洛必达法则

合集下载

诺比达法则公式

诺比达法则公式

诺比达法则公式
x→a时,limf(x)=0,limf(x)=0;
在点a的某去心邻域内f(x)与f(x)都可导,且f(x)的导数不等于0;
x→a时,lim(f'(x)/f'(x))存有或为无穷大则x→a时,lim(f(x)/f (x))=lim(f'(x)/f'(x))
洛必达(l'hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未
定式值的方法。

洛必达法则(定理)设立函数f(x)和f(x)满足用户以下条件
⑴x→a时,limf(x)=0,limf(x)=0;
⑵在点a的某回去心邻域内f(x)与f(x)都可微,且f(x)的导数不等同于0;
⑶x→a时,lim(f'(x)/f'(x))存在或为无穷大则x→a时,lim(f(x)/f (x))=lim(f'(x)/f'(x))
注意事项:
求极限是高等数学中最重要的内容之一,也是高等数学的基础部分,因此熟练掌握求
极限的方法对学好高等数学具有重要的意义。

洛比达法则用于求分子分母同趋于零的分式
极限。

⑴ 在著手谋音速以前,首先必须检查与否满足用户或型构型,否则误用洛必达法则
可以失效(其实形式分子并不需要为无穷大,只需分母为无穷大即可)。

当不存有时(不
包含情形),就无法用洛必达法则,这时表示洛必达法则不适用于,需从另外途径谋音速。

比如说利用泰勒公式解。

⑵ 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

洛必达法则

洛必达法则
0
x 1 2 − 2 1 + x = lim x 解 原式 = lim = 1. x→+∞ x→+∞ 1 + x2 1 − 2 x tan x ∞ .( ) 例5 求 lim π x→ tan 3 x ∞ 2
1 cos2 3x sec x = lim 解 原式 = lim π 3sec2 3 x 3 x→π cos2 x x→ 2 2
lnsin 2x ∞ lim .( ) 例3 求 x→0 lnsin 3x ∞
+
2cos 2x ⋅ sin 3x cos 2x 解 原式 = lim = lim = 1. x→0 3cos 3 x ⋅ sin 2 x x→0 cos 3 x
+
+
π
例4
求 lim 2
x→+∞
− arctan x 1
. (0)
3. 0 , 1 , ∞ 型
0 ∞ 0
步骤: 步骤:
00 0 ⋅ ln 0 ∞ 1 取对数→∞ ⋅ ln1 ⇒ 0 ⋅ ∞. 0 ⋅ ln ∞ ∞0
+
x 0 例9 求 lim x . ( 0 ) x→0

ln x 原式 = lime , 而 lim x ln x = lim x→0 x→0 1 x→0 x 1 = lim x = 0. ∴原式 = e0 = 1. x→0 −1 2 x
第二节
洛必达法则
0 ∞ 一、型及 型未定式解法: 洛必达法则 0 ∞
0 二、⋅ ∞, ∞ − ∞,00 ,1∞ , ∞0型未定式解法
0 ∞ 一、型及 型未定式解法: 洛必达法则 0 ∞
定义 如果当x → a(或 x → ∞)时,两个函数 f ( x) 与F( x)都趋于零或都趋于无穷大,那末极 f ( x) 0 ∞ 限 lim 称为 型或 型未定式 . x→a F( x) 0 ∞ ( x→∞)

洛必达法则三个条件

洛必达法则三个条件

洛必达法则三个条件1. 洛必达法则啊,它有三个条件呢。

这就像三把钥匙,少了一把都打不开那扇特定的数学大门。

第一个条件是,在自变量趋于某值时,分子分母的极限都得是零或者无穷大。

比如说,求极限lim(x→0) (sinx)/x,当x 趋于0的时候,sinx趋于0,x也趋于0,这就符合第一个条件啦。

你看,这多像两个人同时走向一个神秘的起点,要一起满足这个特殊的开始条件呢。

2. 洛必达法则的第二个条件也很关键哦。

在这个极限趋近的过程中,分子分母得在那个值的去心邻域内可导。

啥叫去心邻域呢?就像给那个值周围画个圈,但是不包括那个值本身。

举个例子,像lim(x→1) (x² - 1)/(x - 1),在x接近1的时候,分子分母在1的去心邻域内都是可导的。

这就好比一群小伙伴要去探险,在接近宝藏的那片区域得有特殊的能力(可导),这样才能继续探索下去呢。

3. 嘿,洛必达法则的第三个条件可不能忘。

分母的导数不能为零啊。

这就像一个规则,分母就像一个支撑的架子,要是这个架子的变化率(导数)为零了,那整个式子就乱套了。

就像lim(x→2) (x³ - 8)/(x - 2)²,分母的导数在x→2的时候不为零,这就符合第三个条件。

这就像一场比赛,分母这个“选手”得按照一定的规则来,不能有特殊的违规情况(导数为零)。

4. 洛必达法则的这三个条件啊,就像拼图的三块,缺了任何一块都拼不出完整的画面。

第一个条件里分子分母极限的那种共同趋向(零或者无穷大),就像是两个舞者同时迈着相同的步伐走向舞台中央。

比如lim(x→0) (tanx)/x,x趋于0时,tanx和x都走向那个神秘的零的状态。

你要是只看到一个舞者在动,另一个不动,那就不符合这个法则的第一个条件啦。

这是不是很神奇呢?5. 再看第二个条件,在自变量趋近的去心邻域内可导。

这就像在一片神秘的森林里,只有在特定的小区域内有特殊的能力(可导)才能继续前进。

罗比达法则

罗比达法则

二、 0 , ,0 ,1 , 型未定式解法 1. 0 型 1 0 1 步骤: 0 , 或 0 0 就可转化为 0 或 型 0
2. 型
1 1 00 步骤: . 0 0 00
将x x0换成x x0 , x x0 , x , x , x 仍有类似的结论
0 如: x 时 型的极限 0
设f ( x ), g( x )在 | x | N上有定义,且 (1) lim f ( x ) lim g( x ) 0
x x
3. 0 ,1 , 型
0 0
0 0 0 ln 0 步骤: 取对数 1 ln 1 0 ln 0

0 .
说明
0 , 这两种基本未定式 罗比达法则只能对 0 才可直接应用,其它类型的未定式必须先转化
定理
( 2) f ( x ), g ( x )在 | x | N时可导,且g( x ) 0 f ( x ) ( 3) lim A(或 ) x g ( x ) f ( x) f ( x ) 则 lim lim A(或 ) x g ( x ) x g ( x )
§4.7 罗比达法则
罗比达法则又叫洛比达法则是在一定条件下通 过分子分母分别求导再求极限来确定未定式值 的方法。
设(1) 当 x 0时,函数 f ( x ) 及 F ( x ) 都趋于零; ( 2) 在 a 点的某领域内 (点 a 本身可以除外), f ( x ) 及 F ( x ) 都存在且 F ( x ) 0; f ( x ) ( 3) lim 存在(或为无穷大); 定理 x a F ( x ) f ( x) f ( x ) 那末 lim lim . x a F ( x ) x a F ( x )

洛必达法则

洛必达法则

洛必达法则简介洛必达法则(L’Hôpital’s rule),又称洛必达法则(L’Hospital’s rule),是微积分中的一条重要定理,用于求解某些形式的极限。

这一定理由法国数学家洛必达(Guillaume-Roger-François, Marquis de L’Hôpital)在18世纪提出,被认为是微积分学中的重要工具之一。

洛必达法则主要用于解决形如f(x) / g(x)形式的函数极限问题,其中f(x)和g(x)是两个可导函数,并且极限结果存在不定型。

通过洛必达法则,我们可以将其转化为求f’(x) / g’(x)的极限,从而得到准确的结果。

洛必达法则的条件洛必达法则适用于以下情况:1.极限形式为f(x) / g(x);2.函数f(x)和g(x)在极限点的附近均连续;3.函数g’(x)不为零,除了可能在极限点上。

洛必达法则的表述洛必达法则的一般形式可表示为:若函数f(x)和g(x)满足洛必达法则的条件,并且极限:存在或为无穷大时,那么:其中,f’(x) 和g’(x) 分别表示函数f(x)和g(x)的导数。

洛必达法则的应用步骤使用洛必达法则解决极限问题的步骤如下:1.将函数f(x)和g(x)分别求导,得到f’(x)和g’(x);2.计算f’(x) / g’(x)的极限值。

若结果存在或为无穷大,则该极限值就是原始极限的结果;3.若求导后的函数又出现不定型,可以继续应用洛必达法则,依次求导,直到结果不再出现不定型。

示例让我们通过一个简单的例子来说明洛必达法则的应用。

假设我们需要求解如下极限问题:可以看到,分母g(x)在极限点0的附近为零,因此我们可以尝试使用洛必达法则来求解。

首先,我们计算函数f(x)和g(x)的导数:然后,我们计算f’(x) / g’(x)的极限:因此,根据洛必达法则,原始极限的结果为1。

总结洛必达法则是微积分中解决某些形式的极限问题的重要工具。

洛必达法则的原理及应用

洛必达法则的原理及应用

洛必达法则的原理及应用一、洛必达法则的原理洛必达法则,又称为洛必达规则或洛必达法则,是微积分中应用极限概念的一种方法,用于求解极限的一种计算技巧。

其原理基于导数和极限的关系,通过对函数的导数进行运算,可简化求解复杂极限的过程。

洛必达法则的核心原理是,如果一个函数在某个点的极限不存在或者为无穷大,但是该函数的导数在该点存在,则可以通过对该函数及其导函数进行比较,从而确定极限的值。

二、洛必达法则的公式洛必达法则有两种常见的表达方式:1.使用洛必达法则的第一种形式,可表示为:如果lim(x->a) f(x) = 0且lim(x->a) g(x) = 0,则lim(x->a) [f(x) / g(x)] = lim(x->a) [f'(x) / g'(x)],其中f'(x)和g'(x)分别表示f(x)和g(x)的导数。

2.使用洛必达法则的第二种形式,可表示为:如果lim(x->a) f(x) = ±∞且lim(x->a) g(x) = ±∞,则lim(x->a) [f(x) / g(x)] = lim(x->a) [f'(x) / g'(x)]。

三、洛必达法则的应用示例以下是几个洛必达法则的具体应用示例:1.求解极限lim(x->∞) [x^2 / e^x]:根据洛必达法则,可以将分子和分母的导数进行比较:lim(x->∞) [x^2 / e^x] = lim(x->∞) [2x / e^x] = lim(x->∞) [2 / e^x] = 0。

所以,lim(x->∞) [x^2 / e^x] = 0。

2.求解极限lim(x->0) [(sinx - x) / x^3]:可以将分子和分母的导数进行比较:lim(x->0) [(sinx - x) / x^3] = lim(x->0) [(cosx - 1) / 3x^2] = lim(x->0) [-sinx / 6x] = -1/6。

高数洛必达法则

高数洛必达法则

与夹逼定理(Squeeze Theorem)结合使用,可以 求解一些复杂的不定式极限
问题。
与单调有界定理(Monotone Bounded Theorem)相关联, 可用于判断数列或函数的收敛
性。
02
洛必达法则证明过程
构造函数法证明
构造函数
01
通过构造一个与原函数在某点处切线斜率相同的辅助函数,将
适用范围及条件
适用于0/0型和∞/∞型的不定式极限。
使用条件:当x趋向于某一值时(可以是无穷大),函数f(x)与g(x)都趋向于0或者无穷大,且两者的导函数存在且比值为常(Taylor's Theorem)有密切关系,洛必 达法则是泰勒公式在求解极限
时的特殊应用。
变量替换法
在某些情况下,通过变量替换可以简化极限的计算过程。
05
洛必达法则拓展与延伸
多元函数洛必达法则
多元函数洛必达法则的定 义
对于多元函数,当其在某点的偏导数存在且 连续时,该点处的极限值可以通过洛必达法 则求解。
多元函数洛必达法则的应用 条件
要求函数在考察点处偏导数存在且连续,同时需要 满足一定的限制条件,如分母不为零等。
高数洛必达法则
• 洛必达法则基本概念 • 洛必达法则证明过程 • 洛必达法则应用举例 • 洛必达法则注意事项 • 洛必达法则拓展与延伸
01
洛必达法则基本概念
洛必达法则定义
洛必达法则(L'Hôpital's Rule)是微 积分学中的一个重要定理,用于求解 不定式极限。
该法则以法国数学家纪尧姆·弗朗索瓦· 安托万·德·洛必达命名。
解不等式
将不等式转化为函数值比较问题,利用洛必 达法则求解函数的极值点,进而确定不等式 的解集。

洛必达法则

洛必达法则


lim
x0
(1
3x cos
sin 3x x)ln(1
2
x
)
.

当 x 0 时,
1
cos
x
~
1 2
x2,
ln(1
2x)
~
2
x,

lim
x0
(1
3x cos
x
sin 3x )ln(1
2
x
)
lim
x0
3
x
sin x3
3
x
lim
x0
3
3cos 3x2
3
x
lim
x0
3
sin 3 2x
x
9. 2

1
ln cot x
解 lim (cot x)ln x lim e ln x
x0
x0
e lim x0
ln cot ln x
x
e lim x0
tan
xcsc2 1
x
x
e lim x0
cos1xsinx
x
e1.

例22 求 lim (e3x 5 x)1x.(0 ) x

lim (e3x
1
5x) x
洛必达法则
取何值无关,故可补充定义 f (a) g(a) 0.
根据定理的条件,知函数 f ( x)与 g( x)在以 a与 x
为端点的区间上满足柯西中值定理的条件, 于是
f (x) g( x)
f (x) g(x)
f (a) g(a)
f '( ) g'( )
( 在
x 与 a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 洛必达法则
一.洛必达法则
法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a
g x →=; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;
(3)()()
lim x a f x l g x →'=', 那么 ()
()lim x a f x g x →=()()
lim x a f x l g x →'='。

法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=; (2)0A ∃,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0;
(3)()()
lim x f x l g x →∞'=', 那么 ()
()lim x f x g x →∞=()()
lim x f x l g x →∞'='。

法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;
(3)()()
lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()
lim x a f x l g x →'='。

利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○
1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则也
成立。


2洛必达法则可处理00,∞∞
,0⋅∞,1∞,0∞,00,∞-∞型。

○3在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。

当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。


4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

二.高考题处理
1.设函数2()1x f x e x ax =---。

相关文档
最新文档