5、整式的乘法及乘法公式
5、整式的乘法及乘法公式

龙文教育个性化辅导教案学生 学校 年级 课次 科目教师日期时段课题 整式乘法及乘法公式教学目标 考点分析1、单项式与单项式、单项式与多项式、多项式与多项式相乘除的法则,熟练运用;2、熟练运用平方差公式、完全平方公式。
教学重点 难点1、运用乘法法则熟练进行计算;2、平方差公式与完全平方公式的应用;3、平方差公式与完全平方公式的逆用。
教学内容 乘法法则回顾:1.单项式乘法:单项式相乘,把它们的系数,相同字母分别相乘;2.单项式与多项式相乘法则:单项式与多项式相乘,就是单项式去乘多项式的每一项,再把所得的积相加(根据乘法对加法的分配率)。
3.多项式与多项式相乘法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的乘积相加(注意符号,不要漏算,最后结果不含同类项)【例1】计算:22(1)(3)(821)a a a --+ 22231(2)(2)()42x y xy xy -•-【例2】化简:(1)()(2)(2)()a b a b a b a b +--+- 2(2)5(21)(23)(5)x x x x x ++-+-【例3】若22(3)(3)x nx x x m ++-+的乘积中不含2x 和3x 项,求m 和n 的值新课讲授:乘法公式(1)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方差,即 (a +b )(a -b )=a 2-b2注意:上式中a ,b 可以表示单项式,也可以表示多项式。
【例4】运用平方差公式计算:2211(1)()()22x y x y -+ (2)(41)(41)a a ---+(3)()()m n m n a b a b +- (4)()()a b c a b c -+++【例5】利用平方差公式简化计算:(1)59.860.2;⨯ (2)10298;⨯ 2(3)123461234512347;-⨯ 2(4)2008【拓展】计算:242(1)(21)(21)(21)(21)n ++++23221111(2)(1)(1)(1)(1)23410----2222222(3)1009998979621-+-++-【例6】观察下列等式:9-1=8,16-4=12,,36-16=20…这些等式反映出自然数间的某种规律,设n 表示正整数,用关于n 的等式表示_____________(2)完全平方公式:两个单项式的和(或者差)的平方,等于它们的平方和,加上(或减去)它们的积的两倍,即: (a ±b )2=a 2±2ab+b 2*注意完全平方和(差)公式的逆应用【例7】计算:2(1)(4)m n + 21(2)()2x -2(3)(32)x y - 21(4)(4)4y --【例8】计算:2(1)()a b c ++ 2(2)(23)a b c -+ 2(3)()a b c --【例9】(1)若2414039x x -+=,则x=________ (2)若228x xy k ++是一个完全平方式,则k=________ (3)若224m kmn n ++是一个完全平方式,则k=________ (4)若x+y=8,xy=7,则22x y +=_______,x-y=_______【例10】已知a+b=3,ab= -12,求下列各式的值22(1)a b +;22(2)a ab b -+;2(3)()a b -【例11】(1)已知12x x -=,求221x x+的值(2)已知22114x x +=,求1x x+的值【例12】解方程:22(23)(4)(2)6x x x x +--+=+【课堂练习】1. 在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( ) A .2222)(b ab a b a ++=+ B .2222)(b ab a b a +-=- C .))((22b a b a b a -+=-D .222))(2(b ab a b a b a -+=-+ 2、化简:322)3(x x -的结果是A .56x -B .53x -C .52xD .56x 3.当31x y ==、时,代数式2()()x y x y y +-+的值是 . 4、若221m m -=,则2242007m m -+的值是 . 5、化简:(x -y )(x+y )+(x -y )+(x+y ).6、计算:()()2121x x ++-7、已知2514x x -=,求()()()212111x x x ---++的值8、先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,.aa bba bb图甲 图乙学生总结评定1.学生本次课对老师的评价:○特别满意○满意○一般○差2.本次课我学到了什么知识:学生签字:教师总结评定1.学生上次作业完成情况:2.学生本次上课表现情况:3.老师对本次课的总结:教师签字:课前审阅:课后检查:龙文教育课后作业学生 科目 教师 课次完成时间完成 情况1、下列运算正确的是( )A .b a b a --=--2)(2B .b a b a +-=--2)(2C .b a b a 22)(2--=--D .b a b a 22)(2+-=--2.计算: ⎪⎭⎫⎝⎛-⋅23913x x =________;24(2)a --=________. 3.已知:32a b +=,1ab =,化简(2)(2)a b --的结果是 . 4、计算:31(2)(1)4a a -⋅- = .5、如图,沿正方形的对角线对折,•把对折后重合的两个小正方形内的单项式相乘,乘积是___________(只要写出一个结论)a 2ab-2b6、若a-1a =3,求a 2+21a的值.7、计算:()()()2312x x x +---8、先化简,再求值:(2)(2)(2)a a a a -+--,其中1a =-.教师签字: 审阅签字: 时间:龙文教育课后测试卷学生科目教师课次完成时间得分/测试内容试卷分析教师签字:审阅签字:时间:。
整式的乘除知识点归纳

整式的乘除知识点归纳整式是数学中常见的一类代数表达式,包含了整数、变量和基本运算符(加、减、乘、除)。
一、整式的定义整式由单项式或多项式组成。
单项式是一个数字或变量的乘积,也可以包含指数。
例如,3x^2是一个单项式,其中3和x表示系数和变量,2表示指数。
多项式是多个单项式的和。
例如,2x^2 + 3xy + 5是一个多项式,其中2x^2,3xy和5分别是单项式,+表示求和运算符。
二、整式的乘法整式的乘法遵循以下几个重要的法则:1.乘积的交换法则:a×b=b×a,即乘法运算符满足交换定律。
2.乘积的结合法则:(a×b)×c=a×(b×c),即乘法运算符满足结合定律。
3.乘积与和的分配法则:a×(b+c)=(a×b)+(a×c),即乘法运算符对加法运算符满足分配律。
在进行整式的乘法运算时,要注意变量之间的乘积也需要按照乘法法则进行处理。
例如,(2x^2)×(3y)=6x^2y。
三、整式的除法整式的除法是乘法的逆过程。
除法运算中,被除数除以除数得到商。
以下是几个重要的除法规则:1.除法的整除法则:若a能被b整除,则a/b为整数。
例如,6除以3得到22.除法的商式法则:若x为任意非零数,则x/x=1、例如,2x^2/2x^2=13.除法的零律:任何数除以0都是没有意义的,即不可除以0。
例如,5/0没有意义。
在进行整式的除法运算时,要注意约分和消去的原则。
例如,(4x^2+ 2xy)/(2x) 可以约分为2x + y。
四、整式的运算顺序在解决整式的复杂运算问题时,需要遵循一定的运算顺序。
常见的运算顺序规则如下:1.先解决括号内的运算。
2.然后进行乘法和除法的运算。
3.最后进行加法和减法的运算。
五、整式的因式分解因式分解是将一个整式拆解为多个因式的乘积的过程。
对于给定的整式,可以通过以下步骤进行因式分解:1.先提取其中的公因式。
整式的乘除知识点

整式的乘除知识点整式的乘法运算是指对两个或多个整式进行相乘的运算。
整式的除法运算是指对一个整式除以另一个整式的运算。
整式的乘除运算是代数学中的基本运算,它在代数方程的解法、因式分解等应用中起着重要作用。
一、整式的乘法运算整式的乘法是指对两个或多个整式进行相乘的运算,其规则如下:1.单项式相乘:两个单项式相乘时,按照数字相乘,字母相乘,再将相同字母的指数相加的原则进行运算。
例如:(3x^2)(-2xy)=-6x^3y2.整式相乘:将一个整式中的每一项与另一个整式中的每一项进行相乘,然后将所得的结果相加。
例如:(x+5)(x-3)=x^2-x(3)+5(x)-15=x^2-3x+5x-15=x^2+2x-153.公式相乘:根据一些常见公式和特殊公式,可以通过整式的乘法运算简化计算。
例如:(a+b)(a-b)=a^2-(b)^2=a^2-b^2二、整式的除法运算整式的除法是指对一个整式除以另一个整式的运算,其规则如下:1.简单整式的除法:当被除式是单项式,除式也是单项式,并且除式不为零时,可以进行简单整式的除法运算。
例如:12x^3/4x=x^32.整式长除法:当被除式是一个整式,除式也是一个整式,并且除式不为零时,可以进行整式长除法运算。
例如:(3x^3-2x^2+4x-6)/(x+2)=3x^2-8x+20余-463.分式的除法:分式的除法可以利用倒数的概念进行处理,将除法问题转化为乘法问题。
例如:(a/b)÷(c/d)=(a/b)×(d/c)=(ad)/(bc)三、整式乘除运算的性质和应用1.乘法交换律:整式的乘法满足交换律,即a×b=b×a。
这个性质可以简化计算,使得整式的乘法更加灵活。
2.乘法结合律:整式的乘法满足结合律,即(a×b)×c=a×(b×c)。
这个性质可以改变运算次序,简化计算过程。
3.乘法分配律:整式的乘法满足分配律,即a×(b+c)=a×b+a×c。
七年级整式知识点总结归纳

七年级整式知识点总结归纳整式是代数学中非常重要的一种形式,是由一些常数和变量以及运算符号组成的多项式。
它是整体式子的表示,可以表示出一些非常重要的代数关系,是许多数学问题的关键。
在七年级的数学知识点中,整式的概念和应用非常重要,下面将对七年级整式进行总结归纳。
一、整式的基本概念整式是由常数、变量及其系数,以及加、减、乘、幂运算组成的多项式。
它有以下几个基本要素:1. 项:整式中加、减的单元就是项,由变量及其次数和常数乘积组成。
2. 单项式:只含有一个项的整式,也就是kx^n这样的式子,其中k是常数,x是变量,n是整数。
3. 多项式:由若干个单项式相加或相减得到的式子,也就是整数加减的组合。
4. 次数:整式中所有单项式中次数最高的那个就是整式的次数,只有多项式才有次数。
二、整式的基本性质整式有以下几个基本性质:1. 加法交换律和结合律:整式加法满足交换律和结合律,也就是说,不管多项式中各项的顺序如何,整式的值都一样。
2. 乘法交换律和结合律:整式乘法满足交换律和结合律,也就是说,不管整式中各项的顺序如何,整式的值都一样。
3. 同类项的加减:同类项指的是变量相同且次数相同的单项式,可以通过合并同类项来简化整式。
4. 因式分解:整式可以通过因式分解来化简,使得整式的阶数降低,计算更加简便。
三、整式的应用整式在数学中有很多重要应用,如下:1. 代数方程的解:代数方程可以通过变形将其变为整式形式,从而求解。
2. 几何问题的解:整式可以表示几何实体的属性,如面积、体积等,从而解决几何问题。
3. 理论分析:整式可以表示出很多复杂的代数关系,对理论的分析和研究提供了基础。
四、整式的乘法公式整式的乘法也有一些非常实用的公式,如下:1. (a+b)^2=a^2+2ab+b^22. (a-b)^2=a^2-2ab+b^23. (a+b)(a-b)=a^2-b^24. (a+b)^3=a^3+3a^2b+3ab^2+b^35. (a-b)^3=a^3-3a^2b+3ab^2-b^36. a^2-b^2=(a+b)(a-b)以上这些公式,在解决代数问题的时候会非常有用。
整式的乘法和乘法公式

学之导教育中心教案 学生: 陈林茵 授课时间: 月 日 课时: 2 年级: 八年级 教师: 陆老师课 题 整式的乘法和乘法公式教案构架 :一、 知识回顾二、 知识检验三、 知识新授四、 知识小结教案内容:一、知识回顾二、知识检验三、知识新授22222()(,,)()()()():()()()2m n m n m n mn n n n a a a a a m n a b ab a b m a b ma mb m n a b ma mb na nb a b a b a b a b a ab b +⎧⎫⋅⎪⎪=⎨⎬⎪⎪=⋅⎩⎭⨯⎧⎪⨯+=+⨯++=+++⎨⎧+-=-⎪−−−→⎨±=±+⎪⎩特殊的=幂的运算法则为正整数,可为一个单项式或一个式项式单项式单项式单项式多项式:多项式多项式:整式的乘法平方差公式 乘法公式完全平方公式:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩本次内容掌握情况总结 教 务 老 师 签 字 学 生 签 字整式的乘法1、同底数幂的乘法例:计算。
()()432a a a -∙-∙- ()()()x y x y y x -∙-∙-32 ()()122--∙-m m x y y x例:已知568122222⨯⨯=-x ,1211101010=∙+-y y ,求y x +的值。
练一练:已知1112x x x n n m =∙+-,且541y y y n m =∙--,求2mn 的值。
例:已知510=a ,610=b ,求b a 3210+的值。
2、幂的乘方例:计算。
()()31212+-∙n n a a ()()3223x x -∙- 归纳: 1、当a >0,m 为奇数时,()m m a a -=-,当m 为偶数时,()m m a a =-; 2、对于()m b a -,当m 为奇数时,()()m m a b b a --=-,当m 为偶数时,()()m m a b b a -=-。
八年级数学上册“第十四章整式的乘法与因式分解”必背知识点

八年级数学上册“第十四章整式的乘法与因式分解”必背知识点一、整式的乘法1. 单项式乘单项式:法则:把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2. 单项式乘多项式:法则:用单项式去乘多项式的每一项,再把所得的积相加。
3. 多项式乘多项式:法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
二、乘法公式1. 平方差公式:公式:$(a+b)(a-b) = a^2 b^2$应用:两个数的和与这两个数的差的积,等于这两个数的平方差。
2. 完全平方公式:公式:$(a+b)^2 = a^2 + 2ab + b^2$$(a-b)^2 = a^2 2ab + b^2$应用:两个数的和 (或差)的平方,等于这两个数的平方和,加上(或减去)这两个数积的2倍。
三、因式分解1. 因式分解的定义:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫作分解因式。
2. 提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
3. 公式法:利用平方差公式和完全平方公式进行因式分解。
注意:分解因式必须分解到每一个因式都不能再分解为止。
四、十字相乘法十字相乘法主要用于二次项系数为1的二次多项式的因式分解。
方法:通过观察和尝试,将常数项分解为两个因数的乘积,并使得这两个因数与一次项系数的组合满足整式的乘法规则。
五、注意事项在进行整式乘法时,要注意系数的计算、字母的指数运算以及符号的处理。
在进行因式分解时,要注意分解的彻底性,即每一个因式都不能再进一步分解。
熟练掌握乘法公式和因式分解的方法,对于提高解题效率和准确率至关重要。
掌握这些知识点,将有助于学生更好地理解和应用整式的乘法与因式分解,提高代数运算能力和解题能力。
整式乘除知识点

整式乘除知识点在数学的学习中,整式乘除是一个重要的部分,它不仅是后续学习代数运算的基础,也在解决实际问题中有着广泛的应用。
下面就让我们一起来深入了解整式乘除的相关知识点。
一、整式的乘法(一)单项式乘以单项式法则:把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如:3x²y × 5xy³= 15x³y⁴(二)单项式乘以多项式法则:用单项式去乘多项式的每一项,再把所得的积相加。
例如:2x(3x² 5x + 1) = 6x³ 10x²+ 2x(三)多项式乘以多项式法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如:(x + 2)(x 3) = x² 3x + 2x 6 = x² x 6二、整式的除法(一)单项式除以单项式法则:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
例如:18x⁴y³z² ÷ 3x²y²z = 6x²yz(二)多项式除以单项式法则:先把这个多项式的每一项分别除以这个单项式,然后把所得的商相加。
例如:(9x³y 18x²y²+ 3xy³) ÷ 3xy = 3x² 6xy + y²三、乘法公式(一)平方差公式(a + b)(a b) = a² b²例如:(3x + 2)(3x 2) = 9x² 4(二)完全平方公式(a + b)²= a²+ 2ab + b²(a b)²= a² 2ab + b²例如:(x + 5)²= x²+ 10x + 25四、整式乘除的应用(一)几何图形中的应用在求解长方形、正方形等图形的面积和周长时,经常会用到整式的乘除。
六年级整式知识点总结

六年级整式知识点总结整式是数学中的一个重要概念,是培养学生逻辑思维和数学推理能力的重要内容。
在六年级的数学学习过程中,我们接触了各种各样的整式知识点,下面就对这些知识点进行一个总结。
1. 整式的定义:整式是由常数、变量和它们的积、商、正、负、指数和幂等有理数次加、减的和。
2. 整式的基本运算:(1) 加法和减法:将同类项合并,并保持同类项的次数不变。
(2) 乘法:运用分配律进行拆分、合并和化简。
(3) 除法:运用乘法的逆运算进行分解和化简。
3. 整式的化简:整式的化简就是将多项式通过合并同类项、拆分因式、运用分配律等方法,简化为最简形式。
4. 整式的因式分解:(1) 提取公因式法:将整式中的公因子提取出来。
(2) 公式法:利用代数公式进行因式分解。
(3) 分组分解法:将整式中的项进行分组,然后利用公因式提取法进行因式分解。
(4) 完全平方公式法:利用完全平方公式将整式分解。
(5) 公式法:利用二次根式公式将整式分解。
5. 整式的乘法公式:(1) 两个一次整式的乘法:$(a + b)(c + d) = ac + ad + bc + bd$(2) 两个二次整式的乘法:$(a + b)(c + d) = ac + (ad + bc) + bd$(3) 一个一次整式和一个二次整式的乘法:$(a + b)(c + dx) = ac + adx + bc + bdx$(4) 平方差公式:$(a + b)(a - b) = a^2 - b^2$6. 整式的除法公式:(1) 整式除以一次整式:按照多项式的长除法进行计算。
(2) 整式除以二次整式:运用因式分解的方法进行计算。
7. 整式的应用:整式在数学中有广泛的应用,特别是在代数方程的解法、几何问题的求解以及物理问题的建模等方面都具有重要作用。
以上就是六年级整式的知识点总结。
通过学习和掌握这些知识,我们能够更好地理解和运用整式,为以后的学习打下坚实的基础。
希望同学们能够认真学习,不断巩固和提高自己的数学能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙文教育个性化辅导教案
学生 学校 年级 课次 科目
教师
日期
时段
课题 整式乘法及乘法公式
教学目标 考点分析
1、单项式与单项式、单项式与多项式、多项式与多项式相乘除的法则,熟练运用;
2、熟练运用平方差公式、完全平方公式。
教学重点 难点
1、运用乘法法则熟练进行计算;
2、平方差公式与完全平方公式的应用;
3、平方差公式与完全平方公式的逆用。
教学内容 乘法法则回顾:
1.单项式乘法:单项式相乘,把它们的系数,相同字母分别相乘;
2.单项式与多项式相乘法则:单项式与多项式相乘,就是单项式去乘多项式的每一项,再把所得的积相加(根据乘法对加法的分配率)。
3.多项式与多项式相乘法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的乘积相加(注意符号,不要漏算,最后结果不含同类项)
【例1】计算:2
2
(1)(3)(821)a a a --+ 22
231
(2)(2)()42
x y xy xy -•-
【例2】化简:(1)()(2)(2)()a b a b a b a b +--+- 2
(2)5(21)(23)(5)x x x x x ++-+-
【例3】若2
2
(3)(3)x nx x x m ++-+的乘积中不含2x 和3
x 项,求m 和n 的值
新课讲授:乘法公式
(1)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方差,即 (a +b )(a -b )=a 2
-b
2
注意:上式中a ,b 可以表示单项式,也可以表示多项式。
【例4】运用平方差公式计算:
2211
(1)()()22
x y x y -+ (2)(41)(41)a a ---+
(3)()()m n m n a b a b +- (4)()()a b c a b c -+++
【例5】利用平方差公式简化计算:
(1)59.860.2;⨯ (2)10298;⨯ 2(3)123461234512347;-⨯ 2(4)2008
【拓展】计算:2
4
2(1)(21)(21)(21)(21)n ++++
232
2
1111(2)(1)(1)(1)(1)23410-
---
22222
22(3)1009998979621-+-++-
【例6】观察下列等式:9-1=8,16-4=12,,36-16=20…这些等式反映出自然数间的某种规律,设n 表示正整数,用关于n 的等式表示_____________
(2)完全平方公式:两个单项式的和(或者差)的平方,等于它们的平方和,加上(或减去)它们的积的两倍,即: (a ±b )2
=a 2
±2ab+b 2
*注意完全平方和(差)公式的逆应用
【例7】计算:2
(1)(4)m n + 2
1(2)()2
x -
2(3)(32)x y - 21
(4)(4)4
y --
【例8】计算:2
(1)()a b c ++ 2
(2)(23)a b c -+ 2
(3)()a b c --
【例9】(1)若2
41
4039
x x -
+=,则x=________ (2)若2
2
8x xy k ++是一个完全平方式,则k=________ (3)若22
4m kmn n ++是一个完全平方式,则k=________ (4)若x+y=8,xy=7,则2
2
x y +=_______,x-y=_______
【例10】已知a+b=3,ab= -12,求下列各式的值
22(1)a b +;22(2)a ab b -+;2(3)()a b -
【例11】(1)已知12x x -=,求221
x x
+的值
(2)已知2
2114x x +
=,求1
x x
+
的值
【例12】解方程:2
2
(23)(4)(2)6x x x x +--+=+
【课堂练习】
1. 在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( ) A .2
222)(b ab a b a ++=+ B .2
222)(b ab a b a +-=- C .))((2
2b a b a b a -+=-
D .2
22))(2(b ab a b a b a -+=-+ 2、化简:3
22)3(x x -的结果是
A .56x -
B .53x -
C .52x
D .5
6x 3.当31x y ==、时,代数式2
()()x y x y y +-+的值是 . 4、若2
21m m -=,则2
242007m m -+的值是 . 5、化简:(x -y )(x+y )+(x -y )+(x+y ).
6、计算:()()2
121x x ++-
7、已知2514x x -=,求()()()2
12111x x x ---++的值
8、先化简,再求值:
22()()()2a b a b a b a +-++-,其中1
33
a b ==-,.
a
a b
b
a b
b
图甲 图乙
学生总结评定1.学生本次课对老师的评价:
○特别满意○满意○一般○差
2.本次课我学到了什么知识:
学生签字:
教师总结评定1.学生上次作业完成情况:
2.学生本次上课表现情况:
3.老师对本次课的总结:
教师签字:课前审阅:课后检查:
龙文教育课后作业
学生 科目 教师 课次
完成时间
完成 情况
1、下列运算正确的是( )
A .b a b a --=--2)(2
B .b a b a +-=--2)(2
C .b a b a 22)(2--=--
D .b a b a 22)(2+-=--
2.计算: ⎪⎭
⎫
⎝⎛-⋅23
913x x =________;24(2)a --=________. 3.已知:3
2
a b +=
,1ab =,化简(2)(2)a b --的结果是 . 4、计算:31
(2)(1)4
a a -⋅- = .
5、如图,沿正方形的对角线对折,•把对折后重合的两个小正方形内的单项式相乘,乘积是___________(只要写出一个结论)
a 2a
b
-2b
6、若a-1a =3,求a 2
+21a
的值.
7、计算:()()()2
312x x x +---
8、先化简,再求值:(2)(2)(2)a a a a -+--,其中1a =-.
教师签字: 审阅签字: 时间:
龙文教育课后测试卷
学生科目教师
课次完成时间得分/
测试内容试卷分析
教师签字:审阅签字:时间:。