14-3整式的乘法巩固

合集下载

北师大版七年级下册数学说课稿:1.4.3《整式的乘法》

北师大版七年级下册数学说课稿:1.4.3《整式的乘法》

北师大版七年级下册数学说课稿:1.4.3《整式的乘法》一. 教材分析《整式的乘法》是北师大版七年级下册数学的一节重要内容。

本节课的主要内容是让学生掌握整式乘法的基本运算法则,并能够熟练地进行整式的乘法运算。

在教材中,通过具体的例子和逐步的引导,让学生理解和掌握整式乘法的方法和技巧。

教材还通过练习题和应用题,帮助学生巩固和应用所学的知识。

二. 学情分析在七年级下册的学生已经学习了整式的基本概念和运算法则,对整式的加减法有一定的掌握。

但是,学生可能对整式的乘法运算法则理解和运用还不够清晰,需要通过本节课的学习来进一步巩固和提高。

此外,学生可能对整式的乘法运算中的符号表示和运算顺序还不够熟悉,需要通过具体的例子和练习来进行引导和巩固。

三. 说教学目标本节课的教学目标是让学生掌握整式乘法的基本运算法则,并能够熟练地进行整式的乘法运算。

具体来说,学生需要能够理解整式乘法的概念和意义,掌握整式乘法的基本运算法则,能够正确地进行整式的乘法运算,并能够解决一些实际问题。

四. 说教学重难点本节课的重难点是整式乘法的基本运算法则的理解和运用。

学生需要理解整式乘法的概念和意义,能够正确地运用整式乘法的基本运算法则进行计算。

此外,学生还需要能够解决一些实际问题,如通过整式乘法计算图形的面积等。

五. 说教学方法与手段本节课的教学方法主要是通过讲解和示范,让学生理解和掌握整式乘法的基本运算法则。

通过具体的例子和练习题,让学生进行实际操作和练习,巩固和应用所学的知识。

此外,通过多媒体教学手段,如PPT和教学软件,展示整式乘法的运算过程和结果,帮助学生更好地理解和掌握所学的知识。

六. 说教学过程1.导入:通过一个实际问题,如计算一个长方形的面积,引入整式乘法的学习。

2.讲解:讲解整式乘法的概念和意义,通过具体的例子和示范,引导学生理解和掌握整式乘法的基本运算法则。

3.练习:让学生进行实际的整式乘法运算练习,通过练习题和应用题,巩固和应用所学的知识。

人教版八年级数学上册14.整式的乘除与因式分解--复习课件

人教版八年级数学上册14.整式的乘除与因式分解--复习课件
不是完全平方式,不能进行分解
例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9
解:(1)(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a)
(2)1-10x+25x2 =1-10x+(5x)2 =(1-5x)2 (3)(m+n)2-6(m+n)+9=(m+n-3)2.
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 ,
则z应为多少?
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
1、 205×195 2、 (3x+2) (3x-2) 3、(-x+2y) (-x-2y) 4 、 (x+y+z)(x+y-z)
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= —
分析:完全平方式是形如:a2±2ab+b2即两数 的平方和与这两个数乘积的2倍的和(或差).
∵9x2+kxy+36y2=(3x)2+kxy+(6y)2 ∴±kxy=2·3x·6y=36xy ∴k=±36

整式的乘法和乘法公式复习课课件

整式的乘法和乘法公式复习课课件
整式的乘法和乘法公式复 习课课件
• 整式的乘法复习 • 乘法公式复习 • 整式的乘法与乘法公式的应用 • 整式的乘法和乘法公式的注意事项 • 练习与巩固
01
整式的乘法复习
单项式乘单项式
总结词
直接相乘,系数相乘,同底数幂 相乘。
详细描述
单项式与单项式相乘时,只需将 它们的系数相乘,并将相同的字 母的幂相加。例如,$2x^3y$与 $3xy^2$相乘得到$6x^4y^3$。
提高练习题
提高练习题1
计算 (x + y)^2(x - y)^2。
提高练习题2
化简 (a^2 - b^2) / (a^2 + ab + b^2)。
提高练习题3
求 (a^2 + 2ab + b^2) / (a^2 - b^2) 的值。
综合练习题
1 2
综合练习题1
计算 ((x + y)(x - y))^2。
VS
公式范围
整式的乘法公式有一定的适用范围,如完 全平方公式适用于任意实数a、b的情况; 平方差公式适用于任意实数a、b(a≠b) 的情况等。
公式推导和证明方法
推导方法
整式的乘法公式可以通过基本的运算法则进 行推导,如通过同底数幂的乘法法则推导出 幂的乘方公式;通过单项式乘以多项式的法 则推导出分配律等。
02
乘法公式复习
平方差公式
总结词
理解平方差公式的结构特点
总结词
掌握平方差公式的应用
详细描述
平方差公式是整式乘法中的重要公式之一,表示 两个平方数的差等于它们的线性组合的平方。这 个公式在代数和几何中都有广泛的应用,是解决 数学问题的关键工具。
详细描述

八年级数学上册14-1《整式的乘法》课时同步练习题(含答案)

八年级数学上册14-1《整式的乘法》课时同步练习题(含答案)

八年级数学上册14-1《整式的乘法》课时同步练习题(含答案)1、下列运算正确的是().A. x3⋅x3=x9B. x8÷x4=x2C. (ab3)2=ab6D. (2x)3=8x32、如果正方体的棱长是(1−2b)3,那么这个正方体的体积是().A. (1−2b)6B. (1−2b)9C. (1−2b)12D. 6(1−2b)63、计算:2(a5)2⋅(a2)2−(a2)4⋅(a3)2.4、若3x=15,3y=5,则3x−y等于().A. 5B. 3C. 15D. 105、已知2x+3y−4=0,则9x⋅27y=.6、已知:2m=a,2n=b,则22m+3n用a、b可以表示为().A. 6abB. a2+b3C. 2a+3bD. a2b37、若x,y均为正整数,且2x+1⋅4y=128,则x+y的值为().A. 3B. 5C. 4或5D. 3或4或58、如果a=355,b=444,c=533,那么a、b、c的大小关系是().A. a>b>cB. c>b>aC. b>a>cD. b>c>a9、根据图1的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图2的面积可以说明的多项式的乘法运算是().A. (a+3b)(a+b)=a2+4ab+3b2B. (a+3b)(a+b)=a2+3b2C. (b+3a)(b+a)=b2+4ab+3a2D. (a+3b)(a−b)=a2+2ab−3b210、已知a+b=m,ab=−4,化简(a−2)(b−2)的结果是().A. 6B. 2m−8C. 2mD. −2m11、已知(x−1)(x+3)=ax2+bx+c,求代数式9a−3b+c的值.12、要使(y2−ky+2y)(−y)的展开式中不含y2项,则k的值为().A. −2B. 0C. 2D. 313、计算:(−6x3+9x2−3x)÷(−3x)=().A. 2x2−3xB. 2x2−3x+1C. −2x2−3x+1D. 2x2+3x−114、下列计算正确的是().A. 10a4b3c2÷5a3bc=ab2cB. (a2bc)2÷abc=aC. (9x2y−6xy2)÷3xy=3x−2yD. (6a2b−5a2c)÷(−3a2)=−2b−53c15、下列等式错误的是().A. (2mn)2=4m2n2B. (−2mn)2=4m2n2C. (2m2n2)3=8m6n6D. (−2m2n2)3=−8m5n516、若(2a m b n)3=8a9b15成立,则().A. m=6,n=12B. m=3,n=12C. m=3,n=5D. m=6,n=517、计算(−32)2018×(23)2019的结果为().A. 23B.32C. −23D. −3218、已知x+4y−3=0,则2x⋅16y的值为.19、若2x=5,2y=3,则22x+y=.20、若5x=16,5y=2,则5x−2y=.21、比较255、344、433的大小().A. 255<344<433B. 433<344<255C. 255<433<344D. 344<433<25522、观察等式(2a−1)a+2=1,其中a的取值可能是().A. −2B. 1或−2C. 0或1D. 1或−2或023、已知x2n=3,则(19x3n)2⋅4(x2)2n的值是().A. 12B. 13C. 27 D. 12724、已知ab=a+b+1,则(a−1)(b−1)=.25、先化简,再求值:3a(2a2−4a+3)−2a2(3a+4),其中a=−2.26、若多项式乘法(x+2y)(2x−ky−1)的结果中不含xy项,则k的值为().A. 4B. −4C. 2D. −227、下列运算正确的是().A. a3+a3=2a6B. (−2ab2)3=−6a3b6C. (28a3−14a2+7a)÷7a=4a2−2aD. a2⋅a3=a528、计算(12x3−8x2+16x)÷(−4x)的结果是().A. −3x2+2x−4B. −3x2−2x+4C. −3x2+2x+4D. 3x2−2x+41 、【答案】 D;【解析】 A选项 : x3⋅x3=x6,故选项A错误.B选项 : x8÷x4=x4,故选项B错误.C选项 : (ab3)2=a2b6,故选项C错误.D选项 : (2x)3=8x3,故选项D正确.2 、【答案】 B;【解析】[(1−2b)3]3=(1−2b)9.3 、【答案】a14.;【解析】4 、【答案】 B;【解析】3x−y=3x÷3y=15÷5=3.5 、【答案】81;【解析】9x⋅27y=32x⋅33y=32x+3y=81.6 、【答案】 D;【解析】∵2m=a,2n=b,∴22m+3n=(2m)2×(2n)3=a2b37 、【答案】 C;【解析】∵2x+1⋅4y=2x+1+2y,27=128,∴x+1+2y=7,即x+2y=6.∵x,y均为正整数,∴{x=2y=2或{x=4y=1,∴x+y=4或5.故选C.8 、【答案】 C;【解析】a=355=(35)11=24311b=444=(44)11=25611,c=533=(53)11=12511,∵256>243>125,∴b>a>c.故选C.9 、【答案】 A;【解析】根据图2的面积得:(a+3b)(a+b)=a2+4ab+3b2.10 、【答案】 D;【解析】(a−2)(b−2)=ab−2a−2b+4=ab−2(a+b)+4,把ab=−4,a+b=m代入原式得原式=−4−2m+4=−2m.故选D.11 、【答案】0.;【解析】∵(x−1)(x+3)=x2+3x−x−3=x2+2x−3,∴a=1,b=2,c=−3,∴9a−3b+c=9×1−3×2−3=9−6−3=0.12 、【答案】 C;【解析】∵(y2−ky+2y)(−y)的展开式中不含y2项,∴−y3+ky2−2y2中不含y2项,∴k−2=0,解得:k=2.13 、【答案】 B;【解析】(−6x3+9x2−3x)÷(−3x)=2x2–3x+1.故选B.14 、【答案】 C;【解析】 A选项 : 10a4b3c2÷5a3bc=2ab2c,故A错误;B选项 : (a2bc)2÷abc=a4b2c2÷abc=a3bc,故B错误;C选项 : (9x2y−6xy2)÷3xy=9x2y÷3xy−6xy2÷3xy=3x−2y,故C正确;D选项 : (6a2b−5a2c)÷(−3a2)=−2b+53c,故D错误.15 、【答案】 D;【解析】(2mn)2=4m2n2,A项正确;(−2mn)2=4m2n2,B项正确;(2m2n2)3=8m6n6,C项正确;(−2m2n2)3=−8m6n6,D项错误.故选D.16 、【答案】 C;【解析】(2a m b n)3=8a9b15,m=3,n=5.17 、【答案】 A;【解析】(−32)2018×(23)2019=(−32)2018×(23)2018×23=23.故选:A.18 、【答案】8;【解析】∵x+4y−3=0,∴x+4y=3,∴2x⋅16y=2x⋅24y=2x+4y=23=8.19 、【答案】 75;【解析】 ∵2x =5,2y =3,∴22x+y =(2x )2×2y =52×3=75. 故答案为:75.20 、【答案】 4;【解析】 5x−2y =5x 52y =5x (5y )2=16(2)2=164=4. 21 、【答案】 C;【解析】 255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选C .22 、【答案】 D;【解析】 ∵(2a −1)a+2=1,∴①2a −1=1,a =1,13=1;②2a −1=−1,且a +2为偶数,即a =0,(−1)2=1; ③{2a −1≠0a +2=0,即a =−2,(−5)0=1; 综上,a 的值为:1,0,−2.23 、【答案】 A;【解析】 根据积的乘方法则,可将待求式化为: (19)2×(x 3n )2×4(x 2)2n , 根据幂的乘方法则,得481×x 6n ×x 4n ,根据同底数幂的乘法法则,得481x 10n , 即4×(x 2n )581,将x 2n =3代入,原式=4×35×181=4×3=12.故选A .24 、【答案】 2;【解析】 当ab =a +b +1时, 原式=ab −a −b +1=a +b +1−a −b +1 =2,故答案为:2.25 、【答案】 −98.;【解析】 3a (2a 2−4a +3)−2a 2(3a +4) =6a 3−12a 2+9a −6a 3−8a 2 =−20a 2+9a .当a =−2时,−20a 2+9a =−20×4−9×2=−98. 26 、【答案】 A;【解析】 (x +2y)(2x −ky −1), =2x 2−kxy −x +4xy −2ky 2−2y , =2x 2+(4−k)xy −x −2ky 2−2y , ∵ 结果中不含xy 项,∴ 4−k =0,解得k=4.27 、【答案】 D;【解析】 A选项 : a3+a3=2a3,故原题计算错误;B选项 : (−2ab2)3=−8a3b6,故原题计算错误;C选项 : (28a3−14a2+7a)÷7a=4a2−2a+1,故原题计算错误;D选项 : a2⋅a3=a5,故原题计算正确.28 、【答案】 A;【解析】解:(12x3−8x2+16x)÷(−4x)=−3x2+2x−4,故选:A.11。

第十四章整式乘法与因式分解单元教学精选全文完整版

第十四章整式乘法与因式分解单元教学精选全文完整版

可编辑修改精选全文完整版第十四章整式乘法与因式分解单元教学第一篇:第十四章整式乘法与因式分解单元教学第十四章整式的乘法与因式分解单元教学计划14.3因式分解。

小结复习。

一、教学内容:14.1整式的乘法。

14.2乘法公式。

二、教学目标:知识与技能:1、使学生掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。

使学生掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算。

2、使学生会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算。

3、使学生掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运算运算律与乘法公式简化运算4、使学生理解因式分解的意义,并感受分解因式与整式乘法是相反方向的变形,掌握提公因式法和运用公式法这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。

过程与方法:1、通过探索、猜测,进一步体会学会推理的必要性,发展学生过程与方法〕初步推理归纳能力;2、通过揭示一些概念和法则之间的联系,对学生进行创新精神和实践能力的及主观能动培养.情感态度与价值观:1、通过观察、实验、归纳、类比、推断,体验数学活动的趣味性,以感受推理过程的严谨性以及结论的确定性;2、开展探究性活动,充分体现学生的自主、合作精神,激发学生乐于探索的热情。

三、教学重点:掌握整式的乘法公式。

四、教学难点:掌握因式分解的方法。

五、课时分配:教学时间约需 14 课时,具体分配如下:14.1整式的乘法6课时。

14.2乘法公式3课时。

14.3因式分解3课时。

小结复习2课时。

第二篇:因式分解与整式乘法的关系因式分解与整式乘法的关系【知识点】整式乘法与因式分解一个是积化和差,另一个是和差化积,是两种互逆的变形.即:多项式整式乘积【练习题】1.下列因式分解正确的是①②③④⑤2.下列因式分解正确的是①②③④⑤3.下列因式分解正确的是①②③④⑤4.下列因式分解正确的是①②③④⑤5.下列因式分解正确的是①②③④⑤6.下列因式分解正确的是①②③④⑤答案1.1;22.1;3;53.4;54.3;45.2;46.1;3;57.第三篇:整式的乘法与因式分解复习教案《整式的乘法与因式分解》复习(一)教案教学目标:知识与技能:记住整式乘除的计算法则;平方差公式和完全平方公式;掌握因式分解的方法和则过程与方法:会运用法则进行整式的乘除运算,会对一个多项式分解因式情感态度与价值观:培养学生的独立思考能力和合作交流意识教学重点:记住公式及法则教学难点:会运用法则进行整式乘除运算,会对一个多项式进行因式分解教学方法与手段:讲练结合教学过程:一.本章知识梳理:幂的运算:(1)同底数幂的乘法(2)同底数幂的除法(3)幂的乘方(4)积的乘方整式的乘除:(1)单项式乘单项式(2)单项式乘多项式(3)多项式乘多项式(4)单项式除以单项式(5)多项式除以单项式乘法公式:(1)平方差公式(2)完全平方公式因式分解:(1)提公因式法(2)公式法二.合作探究:(1)化简:a3·a2b=.(2)计算:4x2+4x2=(3)计算:4x2·(-2xy)=.(4)分解因式:a2-25=三、当堂检测1.am=2,an=3则a2m+n =___________,am-2n =____________ 2.若A÷5ab2=-7ab2c3,则A=_________, 若4x2yz3÷B=-8x,则B=_________.2(ax+b)(x+2)=x-4,则ab=_________________.3.若4.若a-2+b2-2b+1=0,则a=a+,b=5.已知11a2+2=3aa的值是.,则6.已知被除式是x3+2x2-1,商式是x,余式是-1,则除式是()A、x2+3x-1B、x2+2xC、x2-1D、x2-3x+1 7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.–3B.3C.0D.1 8.一个正方形的边长增加了2cm,面积相应增加了32cm,则这个正方形的边长为()A、6cmB、5cmC、8cmD、7cm 9.下列各式是完全平方式的是()2A、x2-x+14 B、1+x2 C、x+xy+12D、x+2x-110.下列多项式中,含有因式(y+1)的多项式是(y 2 - 2 y + 1)A.22222(y+1)-(y-1)(y+1)-(y-1)(y+1)+2(y+1)+1B.C.D.三.课堂小结:今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。

人教版初中数学八年级上册 第十四章 14.3 整式的乘法 因式分解练习(含答案)

人教版初中数学八年级上册 第十四章 14.3 整式的乘法 因式分解练习(含答案)

第十四章14.3整式的乘法因式分解练习1.因式分解:a2+2a+1=.2.因式分解:﹣3x2+6xy﹣3y2=.3.分解因式:a2b+4ab+4b=______.4.分解因式:2x2﹣8=_____________5.因式分解:4ax2﹣4ay2=_____.6.计算:20182﹣2018×2017=_____.7.把多项式9x3﹣x分解因式的结果是_____.8.把16a3﹣ab2因式分解_____.9.已知x2﹣4x+3=0,求(x﹣1)2﹣2(1+x)=_____.10.已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc-2b2,则△ABC是_____三角形. 11.多项式3x﹣6与x2﹣4x+4有相同的因式是_________.12.已知m²-n²=16,m+n=5,则m-n=5 ___________________.二、解答题13.因式分解:(2x+y)2﹣(x+2y)2.14.因式分解(x﹣2y)2+8xy.15.利用因式分解计算:2022+202×196+98216.把下列多项式分解因式:(1)3a2﹣12ab+12b2 (2)m2(m﹣2)+4(2﹣m)17.分解因式:(1)3x2﹣12x (2)(3)18.已知n为整数,试说明(n+7)2﹣(n﹣3)2一定能被20整除.19.已知a=2017x+2016,b=2017x+2017,c=2017x+2018.求a2+b2+c2﹣ab﹣bc﹣ca的值.20.已知a,b,c是三角形ABC的三边的长,且满足a2+2b2+c2-2b(a+c)=0,试判断此三角形三边的大小关系.21.先化简,再求值:4xy+(2x ﹣y )(2x+y )﹣(2x+y )2,其中x=2016,y=1.22.先化简,再求值:2(x-y)2-(2x+y)(x-3y),其中x=1,y=51-.23化简,求值(1)已知代数式(x ﹣2y )2﹣(x ﹣y )(x+y )﹣2y 2①当x=1,y=3时,求代数式的值;②当4x=3y ,求代数式的值.(2)已知3a 2+2a+1=0,求代数式2a (1﹣3a )+(3a+1)(3a ﹣1)的值.24.已知x 4+y 4+2x 2y 2﹣2x 2﹣2y 2﹣15=0,求x 2+y 2的值参考答案1.(a+1)2 2.﹣3(x﹣y)2 3.b(a+2)24.2(x+2)(x﹣2)5.4a(x﹣y)(x+y)6.2018 7.x(3x+1)(3x﹣1)8.a(4a+b)(4a﹣b)9.-4 10.等边11.x﹣212. 16/513.3(x+y)(x﹣y).14.(x+2y)2.15.9000016.(1)3(a﹣2b)2;(2)(m﹣2)2(m+2).17.(1)3x(x-4) (2)-2(m-2n)2 (3)(x-1)(a+b)(a-b)18.∵(n+7)2﹣(n﹣3)2=[(n+7)+(n-3)][(n+7)﹣(n﹣3)]=20(n+2),∴(n+7)2﹣(n﹣3)2一定能被20整除.19.3.∵a=2017x+2016,b=2017x+2017,c=2017x+2018,∴a﹣b=-1,b﹣c=-1,a﹣c=-2,则原式=(2a2+2b2+2c2-2ab-2bc-2ac)=[(a-b)2+(b-c)2+(a-c)2]=×(1+1+4)=3.20.a=b,c=b21.﹣2y2,﹣2.22.,023.(1)①15;②0;(2)﹣2.24.x2+y2=5.。

第14章-《整式的乘法与因式分解》知识点及考点典例精选全文完整版

第14章-《整式的乘法与因式分解》知识点及考点典例精选全文完整版

可编辑修改精选全文完整版第十四章 《整式的乘法与因式分解》知识点及考点典例重点知识回顾:一、整式的乘法:),(都是正整数n m a a a n m n m +=• ),(都是正整数)(n m a a mn n m =)()(都是正整数n b a ab n n n = 22))((b a b a b a -=-+2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-注意:(1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘,结果是一个_______,其项数与因式中多项式的项数______。

(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

(5)公式中的字母可以表示数,也可以表示单项式或多项式。

二、整式的除法: nm n m a a a -=÷ ()0≠a 10=a()0≠a单项式÷单项式 多项式÷单项式三、因式分解 1、把一个多项式化成几个_________的形式,叫做把这个多项式因式分解。

2、因式分解的常用方法(1)提公因式法:)(c b a ac ab +=+(2)运用公式法:))((22b a b a b a -+=-222)(2b a b ab a +=++ 222)(2b a b ab a -=+-(3)分组分解法:))(()()(d c b a d c b d c a bd bc ad ac ++=+++=+++(4)十字相乘法:))(()(2q a p a pq a q p a ++=+++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。

(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:二项式可以尝试运用________公式分解因式;三项式可以尝试运用______________、__________分解因式;四项式及四项式以上的可以尝试______________分解因式(3)分解因式必须分解到每一个因式都不能再分解为止。

七年级数学下册综合算式专项练习题整式的乘法练习

七年级数学下册综合算式专项练习题整式的乘法练习

七年级数学下册综合算式专项练习题整式的乘法练习综合算式专项练习题——整式的乘法练习在七年级数学下册中,我们学习了很多关于整式的知识,其中一项重要的内容就是整式的乘法。

整式的乘法是数学中的基础操作,掌握好整式的乘法是我们巩固和提高数学能力的关键。

下面是一些综合算式专项练习题,旨在帮助同学们加深对整式的乘法的理解,并提升解题能力。

1. 计算下列整式的乘积:(2x + 3)(4x + 5)解析:我们可以使用分配律将两个括号里的项依次相乘,再将结果相加。

(2x + 3)(4x + 5) = 2x * 4x + 2x * 5 + 3 * 4x + 3 * 5= 8x² + 10x + 12x + 15= 8x² + 22x + 15答案:8x² + 22x + 152. 计算下列整式的乘积:(3a - 2b)(5a + 4b)解析:同样地,我们应用分配律将两个括号里的项相乘,再将结果相加。

(3a - 2b)(5a + 4b) = 3a * 5a + 3a * 4b - 2b * 5a - 2b * 4b= 15a² + 12ab - 10ab - 8b²= 15a² + 2ab - 8b²答案:15a² + 2ab - 8b²3. 计算下列整式的乘积:(4x² + 2x + 1)(3x - 2)解析:这次我们需要将一个括号内的三项依次与另一个括号内的项相乘,并将结果相加。

(4x² + 2x + 1)(3x - 2) = (4x² + 2x + 1) * 3x + (4x² + 2x + 1) * (-2)= 12x³ + 6x² + 3x - 8x² - 4x - 2= 12x³ - 2x² - x - 2答案:12x³ - 2x² - x - 24. 计算下列整式的乘积:(a + b)(a - b)解析:这个式子的形式为两个完全平方式相乘,即 "a² - b²"。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘法
环节一:复习巩固
1、若27=24·2x,则x=________.
2、已知a m=2,a n=5,则a m+n= .
3、若a=255,b=344,则a,b的大小关系为________(用“<”连接).
4.已知:10m=3,10n=2,求(1)103m; (2)103m+2n的值.
6.计算:(-2
5
)2016×(
5
2
)2015.
环节二:基础巩固
(1)单项式与单项式相乘:ac5·bc2=(a·b)·(c5·c2)=abc5+2=abc7 1.计算2x2·(-3x3)的结果是( )
A.-6x6B.6x6C.-6x5 D.6x5
2.计算:(-2a)·(1
4
a3)=________ .
3.一个直角三角形的两直角边的长分别是2a和3a,则此三角形的面积是________;当a=2时,此时这个三角形的面积等于________.
4.计算:(1)2x2y·(-4xy3z); (2)5a2·(3a3)2; (3)(-1
2
x2y)3·3xy2·(2xy2)2.
5.如图为小李家住房的结构图,小李打算把卧室和客厅铺上木地板,请你帮他算一算(单位:m),他至少应买木地板( )
A.12xy m2B.10xy m2 C.8xy m2 D.6xy m2
7.某市环保局欲将一个长为2×103 dm,宽为4×102 dm,高为8×10 dm的长方体废水池中的满池废水注入正方体储水池净化,求长方体废水池的容积.
单项式与多项式相乘:m(a+b+c)=ma+mb+mc
注:不重不漏,按照顺序,注意常数项、负号.本质是乘法分配律。

1.(湖州中考)计算2x(3x2+1),正确的结果是( )
A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x
2.计算x(y-z)-y(z-x)+z(x-y),结果正确的是( )
A.2xy-2yz B.-2yz C.xy-2yz D.2xy-xz
3.计算:a(a-1)-a2=________.
4.计算:
(1)(2xy2-3xy)·2xy; (2)-x(2x+3x2-2); (3)-2ab(ab-3ab2-1);
5.若一个长方体的长、宽、高分别为2x,x,3x-4,则长方体的体积为( ) A.3x3-4x2B.6x2-8x C.6x3-8x2D.6x3-8x
6.化简求值:3a(a2-2a+1)-2a2(a-3),其中a=2.
多项式与多项式相乘:(a+b)(m+n)=am+an+bm+bn
1.计算(2x-1)(5x+2)的结果是( )
A.10x2-2 B.10x2-5x-2 C.10x2+4x-2 D.10x2-x-2
2.填空:(2x-5y)(3x-y)=2x·3x+2x·______+(-5y)·3x+(-5y)·______=
_______________.
3.计算:
(1)(2a+b)(a-b)=________; (2)(x-2y)(x2+2xy+4y2)=________.4.计算:
(1)(m+1)(2m-1); 2)(2a-3b)(3a+2b); (3)(2x-3y)(4x2+6xy+9y2);
(4)1
2
(2x-y)(x+y); (5)a(a-3)+(2-a)(2+a).
5.先化简,再求值:(2x-5)(3x+2)-6(x+1)(x-2),其中x=1 5 .
6.若一个长方体的长、宽、高分别是3x-4,2x-1和x,则它的体积是( )
A.6x3-5x2+4x B.6x3-11x2+4x C.6x3-4x2D.6x3-4x2+x+4
7.我校操场原来的长是2x米,宽比长少10米,现在把操场的长与宽都增加了5米,则整个操场面积增加了________平方米.
※公式(x+p)(x+q)=x2+(p+q)x+pq的应用
8.下列多项式相乘的结果为x2+3x-18的是()
A.(x-2)(x+9) B.(x+2)(x-9) C.(x+3)(x-6) D.(x-3)(x+6) 9.计算:
(1)(x-3)(x-5)=________; (2)(x+4)(x-6)=________
10.若(x+3)(x+a)=x2-2x-15,则a=________.
11.计算:
(1)(x+1)(x+4); (2)(m-2)(m+3);
环节三:整式的除法
知识点1 同底数幂的除法同底数幂相除,底数不变,指数相减. a m÷a n=a m-n[a≠0,m,n都是正整数,且m>n]
1.计算x3÷x的结果是( )
A.x4B.x3C.x2D.3
2.下列各式运算结果为x4的是( )
A.x2·x2 B.(x4)4 C.x8÷x2 D.x4+x4
3.计算:(1)(-2)6÷25=________; (2)(ab)5÷(ab)2=________.
4.计算:
(1)(-a)6÷(-a)2; (2)(-ab)5÷(-ab)3; (3)(x-y)5÷(y-x)2.
知识点2 零指数幂任何不等于0的数或式子的0次幂都等于1. a0=1[a≠0],00无意义5.若(a-2)0=1,则a的取值范围是( )
A.a>2 B.a=2 C.a<2 D.a≠2
6.设a=-0.32,b=-32,c=(-1
3
)2,d=(-
1
3
)0,则a,b,c,d的大小关系是( )
A.a<b<c<d B.b<a<c<d C.b<a<d<c D.a<b<d<c
7.计算:2
3
×(π-1)0=________,(a-1)0=________(a≠1).
8.计算:(-2)3+(2)2-(3-5)0.
知识点3 单项式除以单项式单项式相除,把系数与同底数幂分别相除作为商的因式,只在被除式里含有的字母,则连同它的指数作为商的一个因式。

9.计算(a6b3)÷(2a3b2)的结果是( )
A.2a3b B.1
2
a2b C.
1
2
a3b D.
1
2
a3
10.填空:(1)3m2n5÷________=1
2
mn3; (2)________÷15a4b=-
1
3
ab2c.
11.计算:
(1)2x2y3÷(-3xy); (2)10x2y3÷2x2y;
(3)3x4y5÷(-2
3
xy2); (4)(1.5×109)÷(-5×106).
知识点4 多项式除以单项式多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
12.计算(6x3y-3xy2)÷3xy的结果是( )
A.6x2-y B.2x2-y C.2x2+y D.2x2-xy
13.计算:
(1)(6ab+8b)÷2b=________; (2)(9x2y-6xy2)÷3xy=________.
14.计算:
(1)(x5y3-2x4y2+3x3y5)÷(-2
3
xy); (2)(6x3y4z-4x2y3z+2xy3)÷2xy3.。

相关文档
最新文档