(完整版)《用向量法求二面角的平面角》教案
二面角法向量求法

二面角的表示方法
二面角是由两个半平面所组成 的图形,其大小由两个半平面
的夹角决定。
二面角可以用角度制或弧度制 来表示,与平面角和空间角类
似。
二面角的大小与两个半平面的 方向有关,与半平面的大小无 关。
在求解二面角的大小时,通常 需要先找到两个半平面的法向 量,然后计算两个法向量之间 的夹角即可得到二面角的大小 。
二面角法向量求法
汇报人:XX 2024-01-23
• 引言 • 二面角的表示方法 • 法向量的求解方法 • 二面角法向量的性质 • 二面角法向量的应用 • 总结与展望
01
引言
二面角的定义
二面角是由两个半平面所组成的 图形,其大小由这两个半平面的
夹角决定。
二面角的大小范围在0°到180°之 间,当两个半平面重合时,二面 角为0°;当两个半平面形成一条
面积射影定理
根据面积射影定理,二面角的余弦值等于两个半 平面在棱上的投影面积之比。因此,可以通过求 出两个半平面在棱上的投影面积,然后利用面积 射影定理求出二面角的大小。
三垂线定理及其逆定理法
利用三垂线定理或其逆定理,可以构造出与二面 角的棱垂直的线段,进而通过解三角形求出二面 角的大小。
空间向量夹角公式
03
法向量的求解方法
平面法向量的求解方法
直接法
如果平面上的一个向量 已知,则该向量即为平 面的法向量。
待定系数法
设平面的法向量为 n=(x,y,z),根据平面的 方程可以列出关于x,y,z 的方程组,通过求解方 程组得到法向量。
向量积法
如果平面上有两个不共 线的向量a和b,则平面 的法向量n可以通过计 算向量a和b的向量积得 到,即n=a×b。
求二面角大小的直接计算法(讲稿)

求二面角大小的直接计算法肖德凯利用向量求二面角,如何判断所求二面角是锐角或钝角?现行中学数学教材或教辅资料给出的方法是通过观察图形来确定;常见的大学数学教材亦未涉及此问题.由于一个平面有共线且方向相反的两个法向量,所以两个平面所成二面角的平面角的大小与其法向量所成之角可能相等, 也可能互补;而现行中学数学教材是用点积的办法来求法向量的, 点积法的缺陷是不能控制法向量的方向, 所以也就无法准确判断所求二面角究竟是钝角或锐角.本文介绍一种利用向量外积控制平面法向量方向,借助两平面法向量所成角与两平面所成二面角的关系,直接计算二面角并判断其为锐角或钝角的方法. 为此我们首先介绍向量外积概念及运算法则. 1 二阶行列式的概念及运算法则由于二阶行列式与向量外积的计算密切相关,故我们先简要介绍二阶行列式. 二阶行列式源于解二元一次方程组,它的定义是:11122122x y x y x y x y =-例1.1 计算 3437(2)42182927=⨯--⨯=+=-.2 向量外积2.1设a 、b 为同一平面内起点重合的非共线向量,则a 、b 外积n 表示为n =a ⨯b ,其结果n 仍然是一个向量,方向与a 、b 所在平面垂直.向量外积的确切的方向根据右手法则确定(如图2.1):伸开右手掌,使拇指与其余四指垂直,将手腕与a 和b 的始端重合,拇指之外的四指与a 同向,使得手掌弯曲指向b ,但这时a 到b 的角度必须小于180 ,此时大拇指指向的方向就是a ⨯b 的方向,即a 、b 所在平面的法向量的一个方向[一个平面的法向量的方向共有两个(共线的两个),指向平面的两侧,通常并不确定是其中哪一个方向].2.2 向量外积的计算法则 若()111x ,y ,z a=,()222x ,y ,z b =,则()()()111222111111222222122112211221x ,y ,z x ,y ,z y z x z x y ,,y z x z x y y z y z ,x z x z ,x y x y .a b ⨯=⨯⎛⎫=- ⎪⎝⎭=--+-例2.1 已知11(,,1)22a =-,11(,,1)22b =---;求a b ⨯.11,,12211,,1221111112222,,111111222211,0,.2ab ⎛⎫⨯=- ⎪⎝⎭⎛⎫⨯--- ⎪⎝⎭⎛⎫--⎪ ⎪=- ⎪------ ⎪⎝⎭⎛⎫=- ⎪⎝⎭解3 求二面角大小的直接算法如图1, 设二面角C-AB-E 的大小为θ,平面ABEF 的法向量为n , 平面ABCD 的法向量为m 1;n 、m 1的夹角为1θ,那么θ=π-1θ,1cos cos n m n mθθ⋅=-=-.如图2, 设二面角C-AB-E 的大小为θ,平面ABEF 的法向量为n , 平面ABCD 的法向量为m ; n 、m 的夹角为2θ,则2θθ=,2cos cos n m n mθθ⋅==.那么,如何确定两平面的法向量才能保证其所成之角恰好就是我们所要求的二面角呢?其实,只要利用向量外积概念,我们就可以做到这一点.在图2中,按照如下顺序求出n 、m ,我们就可保证所求二面角与计算结果完全一致,nAB AF =⨯ ,mA B A D =⨯ , cos n mn mθ⋅=.上述方法的要点是: ① 确立公共点A(每个向量都以点A 为起始点); ② 确定公共向量AB(每个法向量的计算都以AB为基础); ③ 遵守严格的运算顺序(nAB AF =⨯ ,m AB AD =⨯)求法向量n 与m.例 3.1 (2010全国高考理科试题(I 卷)第19题) 如图3, 四棱锥S-ABCD中,SD ⊥底面ABCD,AB//DC ,AD ⊥DC, AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC.(1) 证明:SE =2EB ;(2) 求二面角A-DE-C 的大小.解 以D 为坐标原点,DA ﹑DC ﹑DS 边所在直线为x 轴﹑y 轴﹑z 轴建立空间直角坐标系(图4),相应各点坐标为D ()0,0,0,A ()1,0,0, C ()0,2,0, S ()0,0,2.(1) (略)(2) 由(1) 得E 222,,333⎛⎫⎪⎝⎭, 于是222(,,)333D E = ,(1,0,0)D A =,(0,2,0)D C = ,那么,平面DEA 的法向量222(,,)333(1,0,0)222222,,3333330011022(0,,)33nD E D A =⨯=⨯⎛⎫ ⎪=- ⎪ ⎪⎝⎭=-平面DEC 的法向量222(,,)333(0,2,0)222222,,33333320244(,0,)33mD E D C =⨯=⨯⎛⎫ ⎪=- ⎪ ⎪⎝⎭=-若平面DEA 与平面DEC 所成的角为θ, 则81cos 0233n mn mθ-⋅===-<. 又 []0,θπ∈,所以23θπ=.例3.2(2005高考江苏试题 第21题 第3问) 如图5,在五棱锥S —ABCDE 中,SA ⊥底面ABCDE,SA=AB=AE =2,3==DE BC ,︒=∠=∠=∠120CDE BCD BAE .求二面角B-SC-D 的大小(用反三角函数值表示解 连接BE ,延长BC 、ED 交于点F (图6), 则∠DCF=∠CDF =600,∴△CDF 为正三角形, ∴CF=DF . 又BC=DE, ∴BF=EF , 故△BFE 为正三角形, 因为△ABE 是等腰三角形,且∠BAE =1200, ∴∠ABC =900.以A 为坐标原点, AB 、AS 棱所在的直线分别为x 轴、z 轴, 以平面ABC 内垂直于AB 的直线为y 轴,建立空间直角坐标系(图6), 相应各点坐标为A (0,0,0),B (2,0,0),S (0,0,2),且()2,0C,1,,022D ⎛⎫⎪⎪⎝⎭. 于是()2,2C S =-,()0,0C B =,3,022C D ⎛⎫=- ⎪ ⎪⎝⎭. 平面CSB 的法向量()()2,20,02222,,00000,nC S C B =⨯=-⨯⎛--=-⎝= ;平面CSD 的法向量()2,230222222,,33002223,2mC S CD =⨯=-⎛⎫⨯- ⎪ ⎪⎝⎭⎛-- =- -- ⎝⎛=-- ⎪⎝⎭ .若平面CSB 与平面CSD 所成的角为θ,即二面角B —SC —D 的大小为θ, 则cos 082n m n mθ⋅===-<.又 []0,θπ∈,arccos82θπ=-例3.3 (2005高考重庆理科试题 第20题 第2问)如图7,在三棱柱ABC —A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1,已知AB =2,BB 1=2,BC =1,∠BCC 1=3π,求:二面角A—EB 1—A 1的平面角的正切值.解 以B 为坐标原点, BB 1 、BA 棱所在的直线分别为y 轴、z 轴,以平面BCC 1B 1内垂直于BB 1的直线为x 轴,建立空间直角坐标系(图8),相应各点坐标为B (0,0,0),B 1(0,2,0), A (0,0,2), A 1 (0,2,2), 且可根据已知条件设,02E a ⎛⎫⎪ ⎪⎝⎭,则12,022EA EB a a ⎛⎛⎫⋅=--⋅-- ⎪ ⎪⎝⎭⎝⎭23204a a =+-=. 解之12a =(或3,2a =若3,2a =则点E 在棱CC 1之外,故舍去),故1,,022E ⎛⎫⎪ ⎪⎝⎭.于是13,022EB ⎛⎫=- ⎪ ⎪⎝⎭,122EA ⎛=-- ⎝⎭, 13,22EA ⎛=- ⎝⎭. 平面EB 1A 的法向量13,0221,22332222112222,22nEB EA ⎛⎫=⨯=- ⎪ ⎪⎝⎭⎛⨯-- ⎝⎭⎛⎫--⎪ ⎪=- ⎪---- ⎪⎝⎭⎛= ⎝⎭; 平面EB 1A 1的法向量113,02232233222233222222m EB EA⎛⎫=⨯=-⎪⎪⎝⎭⎛⨯-⎝⎭⎛⎫--⎪⎪=-⎪--⎪⎝⎭⎛⎫= ⎪⎪⎝⎭.若平面EB1A与平面EB1A1所成的角为θ,即二面角A-EB1-A1的大小为θ,则cos03n mn mθ⋅===>.又[]0,θπ∈,tan2θ=.DEAB 4练习1.(2009全国1文)19. 如图,四棱锥S A B C D -中,底面A B C D 为矩形,SD ⊥底面A B CD ,AD =2D C SD ==,点M 在侧棱S C 上,∠ABM=60.(I )证明:M 是侧棱S C 的中点;()II 求二面角SA MB --的大小。
3.2向量法求二面角

3.2向量法求二面角(16-1)编制人:闵小梅 审核人:王志刚【使用说明及学法指导】 1.完成预习案中的相关问题;2.尝试完成探究案中合作探究部分,注意书写规范;3.找出自己的疑惑和需要讨论的问题准备课堂讨论质疑。
【学习目标】会用法向量求二面角的大小 【教学重点】向量法求二面角的大小【教学难点】建立适当的坐标系,准确写出点的空间坐标 一、复习引入 【复习】知识点1.向量法求两条异面直线所成的角(范围:]2,0(πθ∈)|||||,cos |cos n m=><=θ知识点2.向量法求直线与平面所成角(范围:[θ∈sin |cos ,|n AB θ=<>=r uu u r类比以上求法,思考如何用向量法求二面角? 回顾二面角的有关概念: (1) 二面角的定义平面内的一条直线把平面分成两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形叫做二面角。
(2)二面角的平面角①过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角,[0,]AOB π∠∈。
②一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角,[0,]AOB π∠∈。
abαθO12)【引入】知识点3.向量法求二面角(范围:[0,]θπ∈)①方向向量法:将二面角转化为二面角的两个面的方向向量(在二面角的面内且垂直于二面角的棱)的夹角。
如图,设二面角βα--l 的大小为θ,其中βα⊂⊥⊂⊥CD l CD AB l AB ,,,.结论:②法向量法如图1、2所示时,二面角l αβ--的平面角与平面α、β的法向量1n r ,2n r的夹角12,n n <>r r相等,即 ;如图3、4所示时,二面角l αβ--的平面角与平面α、β的法向量1n r ,2n r的夹角12,n n <>r r相等,即结论:cos θ= 或 cos θ=二面角l αβ--为锐二面角时,cos θ=二面角l αβ--为钝二面角时,cos θ= 【尝试练习】1.已知两平面的法向量分别为1n r =(0,1,0),2n r=(0,1,3),则两平面所成的二面角余弦值为____ 2.(课本P107练习2改编)二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB 。
向量法在求二面角中的应用

探索篇•课题荟萃一、二面角的两个半平面的法向量的夹角与二面角的关系1.确定法向量的指向如图1,n 1指向二面角的内部,n 2指向二面角的外部。
在空间直角坐标系下,可将法向量的起点移至坐标原点,然后观察法向量的指向。
图32.确定两个法向量的夹角与二面角的关系如图1,当两个法向量一个指向二面角的内部,一个指向二面角的内部时,法向量的夹角就是二面角;如图2和图3,当两个法向量都指向内或者都指向外时,法向量的夹角就是二面角的补角。
二、法向量在求二面角中的应用求二面角的大小或二面角的余弦值:当二面角为锐二面角时,二面角的余弦值为正值,当二面角为钝二面角时,二面角的余弦值为负值,二面角和它的补角的余弦值不相等。
用向量法解决这类型题时需判断法向量的指向以保证两向量的夹角就是二面角。
例1.【2017全国1卷(理)】如图4所示,在四棱锥P-ABCD 中,AB ∥CD ,且∠BAP=∠CDP =90°(1)证明:平面PAB ⊥平面PAD 。
(2)若PA =PD=AB=DC ,∠APD =90°,求二面角A-PB-C 的余弦值。
【解析】(1)证明:因为∠BAP=∠CDP =90°,所以PA ⊥AB ,PD ⊥CD 。
又因为AB ∥CD ,所以PD ⊥AB ,又因为PD ∩PA =P ,PD 、PA ⊂平面PAD ,所以AB ⊥平面PAD ,又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD 。
(2)取AD 中点O ,BC 中点E ,联结PO ,OE ,因为AB ∥=CD ,所以四边形ABCD 为平行四边形,所以OE ∥AB 。
由(1)知,AB ⊥平面PAD ,所以OE ⊥平面PAD ,又PO 、AD ⊂平面PAD ,所以OE ⊥PO ,OE ⊥AD 。
又因为PA =PD ,所以PO ⊥AD ,所以PO 、OE 、AD两两垂直,所以以O 为坐标原点,建立如图5,所示的空间直角坐标系O-xyz 设PA =2,所以D (-2√,00),B (2√,0,0),P (0,0,2√)C (-2√),所以PD =(-2√,0,-2√),PB 2√,2,-2√),BC-22√,0,0)设n =)为平面PBC 的法向量,由n ·PB =0n ·BC =0{,得2√x +2y -2√z =0-22√x =0{.令y =1,则z =2√,x =0,可得平面PBC 的一个法向量n =(0,1,2√)(将该法向量移动至坐标原点,判断指向二面角的外部)因为∠APD=90°,所以PD ⊥PA ,又知AB ⊥平面PAD ,PD ⊂平面PAD ,以PD ⊥AB ,又PA ∩AB=A ,所以PD ⊥平面PAB ,即PD 是平面PAB 的一个法向量,PD =-2√,0,-2√)(判断该法向量指向二面角)所以cos (PD ,n )PD ·-223√=-3√3。
原创1:1.2.4 二面角

夹角,但要注意其异同.
(2)法向量法:分别求出两平面的法向量n1,n2,则两平面的夹角为〈n1,n2〉
若二面角为锐角,则为〈n1,n2〉;若二面角为钝角,则为π-〈n1,n2〉.
跟踪练习
练习.正方形ABCD所在平面外一点P,PA⊥平面ABCD,若PA=AB,则平面PAB与
1
,
2
1
2
, ),
易知是平面PAB的法向量, 是平面PCD的法向量,
∴cos〈 , 〉=
2
2
,∴平面PAB与平面PCD的夹角为45°.
B
x
D
C
y
课堂小结
用空间向量解决立体几何问题的“三步曲”.
(1)建立立体图形与空间向量的联系,用空间向量表示问题中
涉及的点、直线、平面,把立体几何问题转化为向量问题;
以O为原点,如图建立空间直角坐标系,
C1
O
B
x
A1
y
B1
典例精析
则B(1,0,0),D(-1,1,0),
z
A1(0,2, 3),A(0,0, 3),B1(1,2,0).
A
设平面A1AD的法向量为n=(x,y,z),
AD=(-1,1,- 3),AA1=(0,2,0).
A1
C
因为n⊥AD,n⊥AA1,
第一章
空间向量与立体几何
1.2.4 二面角
学习目标:
1.会用向量法求二面角.
2.能正确理解二面角的定义.
教学重点:会用向量法求二面角.
教学难点:会用向量法求二面角.
新知探索
二面角的平面角
设二面角αlβ的锐二面角大小为θ,且两个半平面的法向量分别为a,b,
空间向量法求二面角

徐沟中学高二年级数学学案 命制人: 董晓燕 郭凯丽 复查人:段红蕊空间向量法求二面角学习目标:1.让学生初步理解用与二面角的平面角两边平行的向量的夹角计算二面角大小的方法;让学生初步了解二面角的平面角与两个面的法向量的夹角的关系;并能解决与之有关的简单问题.新知自学:让学生观察两平面的法向量的夹角与二面角的平面角之间的关系,引导学生用法向量的夹角解图1 图2课堂互学:例1;在长方体ABCD —A 1B 1C 1D 1中,AB=2,BC=4,AA 1=2,点Q 是BC 的中点,求此时二面角A —A 1D —Q 的大小.例2.如图,AB ⊥平面BCD ,BD CD ⊥,若2AB BC BD ==,求二面角B ACD --的正弦值例3:如图5,在底面是直角梯形的四棱锥S —A BCD 中,AD//BC ,∠A BC=900,S A ⊥面A BCD ,S A =21,A B=BC=1,A D=21。
求侧面SCD 与面SB A 所成的二面角的大小。
总结提炼:随堂检测:1.如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点.(Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角11C B A A --的大小;能力提升:1.如图,在直三棱柱ABC-A 1B 1C 1中,平面A 1BC ⊥侧面A 1ABB 1,且AA 1=AB=2.(1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为6π,求锐二面角A-A 1C-B 的大小.A BC DEF ϕω θ βlα2n 1nθ β lαϕ1n2n O (A ) B A 1 C 1 B 1D 1 D CQ zy x 图4AzyDCBS 图5ABCD1A1C1B。
向量法求二面角

用向量法求二面角
思考:能否用法向量求二面角的大小?
A n
B O
n2
n1
n1, n2
用向量法求二面角
n2 n1
同
进
同
出
n2 n1
取 补 角
n2来自n2n1 一
进
一
出
取
n1
等 角
法2:图形的特征来判定相等、互补
用向量法求二面角
例1 如所示,ABCD是一直角梯形,ABC=900 ,
SA 平面ABCD, SA AB BC 1, AD 1 , 2
求面SCD与面SBA所成二面角 z
的余弦值. 方法一:几何法
S n1
n2
方法二:向量法
B
C
易知面SBA的法向量n1
AD
1 (0, , 0)
A
x
2
面SCD的法向量可取n2 (1, 2,1)
Dy
用向量法求二面角
变式练习 如图所示,ABCD是一直角梯形,ABC=900 ,
二面角及其度量
用向量法求二面角
一、教材分析
二面角及其度量是高中数学选修2--1第3章空间向量在立体几 何中的应用中的部分内容。空间向量的引入为代数方法处理立 体几何问题提供了一种重要的工具和方法。本节课是在学生掌 握了用空间向量求线面角的基础上进行的延伸和拓展。求空间 角是立体几何的一类重要的问题,也是高考的热点之一。
二、教学目标
知识目标 :
掌握空间向量求二面角的方法;.
能力目标:
培养学生观察分析、类比转化的能力; 培养空间想象能力
法向量求解二面角的平面角

法向量求解二面角的平面角求二面角是高考中必考内容,学习过程中要备受关注,利用传统方法求解二面角的关键是首先知道二面角的平面角,再转化到三角形中解决,而利用法向量可以降低问题的难度,把问题转化为程序化的求解过程,本文就剖析如何利用法向量求解二面角.一、法向量求二面角步骤1、建立适当的直角坐标系,当图形中有明显互相垂直且交于一点的三条直线,可以利用这三条直线直接建系;如果没有明显交于一点的三条直线,但图形中有一定对称关系,(如正三棱柱、正四棱柱等)利用图形对称性建立空间直角坐标系解题;此外页可以利用面面垂直的性质定理,作出互相垂直且交于一点的三条直线,建立坐标系.2、求法向量:一般用待定系数法求解,一般步骤如下:(1)设出平面的法向量为n =(x ,y ,z );(2)找出(求出)平面内的两个不共线的向量的坐标),,(111c b a a =,),,(222c b a b =;(3)根据法向量的定义建立关于x 、y 、z 的方程组⎩⎨⎧=⋅=⋅00b n a n ;(4)解方程组,取其中的一个解,即得法向量£®3、利用数量积公式求角:设1n ,2n 分别是两个半平面的法向量,则由21,cos n n n n >=<求得><21,n n ,而><21,n n 的大小或其补角的大小即为二面角的大小,应注意1n ,2n 的方向。
所以二面角的大小可以通过该二面角的两个面的法向量的夹角求得,他等于两法向量的夹角或其补角.二、考题剖析例1、在四棱锥ABCD P -中,⊥PA 平面ABCD ,底面ABCD 为矩形,1(0)AB PA BC a a==>. (Ⅰ)当1a =时,求证:BD PC ⊥;(Ⅱ)若BC 边上有且只有一个点Q ,使得QD PQ ⊥,求此时二面角Q PD A --的余弦值.A BQ DCP解:(Ⅰ)当1a =时,底面ABCD 为正方形,∴BD AC ⊥ 又因为BD PA ⊥,BD ∴⊥面PAC 又PC ⊂面PAC ,BD PC ∴⊥(Ⅱ) 因为AP AD AB ,,两两垂直,分别以它们所在直线为x 轴、y 轴、z 轴建立坐标系,如图所示,令1AB =,可得BC a =,则)1,0,0(),0,,1()0,,0(),0,0,1(P a C a D B .设m BQ =,则)0)(0,,1(a m m Q ≤≤.要使QD PQ ⊥,只要0)(1=-+-=⋅m a m QD PQ ,即210m am -+=. 由0∆=2a ⇒=,此时1m =.所以BC 边上有且只有一个点Q ,使得QD PQ ⊥时,Q 为BC 的中点,且2=a . 设面PQD 的法向量)1,,(y x p =,则00p QD p DP ⎧⋅=⎪⎨⋅=⎪⎩即⎩⎨⎧=+-=+-0120y y x 解得)1,21,21(=p ,取平面PAD 的法向量)0,0,1(=q ,则〉〈q p .的大小与二面角Q PD A --的大小相等,所以66.cos ==〉〈q p q p , 因此二面角Q PD A --的余弦值为66.点评:一般情况下求法向量用待定系数法.由于法向量没规定长度,仅规定了方向,所以有一个自由度,可把n 的某个坐标设为1,再求另两个坐标.求解法向量一般借助方程思想,几何问题代数化,求得法向量再结合向量数量积公式求得二面角.例2、在如图所示的四面体ABCD 中,AB 、BC 、CD 两两互相垂直,且BC = CD = 1.求二面角C -AB -D 的大小;分析:由于本题中没有垂直关系,需要寻找(或作出三线垂直的直线).解:根据已知容易证明BCD AB 平面⊥,设以过B 点且∥CD 的向量为x 轴,BC BA 、为y 轴和z 轴建立如图所示的空间直角坐标系,设AB = a ,则A (0,0,a ),C (0,1,0),D (1,1,0),BD = (1,1,0),BA = (0,0,a )平面ABC 的法向量CD = (1,0,0).设平面ABD 的一个法向量为n = (x ,y ,z ),则0000BD x y az BA ⎧⋅=+=⎧⎪⇒⎨⎨=⋅=⎩⎪⎩n n ,取n = (1,-1,0).∴cos ||||CD CD CD ⋅<>==⋅n n n ,∴二面角C -AB -D 的大小为45°点评:解决本题关键是建立合适的直角坐标系,求得点的坐标,从而求得法向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲:立体几何中的向量方法
——利用空间向量求二面角的平面角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。
高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。
它能利用代数方法解决立体几何问题,体现了数形结合的思想。
并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。
为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。
本文举例说明如何用向量法解决立体几何的空间角问题。
以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。
利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。
空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。
教学目标
1.使学生会求平面的法向量;
2.使学生学会求二面角的平面角的向量方法;
3.使学生能够应用向量方法解决一些简单的立体几何问题;
4.使学生的分析与推理能力和空间想象能力得到提高.
教学重点
求平面的法向量;
求解二面角的平面角的向量法.
教学难点
求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式:
1、二面角的平面角:(范围:],0[πθ∈)
结论: 或
统一为:
2、法向量的方向:一进一出,二面角等于法向量夹角;同进同出,二面角等于法向量夹角的补角.
3、用空间向量解决立体几何问题的“三步曲”:
(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几
2
12121,cos cos n n n n n n
⋅=><=θ
何问题转化为向量问题;(化为向量问题)
(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算)
(3)把向量的运算结果“翻译”成相应的几何意义。
(回到图形)
Ⅱ、典例分析与练习
例1、如图,ABCD 是一直角梯形,︒=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,2
1
=AD ,求面SCD 与面SBA 所成二面角的余弦值.
分析 分别以,,BA AD AS 所在直线为,,x y z 轴, 建立空间直角坐标系,求出平面SCD 的法向量1n , 平面SBA 法向量2n ,利用12,n n 夹角 求平面SCD 与平面SBA 的夹角余弦值。
解:如图建立空间直角坐标系xyz A -,则
)1,0,0(),0,2
1
,0(),0,1,1(),0,0,0(S D C A -
易知面SBA 的法向量为)0,21,0(1==AD n ,)1,2
1
,0(),0,21,1(-=-=SD CD
设面SCD 的法向量为),,(2z y x n =,则有⎪⎪⎩⎪⎪⎨⎧
=-=-0
2
02
z y y x ,取1=z ,得2,1==y x ,)1,21,1(2=∴n
3
6
|
|||,cos 212121=
>=
<∴n n n n 又1n 方向朝面内,2n 方向朝面外,属于“一进一出”的情况,二面角等于法向量夹角
即所求二面角的余弦值为
3
6. 点拨 求二面角的方法有两种:(1)利用向量的加法及数量积公式求出与两半平面的棱垂直的向量的夹角,从而确定二面角的大小;(2)根据几何体的特征建立空间直角坐标系,先求二面角两个半平面的法向量,再求法向量的夹角,从而确定二面角的大小。
练习1:正方体1111D C B A ABCD -的棱长为1,点E 、F 分别为CD 、1DD 的中点.求二面角
D A
E
F --的余弦值。
解:由题意知,)0,1,21(),21
,1,0(E F ,则)21,1,0(=AF )0,1,2
1(,=AE
设平面AEF 的法向量为),,(z y x n =,则
⎪⎪⎩⎪⎪⎨⎧=+=+⇒⎪⎩⎪⎨
⎧=⋅=⋅02
10210
0y x z y AE n AF n ,取1=y ,得2-==z x )2,1,2(--=∴n
又平面AED 的法向量为)1
,0,0(1=AA 32
1
32||||,cos 11
1-=⨯-=⋅>=
<∴AA n AA n AA n 观察图形知,二面角D AE F --为锐角,所以所求二面角D AE F --的余弦值为3
2
练习2:如图,三棱柱中,已知A BCD 是边长为1的正方形,四边形B B A A ''
是矩形,。
平面平面ABCD B B A A ⊥''
试问:当A A '的长度为多少时,二面角A C A D -'-的大小为?
60
解: 如图建立空间坐标系A xyz -,则 '(1,0,)DA a =- (0,1,0)DC = 设面'
DAC 的法向量为1(,,1)n x y =
则'1100
DA n DC n ⎧⋅=⎪⎨⋅=⎪⎩ 得1(,0,1)n a = 易得面'
AAC 的法向量2(1,1,0)n =-
A B
x
D
C
1
B z
y
1
A 1
D 1
C E
F
∴向量12,n n 的夹角为60
由12122121
cos ,2
||||12n n a n n n n a ⋅-〈〉=
==+⋅ 得 1a =
∴ 当A A '=1时,二面角A C A D -'-的大小为60.
设计说明:复习面面角转化为两向量的夹角或其补角的方法,也可借此机会说明为什么这两个角相等或互补,就没有其他情况.
练习3:正三棱柱111ABC A B C -的所有棱长均为2,P是侧棱1AA 上任意一点. 当11BC B P ⊥时,求二面角11C B P C --的平面角的余弦值. 解:如图建立空间坐标系O xyz -,设AP a =
则1,,,A C B P 的坐标分别为(0,1,0),(0,1,0),(3,0,2)(0,1,)a -- ∵
,
1(3,1,2)
BC =-
由11BC B P ⊥,得110BC B P = 即22(2)0a +-= 1a ∴= 又11BC B C ⊥ 11BC CB P ∴⊥面
∴1(3,1,2)BC =-是面1CB P 的法向量
设面11C B P 的法向量为(1,,)n y z =,由1110
B P n B
C n ⎧⋅=⎪⎨⋅=⎪⎩得(1,3,23)n =-,
设二面角11C B P C --的大小为α,则116
cos 4||||
BC n BC n α== Ⅲ、小结与收获
1、二面角的平面角的正弦值弦值:
2、求平面法向量的方法.
2
12121,cos cos n n n n n n
⋅=><=θ
Ⅳ、课后练习
1、如图,已知四棱锥P ABCD -的底面是直角梯形,90ABC BCD ∠=∠=,
2AB BC PB PC CD ====,侧面PBC ⊥底面ABCD .
求二面角P BD C --的大小.
2、如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均相等,点D 是BC 上一点,AD ⊥C 1D. 求二面角C -AC 1-D 的大小.。