论洛必达法则
洛必达法则

3 x→π − 2cos x sin x x→π sin 2 x x→π 2cos 2 x
2
2
2
注意: 洛必达法则是求未定式的一种有效方法,但与其它 求极限方法结合使用,效果更好.
-6-
tan x − x
例
5
求
lim
x→0
x2 tan x
.
(0) 0
解:原式
=
lim
x→0
tan x x3
−
x
(0) 0
x→∞
洛必达法则失效!
解:原= 式 lim(1+ 1 cos x) = 1.
x→∞
x
-12-
例12 求 lim[n − n2 ln(1+ 1 )]
n→∞
n
注意:数列极限没有洛必达法则,但是,可将数列极限
转化为函数极限,然后再使用洛必达法则.
解:原式 = lim [x − x2 ln(1+ 1 )]
x→+∞
x
1 =t x
t − ln(1+ t)
= lim
t →0+
t2
(0) 0
1− 1 = lim 1+ t
=1
t→0+ 2t
2
-13-
a x − asin x 例 13 求 lim
x→0 1− 1+ 2x3
解:原式 = lim asin x (ax−sin x −1) x→0 −( 1+ 2x3 −1)
∞
0
例 6 求 lim x−2ex. ( 0 ⋅ ∞ ) x→+∞
解:原式
=
lim
x→+∞
ex x2
洛必达法则

一、洛必达法则
1. 0/0型与∞/∞型未定式 定理1
பைடு நூலகம்
设
(1)当x→x0时,函数f(x)及g(x)都趋于零(或f(x)及g(x)都
趋于无穷大).
(2)在点x0的某去心邻域内,f′(x)及g′(x)都存在且g′(x)≠0.
(3)
存在或为无穷大.
则
一、洛必达法则
证明这里仅证当x→x0时的0/0型未定式的情形.对于当
一、洛必达法则
当x→x0时,有ξ→x0,所以
上述定理给出的这种在一定条件下通过对分子、 分母分别先求导、再求极限来确定未定式的值的 方法称为洛必达法则.
一、洛必达法则
注意
如果f′(x)/g′(x)当x→x0时仍是0/0型和∞/∞型未定 式,且这时f′(x)与g′(x)满足定理1中f(x),g(x)所要满足 的条件,那么可以继续使用洛必达法则,即
(3)
存在或为无穷大.
则
一、洛必达法则
【例6】
【例7】
一、洛必达法则
解这是∞/∞型未定式.当α是正整数时,连续应用α次洛 必达法则得
当α不是正整数时,显然必存在正整数k,使得k- 1<α<k,此时连续应用k次洛必达法则,即得
综上所述,对任意α>0,都有
二、其他类型的未定式
除了0/0型和∞/∞型两种基本未定式外,还有0·∞,∞- ∞,00,1∞,∞0型未定式,它们都可以经过适当变形,化为0/0型或∞/∞ 型未定式后,再应用洛必达法则来计算.
一、洛必达法则
【例1】
一、洛必达法则
注意
上式中的
已不再是未定式,故不能再
对它应用洛必达法则,否则要导致错误的结果.因此在每
次使用洛必达法则之前,都要验证极限是否为0/0型未定
洛必达法则

洛必达法则洛必达法则是一种由雷洛必达(RaymondLoewy)提出的设计原则,指的是设计者通过其革新能力来完成有效的设计。
洛必达提出这一原则的目的是强调设计的可操作性,并为设计者提供更多的自主权,以满足客户的需求并创造出更好的作品。
洛必达法则包括三个要素:可理解性、可操纵性和可部署性。
可理解性要求设计图形应即刻易懂,使用者不必事先读取它们。
可操纵性要求用户能够迅速找到有用信息,而可部署性要求设计能够在实际环境中进行灵活的部署。
洛必达法则的实施有助于简化复杂的设计问题,使设计者不必耗费过多的时间来完成任务。
让设计者只需要花费较少的时间就可以获得令人满意的结果。
此外,它还有助于提升设计者的设计效率,使设计者更有可能在更紧凑的时间内完成更多的任务。
洛必达法则有助于创造出简单易懂、高效操作的设计,为用户提供很大的便利。
同时,这一原则使设计者更有可能在限制条件之下完成任务,并节省时间和金钱。
洛必达法则的实施也可以帮助人们更深入的理解其所使用的设计理念,辅助设计者完成设计任务。
这一原则可以帮助人们更好地识别设计中的易操作性、可理解性和可部署性,从而更好地完成所面临的设计任务。
洛必达法则不仅仅适用于设计专业,还可以广泛应用于各行各业。
在工业设计方面,洛必达法则可以帮助企业更快捷地完成生产工业产品设计任务。
在软件设计领域,这一原则还可以帮助企业更快地完成软件的开发任务。
在建筑方面,洛必达法则可以帮助设计者寻求更加实用的方案,从而提高建筑设计的可操作性。
总之,洛必达法则是一种重要的设计原则,在不同行业中都可以得到广泛应用。
它有助于提高设计者的设计效率,同时为用户提供便利。
实施洛必达法则也有助于在限制条件下完成任务,使设计者更有可能以更实用和更易操作的方式完成设计任务。
洛必达法则

洛必达法则简介洛必达法则(L’Hôpital’s rule),又称洛必达法则(L’Hospital’s rule),是微积分中的一条重要定理,用于求解某些形式的极限。
这一定理由法国数学家洛必达(Guillaume-Roger-François, Marquis de L’Hôpital)在18世纪提出,被认为是微积分学中的重要工具之一。
洛必达法则主要用于解决形如f(x) / g(x)形式的函数极限问题,其中f(x)和g(x)是两个可导函数,并且极限结果存在不定型。
通过洛必达法则,我们可以将其转化为求f’(x) / g’(x)的极限,从而得到准确的结果。
洛必达法则的条件洛必达法则适用于以下情况:1.极限形式为f(x) / g(x);2.函数f(x)和g(x)在极限点的附近均连续;3.函数g’(x)不为零,除了可能在极限点上。
洛必达法则的表述洛必达法则的一般形式可表示为:若函数f(x)和g(x)满足洛必达法则的条件,并且极限:存在或为无穷大时,那么:其中,f’(x) 和g’(x) 分别表示函数f(x)和g(x)的导数。
洛必达法则的应用步骤使用洛必达法则解决极限问题的步骤如下:1.将函数f(x)和g(x)分别求导,得到f’(x)和g’(x);2.计算f’(x) / g’(x)的极限值。
若结果存在或为无穷大,则该极限值就是原始极限的结果;3.若求导后的函数又出现不定型,可以继续应用洛必达法则,依次求导,直到结果不再出现不定型。
示例让我们通过一个简单的例子来说明洛必达法则的应用。
假设我们需要求解如下极限问题:可以看到,分母g(x)在极限点0的附近为零,因此我们可以尝试使用洛必达法则来求解。
首先,我们计算函数f(x)和g(x)的导数:然后,我们计算f’(x) / g’(x)的极限:因此,根据洛必达法则,原始极限的结果为1。
总结洛必达法则是微积分中解决某些形式的极限问题的重要工具。
洛必达法则

求
lim
x0
(1
3x cos
sin 3x x)ln(1
2
x
)
.
解
当 x 0 时,
1
cos
x
~
1 2
x2,
ln(1
2x)
~
2
x,
故
lim
x0
(1
3x cos
x
sin 3x )ln(1
2
x
)
lim
x0
3
x
sin x3
3
x
lim
x0
3
3cos 3x2
3
x
lim
x0
3
sin 3 2x
x
9. 2
完
1
ln cot x
解 lim (cot x)ln x lim e ln x
x0
x0
e lim x0
ln cot ln x
x
e lim x0
tan
xcsc2 1
x
x
e lim x0
cos1xsinx
x
e1.
完
例22 求 lim (e3x 5 x)1x.(0 ) x
解
lim (e3x
1
5x) x
洛必达法则
取何值无关,故可补充定义 f (a) g(a) 0.
根据定理的条件,知函数 f ( x)与 g( x)在以 a与 x
为端点的区间上满足柯西中值定理的条件, 于是
f (x) g( x)
f (x) g(x)
f (a) g(a)
f '( ) g'( )
( 在
x 与 a
洛必达法则

数论洛必达法则

数论洛必达法则-概述说明以及解释1.引言1.1 概述概述:数论洛必达法则是数学中一个重要的定理,它在解决极限计算问题中扮演着重要的角色。
洛必达法则主要用于解决形式为\frac{0}{0}或\frac{\infty}{\infty}的不定式极限问题。
这个法则的提出和应用,极大地简化了求解极限的复杂程度,成为数学分析中的重要工具。
在本文中,我们将对洛必达法则进行详细的介绍,包括其概念、应用和意义。
我们将深入探讨这一定理在数论领域中的重要性,以及它在数学研究和实际问题中的应用。
同时,我们也会对洛必达法则的局限性进行探讨,以及未来在这一领域中的发展展望。
通过本文的阐述,读者将更加深入地理解数论洛必达法则,并对数学研究中的极限问题有更深入的认识。
1.2 文章结构文章结构部分的内容:本文将分为引言、正文和结论三部分进行阐述。
引言部分将从概述、文章结构和目的三方面介绍数论洛必达法则的重要性和意义。
正文部分将详细介绍洛必达法则的概念、应用和意义,包括其在数论领域的具体运用和影响。
结论部分将对洛必达法则进行总结,并讨论其局限性和未来的发展方向,以展望洛必达法则在数论研究中的潜力。
每个部分将以清晰的逻辑顺序和详细的论证来展现洛必达法则在数论领域的重要性和价值。
1.3 目的本文旨在深入探讨数论中的洛必达法则,并分析其概念、应用和意义。
通过对洛必达法则进行系统性的介绍和解读,旨在帮助读者更好地理解这一重要的数学原理,并且探讨洛必达法则在数论领域中的具体运用。
同时,本文也将对洛必达法则的局限性进行深入分析,并展望未来在数论研究中的潜在应用。
通过本文的阐述,读者将能够更全面地了解洛必达法则在数论领域中的重要性和意义,以及未来可能的发展方向。
2.正文2.1 洛必达法则的概念洛必达法则是数学中的一个重要概念,通常用于解决极限计算中的不定式形式。
它最初由意大利数学家洛必达(L'Hôpital)在17世纪提出,并在微积分学中得到广泛应用。
洛必达法则原理推导

洛必达法则原理推导洛必达法则原理推导洛必达法则是微积分学中的一种重要理论,它描述了函数在逼近某个点时的极限趋近问题。
这个原理是由法国数学家洛必达在18世纪发明的。
在本文中,我们将通过推导的方式来理解洛必达法则的原理。
在微积分中,洛必达法则的表述是:当函数$f(x)$和$g(x)$在$x=a$处都可导,且$g'(a)$不等于$0$时,如果$\lim_{x\rightarrow a}f(x)=0$且$\lim_{x\rightarrow a}g(x)=0$,则$\lim_{x\rightarrowa}\frac{f(x)}{g(x)}$存在,且有$\lim_{x\rightarrowa}\frac{f(x)}{g(x)}=\frac{f'(a)}{g'(a)}$。
我们可以通过导数的定义来理解洛必达法则。
考虑$f(x)$和$g(x)$在$x=a$处的导数,假设都存在,我们可以将它们展开为下面的形式:$$f'(a) = \lim_{x\rightarrow a}\frac{f(x)-f(a)}{x-a}$$$$g'(a) = \lim_{x\rightarrow a}\frac{g(x)-g(a)}{x-a}$$由于$\lim_{x\rightarrow a}f(x)=0$和$\lim_{x\rightarrow a}g(x)=0$,我们可以将$f(x)$和$g(x)$展开为泰勒级数:$$f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2}(x-a)^2+...$$$$g(x)=g(a)+g'(a)(x-a)+\frac{g''(a)}{2}(x-a)^2+...$$因为$f(x)$和$g(x)$在$x=a$处可导,所以它们的一阶导数存在,而一阶导数在$x=a$处的值分别是$f'(a)$和$g'(a)$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小论
洛必达法则
姓名:
班级:
学号:
一、引言
洛必达法则是数学分析中用于求未定式或极限的一种较普遍的有效方法,灵活地运用洛必达法则也是我们自身数学解题能力的体现,具有重要的应用价值。
而洛必达法则在计算未定式极限中洛必达法则扮演着十分重要的角色。
这是因为对于未定式极限来讲其极限是否存在,等于多少是不能用极限的四则运算法则。
而通过对分子分母分别求导再求极限的洛必达法则能够很有效的计算出未定式的极限。
洛必达法则,是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
求函数极限是高等数学中的一项重要内容,是研究微积分学的工具。
在众多求极限方法中,洛必达法则因其使用简单方便又可解决绝大部分极限问题而备受青眯,但如果使用不当也容易产生误区,得出错误结果。
二、概念
1.0
型 洛必达法则1:若函数f (x)与g(x)满足下列条件:
(1)在a 的某去心邻域()a U O
可导,且g '(x)≠0;
(2)lim x a → f (x)=0与lim x a →g (x)=0; (3)()()
''lim x a f x l g x →=, 则()()
lim x a f x g x →=()()''lim x a f x l g x →= 洛必达法则2:若函数f (x)与g(x)满足下列条件:
(1)∃A>0,在(),A -∞-与(),A +∞可导,且g '(x)≠0;
(2)lim x a → f (x)=0与lim x a
→g (x)=0; (3)()()
''lim x a f x l g x →= 则()()
lim x a f x g x →=()()''lim x a f x l g x →=
● 2.∞∞
型 洛必达法则3:若函数f (x)与g(x)满足下列条件:
(1)在a 的某去心邻域()a U O
可导,且g '(x)≠0;
(2)lim x a → f (x)= ∞与lim x a →g (x)= ∞; (3)()()
''lim x a f x l g x →=, 则()()
lim x a f x g x →=()()''lim x a f x l g x →=
三、应用
● 1. 0""0型及""∞∞
型不定式
例:求数列极限211lim 1n n n n →∞⎛⎫++ ⎪⎝⎭ 解:先求函数极限211lim 1x
x x x →+∞⎛⎫++ ⎪⎝⎭.取对数后的211ln 1x x x ⎛⎫++ ⎪⎝⎭极限为: ()222ln 1ln 11lim ln 1lim 1x x x x x x x x x
→+∞→+∞++-⎛⎫++= ⎪⎝⎭ 222221221lim lim 111x x x x x x x x x x x
→+∞→+∞+-+++===++- 所以,211lim 1n n n n →∞⎛⎫++ ⎪⎝⎭=211lim 1x
x x x →+∞⎛⎫++ ⎪⎝⎭e =. ●
2.可转化为基本类型的未定式极限 洛必达定理只能解决0""0型及""∞∞
型未定式函数极限,而对于某一极限过程中"0"⋅∞,""∞-∞,0"0",0""∞,"1"∞等5种类型的极限也可经过一定变形,
转化为基本类型,再用法则求之。
⑴对于"0"⋅∞型,可将乘积化为除的形式,即化为0""0型或""∞∞
型; ⑵对于""∞-∞型,可通过通分化为0""0
型未定式计算; ⑶对于0"0",0""∞,"1"∞型,可先化为以e 为底的指数函数的极限,再利用指数函数的连续性,转为直接求指数的极限,而指数的极限形式为
"0"⋅∞型,再转化为0""0型或""∞∞
型计算。
1. 例:求1lim 1x x x e →∞⎛⎫- ⎪⎝⎭
. 解:1110lim 1lim ""10x x x x e x e x →∞→∞⎛⎫-⎛⎫-== ⎪ ⎪⎝⎭⎝⎭11221lim lim 11
x
x x x e x e x →∞→∞⎛⎫- ⎪⎝⎭==-
2. 例:求111lim 1ln x x x →⎛⎫- ⎪-⎝⎭
解:
()1111ln 10lim lim ""1ln 1ln 0x x x x x x x x →→--⎛⎫⎛⎫-= ⎪ ⎪--⎝
⎭⎝⎭200211101lim ""lim 11102ln 1x x x x x x x x
→→--⎛⎫===- ⎪⎝⎭+-+ 3.洛必达法则求极限
例:求()()203sin 3lim tan ln 1x x x x x →-⋅+.
解:显然,当0x →时,tan ~x x ,()ln 1~x x +,
故()()203sin 3lim tan ln 1x x x x x →-⋅+32003sin 333cos3lim lim 3x x x x x x x →→--==03sin 39lim 22
x x x →==. 该法则是通过计算函数的导数,利用导数的极限求出原函数的极限,故只适用于函数极限的求解。
然而在应用时,对0""0型及""∞∞
型数列极限也可间接
应用。
四、总结
求极限是高等数学中最重要的内容之一,也是高等数学的基础部分,因此熟练掌握求极限的方法对学好高等数学具有重要的意义。
洛比达法则用于求分子分母同趋于零的分式极限。
1.在着手求极限以前,首先要检查是否满足或型构型,否则滥用洛
必达法则会出错。
当不存在时(不包括情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
比如利用泰勒公式求
解。
2.若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
3.洛必达法则是求不定式极限的有效工具,但是如果仅用洛必达法则,
往往计算会十分繁琐,因此一定要与其他方法相结合。