《材料力学》第2章 轴向拉(压)变形 习题解

合集下载

材料力学习题册答案-第2章-拉压

材料力学习题册答案-第2章-拉压
第二章 轴向拉压
一、 选择题
1.图 1 所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将(
A.平动
B.转动
C.不动
D.平动加转动
D)
2.轴向拉伸细长杆件如图 2 所示,则正确的说法是 ( C )
A.1-1、2-2 面上应力皆均匀分布 B.1-1、2-2 面上应力皆非均匀分布 C. 1-1 面上应力非均匀分布,2-2 面上应力均匀分布 D.1-1 面上应力均匀分布,2-2 面上应力非均匀分布
30KN 1
300mm
l1 解:(1) 轴力图如下
2
400mm
l2
10KN
-
40KN
50KN 3
400mm
l3
10KN
+
10KN
(2)
(3)右端面的位移
=
= 即右端面向左移动 0.204mm。
8.一杆系结构如图所示,试作图表示节点 C 的垂直位移,设 EA 为常数。
A
30
C
30 ΔL2 60 ΔL1
CD 段:σ3= =
Pa=25MPa
2.图为变截面圆钢杆 ABCD,已知 =20KN, = =35KN, = =300mm, =400mm,
D
3
C
P3
2
,绘出轴力图并求杆的最大最小应力。
B
1 P2
A
P1
l3 解:
-
50KN
l2 15KN
l1
20KN
+
AB 段:σ1=

=176.9MPa
BC 段:σ2=
反力均匀分布,圆柱承受轴向压力 P,则基座剪切面的剪力
。ห้องสมุดไป่ตู้

材料力学第二章答案

材料力学第二章答案
1、若所挂重物的重量相同,哪根杆危险? 2、若C’的重量大于C的重量,哪根杆危险?
A
细 杆
A’
粗 杆
B
B’
C FN ? FN
C’
A A
第二章 轴向拉伸和压缩
Ⅰ.应力的概念
受力杆件(物体)某一截面的M点附 近微面积ΔA上分布内力的平均集度 即平均应力, p F ,
m A
其方向和大小一般而言,随所取ΔA的大小而不同。
(3)应力量纲:ML-1T -2
应力单位:Pa(1 Pa = 1 N/m2,1 MPa = 106 Pa)。 (4)整个截面上各点处的应力与微面积之乘积的合成,即为
该截面上的内力。(静力等效)
Ⅱ.拉(压)杆横截面上的应力
第二章 轴向拉伸和压缩
分析:
FN
sdA
A
(1) 与轴力相应的只可能是正应力s,与切应力无关;
例题2-1 试作此杆的轴力图。
第二章 轴向拉伸和压缩
(a)
等直杆的受力示意图
解:
第二章 轴向拉伸和压缩
(1)为求轴力方便,先求出约束力 FR=10 kN (2)为方便,取横截面1-1左边 为分离体,假设轴力为拉力, 得
FN1=10 kN(拉力)
第二章 轴向拉伸和压缩
(3)为方便,取横截面1-1左边 为分离体,假设轴力为拉力, 得: FN2=50 kN(拉力)
拉(压)杆的纵向变形
纵向总变形Δl = l1-l 纵向线应变 l
l
反映绝对变形量 反映变形程度
第二章 轴向拉伸和压缩
fl
f(xx)
f
x
l
x
x
沿杆长均匀分布 的荷载集度为 f
轴力图
fx

材料力学第二章 轴 向拉压习题及答案

材料力学第二章 轴 向拉压习题及答案

第二章轴向拉压一、选择题1.图1所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D)A.平动B.转动C.不动D.平动加转动2.轴向拉伸细长杆件如图2所示,其中1-1面靠近集中力作用的左端面,则正确的说法应是( C)A.1-1、2-2面上应力皆均匀分布B.1-1、2-2面上应力皆非均匀分布C.1-1面上应力非均匀分布,2-2面上应力均匀分布D.1-1面上应力均匀分布,2-2面上应力非均匀分布(图1)(图2)3.有A、B、C三种材料,其拉伸应力—应变实验曲线如图3所示,曲线( B)材料的弹性模量E大,曲线( A )材料的强度高,曲线( C)材料的塑性好。

4.材料经过冷作硬化后,其( D)。

A.弹性模量提高,塑性降低B.弹性模量降低,塑性提高C.比例极限提高,塑性提高D.比例极限提高,塑性降低5.现有钢、铸铁两种杆材,其直径相同。

从承载能力与经济效益两个方面考虑,图4所示结构中两种合理选择方案是( A)。

A.1杆为钢,2杆为铸铁B.1杆为铸铁,2杆为钢C.2杆均为钢D.2杆均为铸铁(图3)(图4)(图5)6.在低碳钢的拉伸试验中,材料的应力变化不大而变形显著增加的是(B)。

A. 弹性阶段;B.屈服阶段;C.强化阶段;D.局部变形阶段。

7.铸铁试件压缩破坏(B)。

A. 断口与轴线垂直;B. 断口为与轴线大致呈450~550倾角的斜面;C. 断口呈螺旋面;D. 以上皆有可能。

8.为使材料有一定的强度储备,安全系数取值应( A )。

A .大于1; B. 等于1; C.小于1; D. 都有可能。

9. 等截面直杆在两个外力的作用下发生轴向压缩变形时,这对外力所具备的特点一定是等值、( C )。

A 反向、共线B 反向,过截面形心C 方向相对,作用线与杆轴线重合D 方向相对,沿同一直线作用10. 图6所示一阶梯形杆件受拉力P的作用,其截面1-1,2-2,3-3上的内力分别为N 1,N 2和N 3,三者的关系为( B )。

《材料力学》第2章 轴向拉(压)变形 习题解

《材料力学》第2章 轴向拉(压)变形 习题解

第二章 轴向拉(压)变形[习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a )解:(1)求指定截面上的轴力 F N =-11F F F N -=+-=-222 (2)作轴力图轴力图如图所示。

(b ) 解:(1)求指定截面上的轴力 F N 211=-02222=+-=-F F N (2)作轴力图F F F F N =+-=-2233 轴力图如图所示。

(c ) 解:(1)求指定截面上的轴力 F N 211=-F F F N =+-=-222 (2)作轴力图F F F F N 32233=+-=- 轴力图如图所示。

(d ) 解:(1)求指定截面上的轴力 F N =-11F F a aFF F qa F N 22222-=+⋅--=+--=- (2)作轴力图中间段的轴力方程为: x aFF x N ⋅-=)( ]0,(a x ∈ 轴力图如图所示。

[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积2400mm A =,试求各横截面上的应力。

解:(1)求指定截面上的轴力kN N 2011-=-)(10201022kN N -=-=- )(1020102033kN N =-+=- (2)作轴力图轴力图如图所示。

(3)计算各截面上的应力 MPa mm N A N 504001020231111-=⨯-==--σMPa mm N A N 254001010232222-=⨯-==--σ MPa mm N A N 254001010233333=⨯==--σ[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积21200mm A =,22300mm A =,23400mm A =,并求各横截面上的应力。

解:(1)求指定截面上的轴力kN N 2011-=-)(10201022kN N -=-=- )(1020102033kN N =-+=- (2)作轴力图轴力图如图所示。

《材料力学》第2章 轴向拉压变形 习题解

《材料力学》第2章 轴向拉压变形 习题解

第二章轴向拉(压)变形[习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a )解:(1)求指定截面上的轴力 FN =-11FF F N -=+-=-222(2)作轴力图轴力图如图所示。

(b )解:(1)求指定截面上的轴力 FN 211=-2222=+-=-F F N (2)作轴力图FF F F N =+-=-2233 轴力图如图所示。

(c )解:(1)求指定截面上的轴力 FN 211=-FF F N =+-=-222(2)作轴力图FF F F N 32233=+-=- 轴力图如图所示。

(d )解:(1)求指定截面上的轴力 FN =-11F F a aFF F qa F N 22222-=+⋅--=+--=-(2)作轴力图 中间段的轴力方程为: x aFF x N ⋅-=)(]0,(a x ∈轴力图如图所示。

[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

2400mm A =解:(1)求指定截面上的轴力kNN 2011-=- )(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。

(3)计算各截面上的应力MPa mm N A N 504001*********-=⨯-==--σMPa mm N A N 254001010232222-=⨯-==--σMPamm N A N 254001010233333=⨯==--σ[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

21200mm A =22300mm A =23400mm A =解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。

材料力学第2版 课后习题答案 第2章 轴向拉压与伸缩

材料力学第2版 课后习题答案 第2章 轴向拉压与伸缩

习题2-1一木柱受力如图示,柱的横截面为边长20cm 的正方形,材料服从虎克定律,其弹性模量MPa .如不计柱自重,试求:51010.0×=E (1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形.解:(1)轴力图(2)AC 段应力a a ΜΡΡσ5.2105.22.010100623−=×−=×−=CB 段应力aa ΜΡΡσ5.6105.62.010260623−=×−=×−=(3)AC 段线应变45105.2101.05.2−×−=×−==ΕσεN-图CB 段线应变45105.6101.05.6−×−=×−==Εσε(4)总变形m 3441035.15.1105.65.1105.2−−−×=××−××−=ΑΒ∆2-2图(a)所示铆接件,板件的受力情况如图(b)所示.已知:P =7kN ,t =0.15cm ,b 1=0.4cm ,b 2=0.5cm ,b 3=0.6cml 。

试绘板件的轴力图,并计算板内的最大拉应力。

解:(2)aΜΡσ4.194101024.015.0767311=×××××=−a ΜΡσ1.311101025.015.0767322=×××××=−a ΜΡσ9.388101026.015.07673=××××=−最大拉应力aΜΡσσ9.3883max ==2-3直径为1cm 的圆杆,在拉力P =10kN 的作用下,试求杆内最大剪应力,以及与横截面夹角为=30o 的斜截面上的正应力与剪应力。

α解:(1)最大剪应力a d ΜΡππΡστ66.6310101102212672241max =××××===−(2)界面上的应力°=30α()a ΜΡασσα49.952366.632cos 12=×=+=a ΜΡαστα13.5530sin 66.632sin 2=×=×=°2-4图示结构中ABC 与CD 均为刚性梁,C 与D 均为铰接,铅垂力P =20kN 作用在C 铰,若(1)杆的直径d 1=1cm ,(2)杆的直径d 2=2cm ,两杆的材料相同,E =200Gpa ,其他尺寸如图示,试求(1)两杆的应力;(2)C 点的位移。

材料力学第五版第二章习题答案

材料力学第五版第二章习题答案
(a)
F F
m m
m m
F
(b)
FN
x m m
FN F
F
(c)
FN
(a)
F
m
m
F
(b)
F
FN
m
FN
x m m
m
FN F
F
(c)
若用平行于杆轴线的坐标表示横截面的位置,用 垂直于杆轴线的坐标表示横截面上轴力的数值, 所绘出的图线可以表明轴力与截面位置的关系, 称为轴力图。
F F F
讨论: ( 1) 0
90 (2) 45 45
0
max 0 (横截面) 0 (纵截面) max 0 / 2 min 0 / 2
0 0
(横截面) (纵截面)
90
观察现象:
等直杆相邻两条横向线在杆受拉(压)后仍 为直线,仍相互平行,且仍垂直于杆的轴线。 F
a a' b' b c c' d' d
F
平面假设
原为平面的横截面在杆变形后仍为平面, 对于拉(压)杆且仍相互平行,仍垂直于轴线。
推论:
1、等直拉(压)杆受力时没有发生剪切变形, 因而横截面上没有切应力。 2、拉(压)杆受力后任意两个横截面之间纵向线 段的伸长(缩短)变形是均匀的。 亦即横截面上各点处的正应力 都相等。
FN,max FN2 50kN

补充 例题1
l
F
F
q=F/l
F 2l l 3 F
解: 1、求支反力
1 FR 1 F F F 2 F'=2ql F 3 F 2 q
FR

材料力学练习册答案

材料力学练习册答案

第二章 轴向拉伸和压缩2.1 求图示杆11-、22-、及33-截面上的轴力。

解:11-截面,取右段如)(a 由0=∑x F ,得 01=N F22-截面,取右段如)(b由0=∑x F ,得 P F N -=233-截面,取右段如)(c由0=∑x F ,得 03=N F2.2 图示杆件截面为正方形,边长cm a 20=,杆长m l 4=,kN P 10=,比重3/2m kN =γ。

在考虑杆本身自重时,11-和22-截面上的轴力。

解:11-截面,取右段如)(a 由0=∑xF,得kN la F N 08.04/21==γ22-截面,取右段如)(b由0=∑xF,得kN P la F N 24.104/322=+=γ2.3 横截面为210cm 的钢杆如图所示,已知kN P 20=,kN Q 20=。

试作轴力图并求杆的总伸长及杆下端横截面上的正应力。

GPa E 200=钢。

解:轴力图如图。

杆的总伸长:m EA l F l N59102001.0102001.02000022-⨯-=⨯⨯⨯-⨯==∆ 杆下端横截面上的正应力:MPa A F N 20100020000-=-==σ 2.4 两种材料组成的圆杆如图所示,已知直径mm d 40=,杆的总伸长cm l 21026.1-⨯=∆。

试求荷载P 及在P 作用下杆内的最大正应力。

(GPa E 80=铜,GPa E 200=钢)。

解:由∑=∆EAl F l N ,得)104010806.0410********.04(1026.16296294---⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯=⨯ππP4/4/4/4/)(a )(b )(c 2N1N )(a kNkN 图NF cm cmcm解得: kN P 7.16= 杆内的最大正应力:MPa A F N 3.13401670042=⨯⨯==πσ 2.5 在作轴向压缩试验时,在试件的某处分别安装两个杆件变形仪,其放大倍数各为1200=A k ,1000=B k ,标距长为cm s 20=,受压后变形仪的读数增量为mm n A 36-=∆,mm n B 10=∆,试求此材料的横向变形系数ν(即泊松比)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章第三章第四章 轴向拉(压)变形[习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a ) 解:(1)求指定截面上的轴力 F N =-11F F F N -=+-=-222 (2)作轴力图轴力图如图所示。

(b ) 解:(1)求指定截面上的轴力 F N 211=-02222=+-=-F F N (2)作轴力图F F F F N =+-=-2233 轴力图如图所示。

(c ) 解:(1)求指定截面上的轴力 F N 211=-F F F N =+-=-222 (2)作轴力图F F F F N 32233=+-=- 轴力图如图所示。

(d ) 解:(1)求指定截面上的轴力 F N =-11F F a aFF F qa F N 22222-=+⋅--=+--=- (2)作轴力图中间段的轴力方程为:x aFF x N ⋅-=)( ]0,(a x ∈ 轴力图如图所示。

[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积2400mm A =,试求各横截面上的应力。

解:(1)求指定截面上的轴力kN N 2011-=-)(10201022kN N -=-=- )(1020102033kN N =-+=- (2)作轴力图轴力图如图所示。

(3)计算各截面上的应力 MPa mm N A N 504001020231111-=⨯-==--σ MPa mm N A N 254001010232222-=⨯-==--σMPa mmN A N 254001010233333=⨯==--σ [习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积21200mm A =,22300mm A =,23400mm A =,并求各横截面上的应力。

解:(1)求指定截面上的轴力kN N 2011-=-)(10201022kN N -=-=- )(1020102033kN N =-+=- (2)作轴力图轴力图如图所示。

(3)计算各截面上的应力MPa mm N A N 10020010202311111-=⨯-==--σ MPa mmN A N 3.3330010102322222-=⨯-==--σMPa mm N A N 254001010233333=⨯==--σ[习题2-4] 图示一混合屋架结构的计算简图。

屋架的上弦用钢筋混凝土制成。

下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个mm mm 875⨯的等边角钢。

已知屋面承受集度为m kN q /20=的竖直均布荷载。

试求拉杆AE 和EC 横截面上的应力。

解:(1)求支座反力由结构的对称性可知: )(4.177)937.42(205.021kN ql R R B A =+⨯⨯⨯=== (2)求AE 和EG 杆的轴力① 用假想的垂直截面把C 铰和EG 杆同时切断,取左部分为研究对象,其受力图如图所示。

由平衡条件可知:0)(=∑F MC087.84.177287.8)5.437.4(20)2.11(=⨯-⨯+⨯++⋅EG N )(62.357]87.84.177287.8)5.437.4(20[2.21kN N EG=⨯+⨯+⨯-⨯= ② 以C 节点为研究对象,其受力图如图所示。

由平平衡条件可得:0=∑X0cos =-αEA EG N N )(86.366137.437.462.357cos 22kN N N EGEA =+==α(3)求拉杆AE 和EG 横截面上的应力查型钢表得单个mm mm 875⨯等边角钢的面积为:2213.1150503.11mm cm A ==MPa mm N A N EA AE5.1593.115021086.36623=⨯⨯==σ MPa mmN A N EG EG5.1553.115021062.35723=⨯⨯==σ [习题2-5] 石砌桥墩的墩身高m l 10=,其横截面面尺寸如图所示。

荷载kN F 1000=,材料的密度3/35.2m kg =ρ,试求墩身底部横截面上的压应力。

解:墩身底面的轴力为:g Al F G F N ρ--=+-=)()(942.31048.935.210)114.323(10002kN -=⨯⨯⨯⨯+⨯--= 8.935.210)114.323(10002⨯⨯⨯⨯+⨯--=)(942.3104kN -=墩身底面积:)(14.9)114.323(22m A =⨯+⨯=因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。

MPa kPa m kN A N 34.071.33914.9942.31042-≈-=-==σ [习题2-6] 图示拉杆承受轴向拉力kN F 10=,杆的横截面面积2100mm A =。

如以α表示斜截面与横截面的夹角,试求当ooooo90,60,45,30,0=α时各斜截面上的正应力和切应力,并用图表示其方向。

解:斜截面上的正应力与切应力的公式为:ασσα20cos =αστα2sin 2=式中,MPa mm N A N 1001001000020===σ,把α的数值代入以上二式得: 轴向拉/压杆斜截面上的应力计算题目 编号习题2-610000 100 0 100 100.0 0.0 10000 100 30 100 75.0 43.3 10000 100 45 100 50.0 50.0 10000 100 60 100 25.0 43.3 10000100901000.00.0[习题2-7] 一根等直杆受力如图所示。

已知杆的横截面面积A 和材料的弹性模量E 。

试作轴力图,并求杆端点D 的位移。

解:(1)作轴力图F N CD =)(0MPa σ)(MPa ασ)(MPa ατ)(o α)(N N )(2mm AF F F N BC -=+-=2 F F F F N AB =+-=22 AD 杆的轴力图如图所示。

(2)求D 点的位移EAl N EA l N EA l N l CDCD BC BC AB AB AD D ++=∆=∆ EA Nl EA Fl EA Fl 3/3/3/+-+=EAFl3=(→) [习题2-8] 一木桩受力如图所示。

柱的横。

截面为边长200mm 的正方形,材料可认为符合胡克定律,其弹性模量GPa E 10=。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力; (3)各段柱的纵向线应变; (4)柱的总变形。

解:(1)作轴力图kN N AC 100-=)(260160100kN N CB -=--=轴力图如图所示。

(2)计算各段上的应力 MPa mm N A N AC AC5.22002001010023-=⨯⨯-==σ。

MPa mmN A N CB CB5.62002001026023-=⨯⨯-==σ, (3)计算各段柱的纵向线应变 43105.210105.2-⨯-=⨯-==MPaMPaEACAC σε 43105.610105.6-⨯-=⨯-==MPaMPa ECBCB σε (4)计算柱的总变形)(35.110)15005.615005.2(4mm l l l CB CB AC AC AC =⨯⨯-⨯-=⋅+⋅=∆-εε[习题2-9] 一根直径mm d 16=、长m l 3=的圆截面杆,承受轴向拉力kN F 30=,其伸长为mm l 2.2=∆。

试求杆横截面上的应力与材料的弹性模量E 。

解:(1)求杆件横截面上的应力MPa mm NA N 3.1491614.3411030223=⨯⨯⨯==σ(2)求弹性模量因为:EA Nl l =∆, 所以:GPa MPa l l l A l N E 6.203)(9.2035902.230003.149==⨯=∆⋅=∆⋅⋅=σ。

[习题2-10] (1)试证明受轴向拉伸(压缩)的圆截面杆横截面沿圆周方向的线应变s ε等于直径方向的线应变d ε。

(2)一根直径为mm d 10=的圆截面杆,在轴向力F 作用下,直径减小了0.0025mm 。

如材料的弹性模量GPa E 210=,泊松比3.0=ν,试求该轴向拉力F 。

(3)空心圆截面杆,外直径mm D 120=,内直径mm d 60=,材料的泊松比3.0=ν。

当其轴向拉伸时,已知纵向线应变001.0=,试求其变形后的壁厚。

解:(1)证明d s εε=在圆形截面上取一点A ,连结圆心O 与A 点,则OA 即代表直径方向。

过A 点作一条直线AC 垂直于OA ,则AC 方向代表圆周方向。

νεεε-==AC s (泊松比的定义式),同理, νεεε-==OA d 故有:d s εε=。

(2)求轴向力Fmm d 0025.0-=∆ 4'105.2100025.0-⨯-=-=∆=d d ε νεε-='44'103253.0105.2-⨯=⨯--=-=νεε εσE =εE AF=kN N AE F 74.13)(5.1373710325102101014.325.0432==⨯⨯⨯⨯⨯⨯==-ε (3)求变形后的壁厚4'103001.03.0-⨯-=⨯-=-=νεε4'103)(-⨯-==--∆εrR r Rmm r R 009.0)3060()103()(4-=-⨯⨯-=-∆- 变形厚的壁厚:)(991.29009.030|)(|)(mm r R r R =-=-∆--=∆[习题2-11] 受轴向拉力F 作用的箱形薄壁杆如图所示。

已知该材料的弹性常数为ν,E ,试求C 与D 两点间的距离改变量CD ∆。

解:EAFE AF νννεε-=-=-=/'式中,δδδa a a A 4)()(22=--+=,故: δνεEa F 4'-=δνεEa F a a 4'-==∆ δνE F a a a 4'-=-=∆δνE F a a 4'-= a a a CD 12145)()(243232=+= '12145)'()'(243232''a a a D C =+= δνδνE F E F a a CD D C CD 4003.1412145)(12145)('''⋅-=⋅-=-=-=∆ [习题2-12] 图示结构中,AB 为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量GPa E 210=,已知m l 1=,221100mmA A ==,23150mm A =,kN F 20=。

试求C 点的水平位移和铅垂位移。

解:(1)求各杆的轴力以AB 杆为研究对象,其受力图如图所示。

因为AB 平衡,所以0=∑X045cos 3=oN03=N由对称性可知,0=∆CH)(10205.05.021kN F N N =⨯===(2)求C 点的水平位移与铅垂位移。

相关文档
最新文档