣(x2﹣3x+2)=x2+6x+9﹣x2+3x﹣2=9x+7.(2)===1.(3)移项,得x2﹣2x=3,配方,得(x﹣1)2=4,∴x﹣1=±2,∴x1=﹣1,x2=3.【点评】(1)解决本题的关键是掌握整式乘法法则;(2)本题主要考查分式运算的掌握情况;(3)本题主要考查了配方法解一元二次方程,正确理解解题步骤是解题关键.24.(2016•北京)计算:(3﹣π)0+4sin45°﹣+|1﹣|.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(3﹣π)0+4sin45°﹣+|1﹣|的值是多少即可.【解答】解:(3﹣π)0+4sin45°﹣+|1﹣|=1+4×﹣2﹣1=1﹣2+﹣1=【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a ≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.25.(2016•北京)解不等式组:.【分析】根据不等式性质分别求出每一个不等式的解集,再根据口诀:大小小大中间找可得不等式组的解集.【解答】解:解不等式2x+5>3(x﹣1),得:x<8,解不等式4x>,得:x>1,∴不等式组的解集为:1<x<8.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.(2015•北京)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4﹣1+2﹣+4×=5+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.27.(2015•北京)已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.【分析】原式第一项利用单项式乘以多项式法则计算,第二项利用平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵2a2+3a﹣6=0,即2a2+3a=6,∴原式=6a2+3a﹣4a2+1=2a2+3a+1=6+1=7.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2015•北京)解不等式组,并写出它的所有非负整数解.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出所有非负整数解.【解答】解:,由①得:x≥﹣2;由②得:x<,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.【点评】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.29.(2014•北京)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|【分析】本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣5﹣+=﹣4.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.30.(2014•北京)已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.【分析】先把代数式计算,进一步化简,再整体代入x﹣y=,求得数值即可.【解答】解:∵x﹣y=,∴(x+1)2﹣2x+y(y﹣2x)=x2+2x+1﹣2x+y2﹣2xy=x2+y2﹣2xy+1=(x﹣y)2+1=()2+1=3+1=4.【点评】此题考查整式的混合运算与化简求值,注意先化简,再整体代入求值.。
中考数学分类真题整理---整式、分式、不等式、解方程部分

中考数学分类真题整理---整式、分式、不等式、解方程部分7. −3的绝对值是( )(2022年第1题)A. 3B. −3C. 13D. −138.要使得式子√x−2有意义,则x的取值范围是( )。
(2022年第3题)A. x>2B. x≥2C. x<2D. x≤29.下列计算正确的是( )(2022年第4题)A. a 2⋅a 6=a 8B. x a 8÷x a 4=x a 2C. 2a 2+3a 2=6a 4D. (−3a)2=−9a 210. 因式分解:x x 2−1=______.(2022年第9题) 11.方程 3x =2x−2 的解是______ .(2022年第11题)12.若一元二次方程 x 2+x −c =0 没有实数根,则c 的取值范围是______.(2022年第15题)13. 计算:(2022年第19题)(1)(−1)2022+|√3−3|−(13)−1+√9; (2 ) (1+2x )÷x 2+4x+4x 2.14. (本小题10.0分) (2022年第20题)(1)解方程:x 2−2x −1=0; (2)解不等式组:{2x −1≥11+x x 3<x −1.15. -3 的相反数是( )。
(2021年第1题) A .3 B .-3C .13D .13-16. 下列计算正确的是( )。
(2021年第3题) A .()339a a =B .3412a a a =C .235a a a +=D .623a a a ÷=17. 下列无理数,与3最接近的是( )。
(2021年第6题)A. BCD18. 49的平方根是_____. (2021年第10题)19. 因式分解:x 2-36= _________.(2021年第11题)21. 若12,x x 是方程230x x +=的两个根,则12x x +=_________.(2021年第13题)22. 计算:(2021年第19题)(1)11220212-⎛⎫-- ⎪⎝⎭(2)22111a a a a ++⎛⎫+÷ ⎪⎝⎭23. (2021年第20题)(1)解方程:2450x x --= (2)解不等式组:213238x x x -≤⎧⎨+>+⎩24. 3的相反数是( ). A. 3- B. 3C. 13-D.1325. 下列计算正确的是( ) A. 22423a a a +=B. 632a a a ÷=C. 222()a b a b -=-D. 222()ab a b =(1)120201(1)|2|2-⎛⎫-+- ⎪⎝⎭; (2)2121122a a a a -+⎛⎫-÷ ⎪-⎝⎭31. (1)解方程:22530x x -+=; (2)解不等式组:34521232x x x -<⎧⎪--⎨>⎪⎩32. ﹣2的倒数是( ) A .﹣ B .C .2D .﹣ 233. 下列计算正确的是( ) A .a 2+a 2=a 4 B .(a +b )2=a 2+b 2 C .(a 3)3=a 9D .a 3•a 2=a 634. 8的立方根是 .35.使有意义的x的取值范围是.36.方程x2﹣4=0的解是.37.若a=b+2,则代数式a2﹣2ab+b2的值为.38.计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.39.(1)解方程:+1=(2)解不等式组:40. 4的相反数是()A.14B.﹣14C.4 D.﹣441.下列计算正确的是()A.2a2﹣a2=1 B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a645.计算:(1)﹣12+20180﹣(12)﹣1+√83;(2)a2−b2a−b÷a+b2a−2b.46. (1)解方程:2x 2﹣x ﹣1=0;(2)解不等式组:{4x >2x −8x−13≤x+1647. 5-的倒数是( )A .5-B .5C .15D .15-48. 下列运算正确的是( )A .()a b c a b c -+=-+B .235236a a a ⋅=C. 5302a a a += D .()2211x x +=+52. (1)1201(2)20172-⎛⎫--+ ⎪⎝⎭; (2)2421244x x x x +⎛⎫+÷ ⎪--+⎝⎭.53. (1)解方程:231x x =+; (2)解不等式组:2012123x x x >⎧⎪+-⎨>⎪⎩.54. 41-的相反数是 ( ) A.4 B.-4 C.41 D.41-55. 下列运算中,正确的是( )A.633x x x =+B.2763x x x =⋅C.532x x = D.12-=÷x x xA.2≤xB.2≥xC.2<xD.2≠x57. 9的平方根是______________。
中考数学专题复习四--分式方程和不等式(组)

中考数学专题复习四--分式方程和不等式(组)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN中考数学专题复习(四)分式方程和不等式(组)【知识梳理】1.分式方程:分母中含有的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:①设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;②解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③把辅助未知数的值代入原设中,求出原未知数的值;④检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列;(2)检验所求的解是否 . 5.易错知识辨析:(1)去分母时,不要漏乘没有分母的项.(2)解分式方程的重要步骤是检验,检验的方法是可代入最简公分母, 使最简公分母为0的值是原分式方程的增根,应舍去,也可直接代入原方程验根.(3)如何由增根求参数的值:①将原方程化为整式方程;②将增根代入变形后的整式方程,求出参数的值.6.不等式的有关概念:用连接起来的式子叫不等式;使不等式成立的的值叫做不等式的解;一个含有的不等式的解的叫做不等式的解集.求一个不等式的的过程或证明不等式无解的过程叫做解不等式.7.不等式的基本性质:(1)若a <b ,则a +c c b +; (2)若a >b ,c >0则ac bc (或ca cb ); (3)若a >b ,c <0则ac bc (或c a cb ). 8.一元一次不等式:只含有 未知数,且未知数的次数是 且系数 的不等式,称为一元一次不等式;一元一次不等式的一般形式为 或ax b <;解一元一次不等式的一般步骤:去分母、 、移项、 、系数化为1.9.一元一次不等式组:几个 合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的 ,叫做由它们组成的不等式组的解集.10.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知a b <)x a x b <⎧⎨<⎩的解集是x a <,即“小小取小”; x a x b >⎧⎨>⎩的解集是x b >,即“大大取大”;x a x b >⎧⎨<⎩的解集是a x b <<,即“大小小大中间找”; x a x b <⎧⎨>⎩的解集是空集,即“大大小小取不了”.11.易错知识辨析:(1)不等式的解集用数轴来表示时,注意“空心圆圈”和“实心点”的不同含义.(2)解字母系数的不等式时要讨论字母系数的正、负情况.如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或b x a <); 当0a <时,b x a <(或b x a>); 当0a <时,b x a <(或b x a>). 12.求不等式(组)的特殊解:不等式(组)的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案.13.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②设:设未知数(一般求什么,就设什么为x );③找:找出能够表示应用题全部含义的一个不等关系;④列:根据这个不等关系列出需要的代数式,从而列出不等式(组);⑤解:解所列出的不等式(组),写出未知数的值或范围;⑥验:检验所求解是否符合题意;⑦答:写出答案(包括单位).14.易错知识辨析:判断不等式是否成立,关键是分析不等号的变化,其根据是不等式的性质.【真题回顾】一、选择题1.(2010年山东菏泽全真模拟1)下列运算中,错误..的是( ) A.(0)a ac c b bc =≠ B.1a b a b--=-+2(4)4-= D.x y y x x y y x --=++ 2.(2010年江西省统一考试样卷)若分式21x x +有意义,则x 的取值范围是( )A .x >1B .x >-1C .x ≠0D .x ≠-13.(2009年孝感)关于x 的方程211x a x +=- 的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a≠0 C .a <-1 D .a <-1且a≠-24.(2011.鸡西)分式方程)2)(1(11+-=--x x m x x 产生增根,则m 的值是( ) A. 0和3 B. 1 C. 1和-2 D. 35.(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A .8 B.7 C .6 D .5二、填空题1.(2010年西湖区月考)若分式22221x x x x --++的值为0,则x 的值等于 2.(2010年江苏省泰州市中考模拟题)使代数式43--x x 有意义的x 的取值范围是 . 3.(2009年滨州)解方程2223321x x x x --=-时,若设21x y x =-,则方程可化为 . 4.(2011襄阳)已知关于x 的分式方程1131=-+-xx m 的解是正数,则m 的取值范围为 5.(2010新疆乌鲁木齐)在数轴上,点A 、B 对应的数分别为2 ,15+-x x ,且A 、B 两点关于原点对称,则x 的值为 。
中考数学重点知识点梳理分式方程与分式不等式的解法

中考数学重点知识点梳理分式方程与分式不等式的解法中考数学重点知识点梳理——分式方程与分式不等式的解法分式方程和分式不等式是中学数学中的重要内容,其解法涉及到分式的运算和方程的求解方法。
本文将对分式方程与分式不等式的解法进行梳理,以帮助中考学生有效掌握相关知识点。
一、分式方程的解法分式方程即含有分式的方程,解分式方程的一般步骤如下:1. 化简分式:将分式约分或通分,使方程中的分式简化为最简形式。
2. 求方程的通解:根据方程的性质和已知条件,将分式方程转化为整式方程或代数方程,求解得到方程的通解。
3. 检验解的可行性:将通解代入分式方程中,验证是否满足方程的等式关系,确定解的可行性。
二、分式不等式的解法分式不等式是含有分式的不等式,解分式不等式的一般方法如下:1. 寻找主要分母:将分式不等式中的分式进行分解,找出具有最大影响的主要分母。
2. 确定不等式的取值范围:根据主要分母的正负性质,确定不等式的取值范围,即将不等式划分成若干个区间。
3. 判定不等式的符号:在每个区间内,确定主要分母的正负取值情况,根据不等式的性质,判断不等式对应的符号是“<”还是“>”。
4. 解不等式:根据符号判定结果,将区间内符合不等式的解集合并,得到最终的解集。
三、分式方程与分式不等式解法的注意事项在解分式方程和分式不等式时,需要注意以下问题:1. 约束条件:对于给定的问题,要考虑约束条件是否存在,以及对解的影响。
2. 排除分母为零时的情况:在解分式方程或分式不等式时,要注意排除使分母为零的根。
3. 检验解的可行性:对于解得的方程或不等式,应该将解代入原方程或不等式进行验证,确保解的可行性。
4. 注意追求简洁化简:在解分式方程或不等式时,要尽量追求简洁化简,使得解的结果更加清晰明了。
综上所述,分式方程与分式不等式是中考数学中的重点知识点,解题时需要掌握相应的解法和注意事项。
通过多做练习,加深对分式方程和不等式的理解和运用,中考学生可以更好地应对相关题型,提升数学成绩。
第03讲 分式方程和不等式(解析版)

【初升高衔接课程】第03讲分式方程和不等式解析版【回忆初中那一点点】一、分式方程:体验:解不等式:(1)2301x x -<+ (2)305x x -<-(3)501xx -≥- 思考(4)223>+x (1)原不等式可化为⎩⎨⎧>+<-01032x x 或⎩⎨⎧<+>-01032x x ,解得⎪⎩⎪⎨⎧-><123x x 或⎪⎩⎪⎨⎧-<>123x x ,不等式的解为231<<-x (2)原不等式可化为⎩⎨⎧>-<-0503x x 或⎩⎨⎧<->-0503x x ,解得⎩⎨⎧><53x x 或⎩⎨⎧<>53x x ,不等式的解为53<<x(3)原不等式可化为⎩⎨⎧<-≤-0105x x 或⎩⎨⎧>-≥-0105x x ,解得⎩⎨⎧<≥15x x 或⎩⎨⎧>≤15x x ,不等式的解为51≤<x(4)原不等式可化为0223>-+x 即0212>+--x x所以⎩⎨⎧<+<--02012x x 或⎩⎨⎧>+>--02012x x ,解得⎪⎩⎪⎨⎧-<->221x x 或⎪⎩⎪⎨⎧->-<221x x ,不等式的解为212-<<-x 【初中初级秘籍练级区】1、解方程:2717=---xx x . 解:原方程可化为2717=-+-x x x ,即)7(21-=+x x ,解得15=x 2、已知关于x 的分式方程3133x a x -=-的解是非负数,那么a 的取值范围是( C ) A .a >1 B .a ≥1 C .a ≥1且a ≠9 D .a ≤1 原方程可化为339-=-x a x ,解得8383-=a x ,因为方程的解是非负数 所以3838308383≠->-=a a x 且,解得a ≥1且a ≠9 3、若关于x 的分式方程1322m xx x-=---有增根,则实数m 的值是 . 原方程可化为52)2(31+-=---=x x x m ,因为方程有增根,所以2是方程的一个解,代入得m =1 4、不等式031≥+-x x的解是__________. 原不等式可化为⎩⎨⎧<+≤-0301x x 或⎩⎨⎧>+≥-0301x x ,解得⎩⎨⎧-<≥31x x 或⎩⎨⎧->≤31x x ,不等式的解为13≤<-x【高中先行这一步】分式不等式解法的完整归纳:体验:解以下分式不等式(1)201x x +<- (2) 21x x -+≥0(3)112x < (4) 111x >- (5)31≤+x x (6)321x x +≥-(1)原不等式可化为0)1)(2(<-+x x ,解得12>-<x x 或(2)原不等式可化为⎩⎨⎧≠+≥+-010)1)(2(x x x ,解得21≤<-x(3)原不等式可化为1102x -<,即022<-x x ,所以0)2(2<-x x ,解得20><x x 或 (4)原不等式可化为1101x ->-,即012>--x x ,所以0)1)(2(>--x x ,解得21<<x (5)原不等式可化为301x x +-≤,即012≤+-x x ,所以⎩⎨⎧≠≤+-00)12(x x x 解得210><x x 或来源学科网Z.X(6)原不等式可化为0213≥--+x x ,即015≥-+-x x ,所以⎩⎨⎧≠-≥-+-010)1)(5(x x x ,解得51≤<x 【高中高级秘籍练级区】解下列不等式:(1)122x x +≤- (2)21134x x-≥-(3)2301x x x +≥-+ (4)132x ≤+ (1)原不等式可化为0221≤--+x x ,即025≤-+-x x ,所以⎩⎨⎧≠-≤-+-020)2)(5(x x x ,解得52≥<x x 或 (2)原不等式可化为211034x x --≥-,即043414≥--x x ,所以⎩⎨⎧≠-≥--0430)43)(414(x x x ,解得4372<≤x (3)012≥+-x x ,03≥+∴x ,解得3-≥x(4)原不等式可化为1302x -≤+,即0253≤+--x x ,所以⎩⎨⎧≠+≤+--020)2)(53(x x x ,解得352-≥-<x x 或【华山论剑】我来测一测悟:解分式不等式的方法是:移项,通分化不等式为,再解。
中考数学第二章方程与不等式第三节分式方程课件

知识点一 分式方程及其解法 1.分式方程的概念:分母中含有 _未__知__数__ 的方程叫做 分式方程.
解分式方程去分母时,不要漏乘常数项;去括号时,括 号前面是负号时,括号内要变号;解得整式方程的根后, 要代入原分式方程或最简公分母检验.
(2)增根:使分式方程 _分__母__为__零__的根称为原方程的增根. (3)产生增根的原因:将分式方程化为整式方程时,在方 程的两边同乘使最简公分母为 _0_ 的整式.
谁能准确描述下列物体的运动?
如:雄鹰在空中翱翔
足球的飞滚 树叶、纸张的飘落 海浪的汹涌澎湃
精确描述 之难
一、物体的运动
难道我们真的无法描述物体的运动?
一、物体的运动
难道我们真的无法描述物体的运动? 例: 飞机以某速度从南京飞向北京, 研究
火车在城市之间运行
一、物体的运动
难道我们真的无法描述物体的运动? 例: 飞机以某速度从南京飞向北京, 研究
火车在城市之间运行
车箱的颤动我 们考虑吗?
我们是否要考虑 飞机本身大小?
我们已经很自然的忽略某些次要因素 (如形状、大小),只关心主要的方面。
2. 物体和质点 (1) 质点的概念: (2) 你是如何理解质点模型的? (3) 实际物体哪些情况下都可简化为质点?
知识点二 分式方程的应用 1.列分式方程解应用题的一般步骤与列整式方程的步骤 一样:审题、设未知数、列方程、解方程、检验并作答.
解分式方程应用题验根时,既要检验是否是原分式方程 的根,还要检验是否使实际问题有意义.
2.常见类型有工程问题、行程问题及工作量问题.
考点一 解分式方程 (5年0考) 命题角度❶ 解分式方程
8.(2017·邯郸二模)4月23日读书日,新华书店向一所
最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

中考数学方程(组)与不等式(组)复习知识点总结一、方程【知识梳理】1、知识结构方程分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。
(2)含有2个未知数,并且所含未知数的项的次数都是1次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(4)二元一次方程组的解法有法和法.(5)只含有1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为)0(02a cbx ax。
(6)解一元二次方程的方法有:①直接开平方法;②配方法;③公式法;④因式分解法例:(1)042x(2)0342x x(3)4722x x (4)0232x x(7)一元二次方程的根的判别式:ac b42叫做一元二次方程的根的判别式。
对于一元二次方程)0(02a cbx ax当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根;反之也成立。
(8)一元二次方程的根与系数的关系:如果)0(02acbx ax的两个根是21,x x 那么ab x x 21,ac x x 21(9)一元二次方程)0(02a cbx ax的求根公式:)04(2422ac baacb bx(10)分母中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是将分式方程通过去分母转化为整式方程.◆解分式方程的步骤◆1、去分母,化分式方程为整式方程;◆2、解这个整式方程;◆3、验根。
注意:(1)解分式方程的基本思想是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.(2)因为解分式方程时可能产生增根,所以解分式方程必须检验,检验是解分式方程必要的步骤.二、不等式【知识梳理】1、知识结构解法性质概念不等式2、知识扫描(1) 只含有一个未知数,并且未知数的次数是1,系数不为 0 的不等式,叫做一元一次不等式。
(山西专版)中考数学复习第二单元方程(组)与不等式(组)第06课时分式方程及其应用课件

故可得分式方程:30���0��� 0
−
3000 (1+25%)������
=30.
3. [2019·扬州]“绿水青山就是金山银山”,为了更进一步优化环境,甲、乙两队承 担河道整治任务.甲、乙两个工程队每天共整治河道1500米,且甲工程队整治 3600米河道用的时间与乙工程队整治2400米所用的时间相等.求甲工程队每天 整治多少米?
=4,
解得 x=50,经检验,x=50 是分式方程的解且符合题意,所以 3x=150.
答:小明的速度为 50 米/分,小刚的速度为 150 米/分.
【方法点析】列分式方程解实际问题的关键是找出“等量关系”,列出方程.解方 程后,需要从两个方面检验:一是检验此解是不是原分式方程的解;二是检验此解 是否符合实际问题的意义.
根据题意可列方程为
.
[答案]
3000 ������
−
3000 (1+25%)������
=30
[解析]∵原计划每天铺设 x 米管道,则实际每天铺设(1+25%)x 米管道,
∴原计划的工作时间为3000
������
天,实际的工作时间为(1+32050%0 )������
天.
由题中等量关系可知,原计划的工作时间-实际的工作时间=30 天,
小明和小刚约定周末到某体育公园打羽毛球.他们两家到体育公园的距离分
别是1200米,3000米.小刚骑自行车的速度是小明步行速度的3倍,若二人同时
到达,则小明需提前4分钟出发,求小明和小刚两人的速度.
解:设小明的速度为
x
米/分,则小刚的速度为
3x
米/分,根据题意,得12���0��� 0
−
3000 3������
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山西中考之分式方程与不等式(近三年每年都考)
近年中考,常考类型为二元一次方程组与一元二次方程、增长率结合;二元一次方程组与一元二次方程每每问题结合;二元一次方程组与一元一次不等式组、一次函数结合;二元一次方程组与分式方程结合等。
1.(2015年一模试卷)某城区为了改善全区中、小学办学条件,去年分三批为学校配备了教学器材,其中第三批共投入经费144000元.采购了电子白板16块和投影机8台.已知1块电子白板的单价比1台投影机的多3000元.
(1)求购买1块电子白板和一台投影机各需多少元?
(2)已知该区去年第一批教学器材投入经费为100000元,后续两批经费的增长率相同,试求该区去年教学器材投入的经费总额.
2.(2015年模拟试卷(二)) 2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.
(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?
(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?
3.(2016年适应性训练)某市园林局准备种植A种花木4200棵,B种花木2400棵.现计划安排26人同时种植这两种花木,已知每人每天能种植 A种花木30棵或 B种花木20棵,则应分别安排多少人种植这两种花木,才能确保同时完成各自的任务?
4.(2017年百校联考(二))农业现代化是我国“十三五”的重要规划之一,某地农民积极响应政府号召,自发成立现代新型农业合作社,适度扩大玉米种业规模,今年,合作社600亩玉米喜获丰收.合作社打算雇佣玉米收割机收割玉米,现有A、B两种型号收割机可供选择,且每台B种型号收割机每天的收个亩数是A种型号的1.5倍,如果单独使用一台收割机将600亩玉米全部收割完,A种型号收割机比B种型号收割机多用10天.
(1)求A、B两种型号收割机每台每天收个玉米的亩数;
(2)已知A种型号收割机收费是45元/亩,B种型号收割机收费是50元/亩,经过研究,合作社计划同时雇佣A、B两种型号收割机各一台合作完成600亩玉米的收割任务,则合作社需要支付的玉米收割总费用为多少元?
5.(2017年一模试卷)小李与小王是社区图书馆整理图书的志愿者,他们在清点图书时,小王平均每分钟比小李多清点5本,小李清点200本图书所用的时间与小王清点300本图书所用的时间相同.(1)求小王平均每分钟清点图书的本数;
(2)周末,该图书馆要求他们两人同时清点完3600本图书,用时不超过3小时.但小王有事需提前离开,在两人清点图书的速度不变的情况下,小王至少清点多少本图书才能离开?
6.(山西中考模拟百校联考试卷(一))LED 灯具有环保节能、投射范围大、无频闪、使用寿命较长等特点,在日常生活中, 人们更倾向于LED 灯的使用. 某校数学兴趣小组为了解LED 灯泡与普通白炽灯泡的销售情况,进行了市场调查:某商场购进一批30 瓦的LED 灯泡和普通白炽灯泡进行销售,其进价与标价如下表:
(1)该商场购进了LED 灯泡与普通白炽灯泡共300 个, LED 灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可以获利3200 元.求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?
(2)由于春节期间热销,很快将两种灯泡销售完. 若该商场计划再次购进两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?
7.(2017年三模试卷)某服装店专营一批进价为每件200元的品牌衬衫,每件售价为300元,每天可售出40件,若每件降价10元,则每天多售出10件,请根据以上信息解答下列问题:
(1)为了使销售该品牌衬衫每天获利4500元,并且让利于顾客,每件售价应为多少元;
(2)该服装店将该品牌的衬衫销售完,在补货时厂家只剩100件库存,经协商每件降价a元,全部拿回.按(1)中的价格售出80件后,剩余的按八折销售,售完这100件衬衫获利50%,求a的值.
8.(中考)(2015•山西)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:
请解答下列问题:
(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?
(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?
9.(中考)(2016·山西)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg~5000kg (含2000kg和5000kg)的客户有两种
销售方案(客户只能选择其中一种方案):
方案A:每千克5.8元,由基地免费送货.
方案B:每千克5元,客户需支付运费2000元.
(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;
(2)求购买量x在什么范围时,选用方案A比方案B付款少;
(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.
10.(中考)(2017山西)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:
(1)求我省2016年谷子的种植面积是多少万亩.
(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?
练习
1. (2017哈尔滨)威丽商场销售A、B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.
(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;
(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?
2.(2017泰州)怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.
(1)该店每天卖出这两种菜品共多少份?
(2)该店为了增加利润,准备降低A种菜品售价,同时提高B种菜品售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份.如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?
3.(2017南雅)某商场经营某种品牌的玩具,购进时的单价是20元,根据市场调查:在一段时间内,销售单价是30元时,销售量是500件,而销售单价每涨1元,就会少售出10件玩具.
(1)写出商场销售该品牌玩具获得的销售利润y(元)与销售单价x(元)(x>30)之间的函数关系式;
(2)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该品牌玩具的销售单价高于进价且不超过48元;方案B:每件该品牌玩具的利润至少为34元,且销售量不少于200件.请比较哪种方案的最大利润更高,并说明理由.
4. (2017南充)学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.
(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?
(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?
5. (2017麓山国际实验学校三模)某服装店到厂家选购A、B两种服装,若购进A种型号服装12件,B种型号服装8件,需要1880元;若购进A种型号服装9件,B种型号服装10件,需要1810元.
(1)求A、B两种服装的进价分别为多少元?
(2)若销售一件A种服装可获利18元,销售一件B种服装可获利30元,根据市场需求,服装店老板决定:购进A种服装的数量比购进B种服装数量的2倍还多4件,且A种服装购进数量不超过28件,并使这批服装全部销售完毕后总获利不少于699元.设服装店购进B种服装x件,那么:
①请写出A,B两种服装全部销售完毕后的总获利y元与x件之间的函数关系式;
②请问服装店有哪几种满足条件的进货方案?。